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The construction of all possible biorthogonal wavelet vectors corre-

sponding to a given biorthogonal scaling vector may not be easy

as that of biorthogonal uniwavelets. In this paper, we give some

theorems about the construction of biorthogonal wavelet vectors,

which is followed by simple computations for constructing all para-

metrized biorthogonal wavelet vectors supported in [−1, 1]. This
approach is also suitable for the case of compactly supported or-

thogonal uniwavelet. Moreover, we give examples parametrizing all

biorthogonal wavelet vectors corresponding to well known

biorthogonal scaling vectors.
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1. Introduction

Most orthonormal wavelets can be constructed using the multiresolution analysis formalism in-

troduced by Mallat in [1]. In this setting there is a single scaling function φ whose integer translates

form an orthonormal basis of a central approximation space V0. In many applications it is desirable for

φ to be compactly supported. Daubechies constructed such scaling functions in [2]. The conditions of

orthonormality and compact support together are restrictive and it is known that certain other desir-

able properties such as symmetry and continuity cannot also be simultaneously achieved. Recently,

two generalizations of orthonormal wavelets, namely biorthogonal wavelets and multiwavelets, have

been introduced which have all desirable properties, see [4,6–8].

Biorthogonal wavelets are constructed using two dual multiresolution analyses generated by dual

scaling functions φ and φ̃ satisfying〈
φ(· − n), φ̃(· − m)

〉
= δn,m.
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In [3], Cohen, Daubechies and Feauveau give a method for finding a compactly supported dual scaling

function φ̃ given a compactly supported scaling function φ. Once the biorthogonal scaling functions

are found there is a simple formula giving the biorthogonal wavelets. Also, if φ is symmetric then φ̃
can be chosen to be symmetric as well. This allows great freedom in the choice of φ.

Orthonormal multiwavelets are constructed from n(>1) scaling functions whose integer translates

form an orthonormal basis of a central approximation space V0. In [4,5], symmetric, compactly sup-

ported, continuous and orthogonal scaling functions (and associated wavelets) