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Let � = {λ1, . . . , λn}, n� 2, be a given multiset of elements in an

integral domain R and let P be a matrix of order n with at most

2n − 3 prescribed entries that belong to R. Under the assumption

that each row, each column and the diagonal of P have at least one

unprescribed entry, we prove that P can be completed over R to

obtain a matrix A with spectrum Λ. We describe an algorithm to

construct A. This result is an extension to integral domains of a

classical completion result by Herskowitz for fields.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

An inverse eigenvalue problem consists of the construction of a matrix with prescribed structural

and spectral constraints. This is a two level problem: on a theoretical level the target is to determine

if there exists a solution matrix with the given constraints; and on a practical level the target is an

effective construction of a solution matrix when the problem is solvable. Inverse eigenvalue problems

are classified into different types according to the specific constraints. For interested readers, we refer

to the book by Chu and Golub [3] where an account of inverse eigenvalue problems with applications

and exhaustive bibliography can be found.

A particular class of inverse eigenvalue problems are completion problems: given a matrix P with

some of its entries specified, we would like to decide if and how we can choose unspecified entries

of P in such a way that the completed matrix satisfies certain spectral properties. A survey on these

type of problems is given by Ikramov and Chugunov in [5], where they are specially interested in

�
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the development of finite rational algorithms to construct a solution matrix. A different approach to

the problem is given by Chu, Diele and Sgura in [2], where they consider gradient flow methods. An

extensive list of results in completion problems is given by Borobia in [1].

Our work was motivated by an interesting result of Hershkowitz [4]. He considered the case of

a matrix of order n with prescribed spectrum, with at most 2n − 3 prescribed entries in arbitrary

positions, and with the prescribed entries of the matrix and the prescribed eigenvalues lying in the

same field. He showed that, except in some very special cases, such a matrix can always be completed

with elements of the field to a matrix with the given spectrum.

When presented with a partially prescribed matrix P of order n there are some situations in which

we can immediately see that the completion to a matrix with a given spectrum Λ = {λ1, . . . , λn} is

not possible. For example, let P have a line (row or column) with all its elements prescribed, with all

the off-diagonal entries in that line equal to 0 and the diagonal entry not inΛ. If such a line in amatrix

P does not exist we will say that the lines of P are consistent with Λ. Another example, where the

completion is clearly impossible, is when we have all the diagonal elements of P prescribed and the

sum of the diagonal elements is different to the sum of the elements inΛ. If this is not the case, wewill

say that the diagonal of P is consistent with Λ. Hershkowitz proved that the two situations mentioned

above are the only ones that we need to exclude if we want to find a completion of a matrix P with at

most 2n − 3 prescribed entries to a matrix with prescribed spectrum Λ.

Theorem 1.1 (Herskowitz [4]). For n� 2 let Λ = {λ1, . . . , λn} be a given multiset of elements in a field

F. Let P be a matrix of order n with at most 2n − 3 prescribed entries that belong to F, and such that the

lines and the diagonal of P are consistent with Λ. Then P can be completed with elements of F to obtain a

matrix with spectrum Λ.

While matrix completion problems over fields have been extensively studied, little is known about

completion problems over rings. Except in the case where there exists a line with all its elements

prescribed,wewill be able to extend Theorem1.1 to arbitrary integral domains. The following theorem

is the main result of this work.

Theorem 1.2. For n� 2 let Λ = {λ1, . . . , λn} be a given multiset of elements in an integral domain R.

Let P be a matrix of order n with at most 2n − 3 prescribed entries that belong to R, and such that the

diagonal and each line of P have at least one element unprescribed. Then P can be completed with elements

of R to obtain a matrix with spectrum Λ.

Note that the completion problem for a matrix P with the diagonal fully prescribed and consistent

with Λ is equivalent to a completion problem for a matrix obtained from P by changing one of the

prescribed entries on the diagonal to unprescribed. Therefore Theorem 1.2 can be trivially extended

to matrices that have the diagonal fully prescribed and consistent with Λ.

Corollary 1.1. For n� 2 letΛ = {λ1, . . . , λn} be a givenmultiset of elements in an integral domainR. Let

P be a matrix of order n with at most 2n − 3 prescribed entries that belong to R, such that each line of P

has at least one element unprescribed, and such that the diagonal of P is consistent with Λ. Then P can be

completed over R to obtain a matrix with spectrum Λ.

Remark 1.1. We can not extend Theorem 1.2 to matrices that contain a line that has all its elements

prescribed. Let P have a line with all its elements prescribed and contained in a proper ideal I of the

integral domainR. Thedeterminant of any completionof P is an element ofI. Thereforeno completion

of P can achieve the spectrum Λ = {1, . . . , 1}, where 1 denotes the unity of R, since the product of

the elements of Λ is 1, and 1 is not an element of I.

2. Notation

For convenience of the readerwe provide a comprehensive list of the notation used at this point, al-

though themotivation for some of the notationwill not become apparent until later in themanuscript.
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• R will denote an arbitrary integral domain.

• Mn will denote the set of n × nmatrices with entries in R.

• R will denote the set R ∪ {�}, where � will denote an entry that is unprescribed.

• Mn will denote the set of n × nmatrices with entries in R (in other words, Mn denotes the set

of matrices that can have some unprescribed entries).

• M̂n will denote the set of all matrices P ∈ Mn such that for all i = 1, . . . , n we have pi1 = � or

pi2 = � (observe that M̂n denotes a class of matrices that have a restriction on the prescribed-

unprescribed pattern in the first two columns).

• Let τ ∈ Sn where Sn is the symmetric group on n elements, and let P ∈ Mn, we define

τ(P) = (
pτ(i) τ (j)

)n
i,j=1

.

If P ∈ Mn then τ(P) = TPT−1, where T is the permutation matrix corresponding to τ .
• For P, Q ∈ Mn we say that they are related if Q = τ(P) or Q = τ(PT ) for some τ ∈ Sn. It is

clear that this defines an equivalence relation.Wewill denote the equivalence class of P by E(P).
That is,

E(P) = {τ(P) : τ ∈ Sn} ∪ {τ(PT ) : τ ∈ Sn}.
Notice that if P ∈ Mn then all matrices in E(P) have the same spectrum.

• P(i) will denote the i-th row of P,

• P(j) will denote the j-th column of P,

• #P will denote the number of prescribed entries in P,

• #P(i) will denote the number of prescribed entries in P(i),

• #P(j) will denote the number of prescribed entries in P(j).

3. Previous results

3.1. Reductions

In this section we will see how to construct, from a given matrix P ∈ M̂n and a given λ ∈ R, a

reducedmatrix Γλ(P) ∈ Mn−1. The interesting point is that if Γλ(P) can be completed with elements

ofR to obtain a matrix with spectrum {λ1, . . . , λn−1} then P can be completed with elements of R to

obtain a matrix with spectrum {λ, λ1, . . . , λn−1}.
Our method is based on a result obtained by Šmigoc in [6]. Here we extend to integral domains a

simplified version of that result.

Lemma 3.1. Let a ∈ R; b, c ∈ Rn−2
and D ∈ Mn−2. Define the matrix:

B =
(
a bT

c D

)
∈ Mn−1. (1)

For any x, λ ∈ R and any y ∈ Rn−2
define the matrix:

A =
⎛⎜⎝ x + λ x yT

a − x − λ a − x bT − yT

c c D

⎞⎟⎠ ∈ Mn (2)

Then the spectrum of A consists of all the eigenvalues of B with λ adjoined.

Proof

det(μI − A) = det

⎛⎜⎝ μ − x − λ −x −yT

−a + x + λ μ − a + x −bT + yT

−c −c μI − D

⎞⎟⎠ −−−−−−−−−→
R1 + R2 → R1
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= det

⎛⎜⎝ μ − a μ − a −bT

−a + x + λ μ − a + x −bT + yT

−c −c μI − D

⎞⎟⎠ −−−−−−−−−→
C2 − C1 → C2

= det

⎛⎜⎝ μ − a 0 −bT

−a + x + λ μ − λ −bT + yT

−c 0 μI − D

⎞⎟⎠
= (μ − λ) det

(
μ − a −bT

−c μI − D

)
= (μ − λ) det(μI − B)

Then the spectrum of A consists of all eigenvalues of B with λ adjoined. �

We will use Lemma 3.1 to prove Theorem 1.2 by induction on the size of the partially prescribed

matrix, since it permits to reduce a completion problem for a matrix in M̂n to a completion problem

for a matrix in Mn−1. The following three definitions give an explicit formulation of the reduction.

Definition 3.1. We introduce the following two operations between elements in R:

1. Given r1, r2 ∈ R we define

r1 ⊕ r2 =
{
r1 + r2 if r1, r2 ∈ R

� otherwise

2. Given s1, s2 ∈ R with at least one of the elements equal to �, we define

s1 � s2 =
{� if s1 = s2 = �
si if si ∈ R for some i

(Operation � is not defined if both s1 and s2 belong to R.)

Definition 3.2. Given a matrix

Q =
(
q11 q12
q21 q22

)
∈ M̂2

and given λ ∈ R, we define the λ-reduction of Q in the following way:

Γλ(Q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q11 + q21 if q11, q21 ∈ R

q12 + q22 if q12, q22 ∈ R

q11 + q22 − λ if q11, q22 ∈ R

q12 + q21 + λ if q12, q21 ∈ R

� otherwise

Definition 3.3. For n� 3, given a matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
q11 q12 q13 . . . q1n
q21 q22 q23 . . . q2n
q31 q32 q33 . . . q3n
...

...
...

. . .
...

qn1 qn2 qn3 . . . qnn

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ M̂n (3)

and given λ ∈ R, we define the λ-reduction of Q as the matrix
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Γλ(Q) =

⎛⎜⎜⎜⎜⎜⎜⎝
Γλ

(
q11 q12
q21 q22

)
q13 ⊕ q23 . . . q1n ⊕ q2n

q31 � q32 q33 . . . q3n
...

...
. . .

...
qn1 � qn2 qn3 . . . qnn

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Mn−1. (4)

Example 3.1. We provide some examples:

1. Q =

⎛⎜⎜⎜⎜⎝
a � b � �
� c d � e

� f � g h

� � i � �
j � k � l

⎞⎟⎟⎟⎟⎠ ∈ M̂5. Then Γλ(Q) =
⎛⎜⎜⎝
a + c − λ b + d � �

f � g h

� i � �
j k � l

⎞⎟⎟⎠.

2. Q =
⎛⎜⎜⎝
2 � 8 3

4 � 1 �
� 7 � 1

� � 2 �

⎞⎟⎟⎠ ∈ M̂4. Then Γλ(Q) =
⎛⎝ 6 9 �
7 � 1

� 2 �

⎞⎠.

3. Q =
⎛⎝� � 5

4 � 4

3 � �

⎞⎠ ∈ M̂3. Then Γλ(Q) =
(� 9

3 �
)
.

3.2. Lemmas

Let us assume that P ∈ Mn satisfies conditions of Theorem 1.2, that is, P is a matrix of order nwith

at most 2n − 3 prescribed entries that belong toR, and such that the diagonal and each line of P have

at least one element unprescribed. It is convenient to present these conditions in the following form:

S1 First row of P is not fully prescribed: #P(1) < n.

S2 Rows 2, . . . , n of P are not fully prescribed: #P(2), . . . ,#P(n) < n.

S3 First column of P is not fully prescribed: #P(1) < n.

S4 Columns 2, . . . , n of P are not fully prescribed: #P(2), . . . ,#P(n) < n.

S5 The diagonal of P is not fully prescribed: #diag(P) < n.

S6 P has at most 2n − 3 prescribed elements: #P � 2n − 3.

Notice that if P satisfies conditions S1–S6, then so does everymatrix in E(P). Let us assume that we

have found in E(P) some Q ∈ M̂n. Next we list some initial observations that we can make for Γλ(Q).

Lemma 3.2. Let Q ∈ M̂n satisfy conditions S1–S6 with n� 3. Then

1. Γλ(Q) satisfies S1.
2. Γλ(Q) satisfies S2 if#Q(3), . . . ,#Q(n) � n − 2. In particular, this happens in the following situations:

(a) Q has no empty rows.

(b) #Q(2) �#Q(3) � . . . �#Q(n).

3. Γλ(Q) satisfies S3 if #Q (1) + #Q (2) < n.

4. Γλ(Q) satisfies S4.
5. Γλ(Q) satisfies S5 unless q33, . . . , qnn are prescribed and exactly two of the elements q11, q12, q21, q22

are prescribed.

6. Γλ(Q) satisfies S6 in the following cases:
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(a) Prescribed entries in rows Q(1) and Q(2) lay in at least two different columns, and at least

one prescribed entry in rows Q(1) and Q(2) lays in columns Q (3), . . . , Q (n). In particular, this

happens if #Q(1) � 2 or #Q(2) � 2.

(b) #Q(1) = 0 and #Q(2) �#Q(3) � . . . �#Q(n).

(c) #Q(n) = 0 and #Q(2) �#Q(3) � . . . �#Q(n).

Proof

1. As #Q(1) + #Q(2) �#Q � 2n − 3 we have

#Γλ(Q)(1) �min{#Q(1),#Q(2)} < n − 1.

2. For i = 2, . . . , n − 1 we have #Γλ(Q)(i) = #Q(i+1) � n − 2.

3. Assumption#Q (1) + #Q (2) < n tells us that either atmost oneof the elementsq11, q12, q21, q22 is

prescribed or there exists i ∈ {3, . . . , n} so that qi1 = qi2 = �. Both situations give us

#Γλ(Q)(1) < n − 1.

4. If #Γλ(Q)(j) = n − 1 for some j = 2, . . . , n − 1, then #Q (j+1) = n, which contradicts the as-

sumption that Q satisfies S4.

5. Clear.

6.
(a) In this case we have #Q(1) + #Q(2) �#(Γλ(Q))(1) − 2, which implies

#Γλ(Q) �#Q − 2� 2(n − 1) − 3.

(b) Item (a) allows us to assume that #Q(2) � 1. Then

#Γλ(Q) = #Q(3) + . . . + #Q(n) � n − 2� 2(n − 1) − 3.

(c) Item (a) allows us to assume #Q(2) � 1. Then

#Γλ(Q) �#Q(2) + . . . + #Q(n) � n − 2� 2(n − 1) − 3. �

In our next result we will see that if P satisfies all conditions of Theorem 1.2 then we can find in the

equivalence class E(P) a matrix Q ∈ M̂n such that Γλ(Q) satisfies all conditions of Theorem 1.2.

Lemma 3.3. For n� 3 let P ∈ Mn be a matrix that satisfies conditions S1–S6, and let λ ∈ R. Then there

exists in the equivalence class E(P) a matrix Q ∈ M̂n such that Γλ(Q) satisfies conditions S1–S6.

Proof. In theproofwewill often assume that elements of amatrix in some specificpositions are unpre-

scribed, elements of amatrix in some specific positions are prescribed, andwewon’t assume anything

for the rest of positions. Toemphasize that the laterpositions canbeanyelement fromRwewill denote

such entries by ?. The main difficulty in the proof is to decide on the appropriate cases to look at, so

the proof is divided into many different cases. However, most of the cases are not difficult to resolve.

(I) P has a line with no prescribed elements.

(I.A) P hasa linewithnoprescribedelementsand#diag (P) = n − 1.Then thereexistsQ ∈ E(P)
of the following form:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � . . . � bi+1 . . . bn

� a2 . . . ? ? · · · ?
...

...
. . .

...
...

...
� ? . . . ai ? . . . ?

� ? . . . ? ai+1 . . . ?
...

...
...

...
. . .

...
� ? . . . ? ? . . . an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ M̂n
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with #Q(2) � . . . �#Q(i) for some 2� i � n, and bi+1, . . . , bn, a2, . . . , an prescribed. Note

that i = 1 would imply #Q � 2n − 2.

• Γλ(Q) satisfies S1, S3, S4, and S5 by Lemma 3.2.

• Γλ(Q) satisfies S2:

– If #Q(1) � 1 then Q has no empty rows. Apply Lemma 3.2, item 2(a).

– If #Q(1) = 0 then #Q(2) �#Q(3) � . . . �#Q(n). Apply Lemma 3.2, item 2(b).

• Γλ(Q) satisfies S6:

– If #Q(1) � 1 then q1n = bn and q22 = a2 are prescribed. Apply Lemma3.2, item

6(a).

– If #Q(1) = 0 then #Q(2) � · · · �#Q(n). Apply Lemma 3.2, item 6(b).

(I.B) P has an empty line and #diag (P) � n − 2. Then there exists Q ∈ E(P) of the form:

Q =

⎛⎜⎜⎜⎝
� ? · · · ?

� ? · · · ?
...

...
...

� ? · · · ?

⎞⎟⎟⎟⎠ ∈ M̂n

with #Q(2) �#Q(3) � . . . �#Q(n).

• Γλ(Q) satisfies S1, S2, S3, S4, and S5 by Lemma 3.2.

• Γλ(Q) satisfies property S6:

– Lemma 3.2, item 6(a), resolves this case if #Q(1) � 2, if #Q(2) � 2, or if #Q(1) =
· · · = #Q(n) = 1. In the last subcase we can assume that the prescribed entry

in the first row and the prescribed entry in the second row are in different

columns, as Q has no full line.

– If #Q(1) = 0, then apply Lemma 3.2, item 6(b).

– If #Q(1) = 1, #Q(2) � 1 and #Q(j) /= 1 for some j = 2, 3, . . . , n, then #Q(n) = 0

and we can apply Lemma 3.2, item 6(c).

(II) P has no empty lines. Notice, that in this case no line of P can have more than n − 2 entries.

(II.A) There exists a line with its only prescribed entry on the diagonal. Then E(P) contains a

matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 � . . . � ai+1 . . . an
� ? . . . ? ? · · · ?
...

...
. . .

...
...

...
� ? . . . ? ? . . . ?

� ? . . . ? ? . . . ?
...

...
...

...
. . .

...
� ? . . . ? ? . . . ?

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ M̂n

with #Q(2) � . . . �#Q(i) for some 3� i � n, where a1, ai+1, . . . , an ∈ R.
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• Γλ(Q) satisfies S1, S2, S3, S4, and S5 by Lemma 3.2.

• Γλ(Q) satisfies S6:

– If #Q(1) � 2 or #Q(2) � 2 then apply Lemma 3.2, item 6(a).

– If #Q(1) = #Q(2) = 1 then #Q(2) = . . . = #Q(n) = 1. AsQ has at least one un-

prescribed entry on the diagonal, we can assume that q22 = �. Apply Lemma

3.2, item 6(a).

(II.B) All lineswith exactly one prescribed entry have this entry out of the diagonal. Suppose that

there exist t columns and s rows each ofwhich have exactly one prescribed entry. Note that

t, s� 3 since #P � 2n − 3 and P has no empty lines. As we are looking for Q ∈ E(P), we

can assume that t � s� 3 and the first t columns of P have exactly one prescribed entry. Let

pi11, . . . , pit t where ik /= k for k = 1, . . . , t, be the prescribed entries in the first t columns

of P. We have the following possibilities:

(II.B.1) Two of the prescribed entries in the first t columns are pij and pjk with i /= k. Then

E(P) contains a matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

� b ? · · · ?

� � ? · · · ?

a � ? · · · ?

� � ? · · · ?
...

...
...

...
� � ? · · · ?

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ M̂n,

where a, b ∈ R.

• Γλ(Q) satisfies S1, S2, S3, S4, and S5 by Lemma 3.2.

• As Q has no empty line, the second row has a prescribed entry. Then Γλ(Q)
satisfies S6 by item 6(a) of Lemma 3.2.

(II.B.2) No two prescribed entries in the first t columns are of the form pij and pjk with i /= k,

and there exist two prescribed entries in the first t columns of the form pij and pji.

Then E(P) contains a matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � c ? · · · ?

� � � ? · · · ?

a � � ? · · · ?

� b � ? · · · ?

� � � ? · · · ?
...

...
...

...
...

� � � ? · · · ?

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ M̂n,

where a, b, c ∈ R.

• Γλ(Q) satisfies S1, S2, S3, S4, and S5 by Lemma 3.2.

• As Q has no empty line, the second row has a prescribed entry, and Γλ(Q)
satisfies S6 by item 6(a) of Lemma 3.2.

(II.B.3) We have i1, . . . , it > t.

Recall that #P � 2n − 3, that every line of P has at least one prescribed entry, and

that P has exactly t columns and exactly s rows with one prescribed entry. Those

assumptions give us:
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max{#P(1), . . . ,#P(n)} � t − 1 and max{#P(1), . . . ,#P(n)} � s − 1.

In particular, this means that the first t rows of P can not have the same pattern

of prescribed entries, and that the first s� t columns of P can not all have their

prescribed entry in the same position. We may assume that the first and the second

rows of P have different patterns of prescribed entries.

If i1 /= i2, then we consider the matrix Q = P. If i1 = i2 then we chose some k � t

such that i1 /= ik . Theneither rows1and khavedifferentpatternof prescribedentries

or rows2and khavedifferent patternof prescribed entries.Without loss of generality

we may assume that rows 1 and k have different pattern of prescribed entries. Then

we consider the matrix Q = τ(P) where τ ∈ Sn is the transposition of 2 and k.

We have obtained Q ∈ E(P) of the form

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � · · · c · · · ? · · ·
� � · · · ? · · · d · · ·
...

... ? · · · ?

a �
...

...
...

. . .
...

� b

...
... ? · · · ?

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ M̂n

with #Q (1) = #Q (2) = 1 and a, b, c, d ∈ R, where a and b are in different rows, and

c and d are in different columns.

• Γλ(Q) satisfies S1, S2, S3, S4, S5 and S6 by Lemma 3.2. �

3.3. Completions

Let n� 3, Q ∈ M̂n and λ ∈ R. Then Γλ(Q) is well defined. In this section we show for every

completion B of Γλ(Q) how to construct a completion A of Q with spectrum the spectrum of Bwith λ
adjoined.

Let Q ∈ M̂n and Γλ(Q) ∈ Mn−1 be given as in (3) and (4), and let

B =

⎛⎜⎜⎜⎜⎜⎝
b11 b12 . . . b1,n−1

b21 b22 . . . b2,n−1

...
...

. . .
...

bn−1,1 bn−1,2 . . . bn−1,n−1

⎞⎟⎟⎟⎟⎟⎠ ∈ Mn−1

be a completion of Γλ(Q). The tables below show how matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

...
...

...
. . .

...

an1 an2 an3 . . . ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Mn

can be constructed:
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1. The entries in

(
a11 a12
a21 a22

)
depend on

(
q11 q12
q21 q22

)
, λ and b11 as follows:

q11 q12
q21 q22

Γλ

(
q11 q12
q21 q22

)
b11

a11 a12
a21 a22

� �
� � � a

a a − λ
0 λ

r �
� � � a

r r − λ
a − r a − r + λ

� r

� � � a
r + λ r

a − r − λ a − r

� �
r � � a

a − r a − r − λ
r r + λ

� �
� r

� a
a − r + λ a − r

r − λ r

r �
s � r + s r + s

r r − λ
s s + λ

� r

� s
r + s r + s

r + λ r

s − λ s

r �
� s

r + s − λ r + s − λ
r r − λ

s − λ s

� r

s � r + s + λ r + s + λ
r + λ r

s s + λ

.

Note that Q ∈ M̂n implies #(qi1 qi2) � 1 for i = 1, 2 which explains why the first column in the

previous table considers all possibilities.

2. For j = 3, . . . , n the entries in

(
a1j
a2j

)
depend on

(
q1j
q2j

)
and b1,j−1 as follows:

q1j
q2j

q1j ⊕ q2j b1,j−1
a1j
a2j

�
� � a

0

a

r

� � a
r

a − r

�
r

� a
a − r

r

r

s
r + s r + s

r

s

.

3. For i = 3, . . . , n the entries in (ai1 ai2) depend on bi−1,1 as follows:

qi1 qi2 qi1 � qi2 bi−1,1 ai1 ai2

� � � a a a

r � r r r r

� r r r r r

.

Note that Q ∈ M̂n implies #(qi1 qi2) � 1 for i = 3, . . . , nwhich explains why the first column in

the previous table considers all possibilities.

4. For i, j = 3, . . . , n the entry aij depends on bi−1,j−1 as follows:

qij bi−1,j−1 aij

� a a

r r r

.
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It is clear that A is a completion ofQ . Note thatmatrices B and A are of the form (1) and (2) respectively,

so Lemma 3.1 can be applied to conclude that the spectrum of A consists of all the eigenvalues of B

with λ adjoined.

4. Main result

At this point we will rewrite our main result, Theorem 1.2, and give a proof that implicitly contains

the algorithm to construct a solution matrix.

Theorem 4.1. For n� 2 let Λ = {λ1, . . . , λn} be a given multiset of elements in an integral domain R.

Let P be a matrix of order n with at most 2n − 3 prescribed entries that belong to R, and such that the

diagonal and each line of P have at least one element unprescribed. Then P can be completed with elements

of R to obtain a matrix with spectrum Λ.

Proof. Webeginbyshowing that the theoremholds forn = 2.AssumeP ∈ M2 is amatrix that satisfies

the conditions of Theorem 4.1, i.e. P has at most one prescribed entry. Then P is of one of the types

in the table below, where r ∈ R. The second column of the table shows the desired completions of P

with spectrum {λ1, λ2}.
P completion of P

� �
� �

λ1 0

0 λ2

r �
� �

r r − λ2

λ1 − r λ1 + λ2 − r

� �
� r

λ1 + λ2 − r λ1 − r

r − λ2 r

� r

� �
λ1 r

0 λ2

� �
r �

λ1 0

r λ2

We proceed by induction on n. Let P ∈ Mn satisfy conditions of Theorem 4.1, and let {λ1, . . . , λn}
be a given multiset of elements that belong to R. In Lemma 3.3 we showed how to find in the equiv-

alence class E(P) a matrix Q ∈ M̂n such that Γλn
(Q) ∈ Mn−1 is a matrix that satisfies conditions of

Theorem 4.1. By induction hypothesis,Γλn
(Q) can be completed to amatrix B ∈ Mn−1 with spectrum

{λ1, . . . , λn−1}. In Section 3.3 we showed how to construct a matrix A ∈ Mn with the spectrum equal

to the spectrum of B with λn adjoined and such that A is a completion of Q .

Any matrix in the equivalence class E(A) has spectrum {λ1, . . . , λn}. Since Q ∈ E(P) then there

exists some τ ∈ Sn such that Q = τ(P) or Q = τ(PT ), therefore we conclude that τ−1(A) or τ−1(AT )
is a desired completion of matrix P. �

Remark 4.1. This paper concentrates on completion problems over integral domains. Using similar

methods andworking over fields, wewere able to develop a rational algorithm that completely covers

Theorem 1.1, including the case where we want to complete a matrix that contains a line with all its

elements prescribed. This algorithm will be presented in a forthcoming paper.
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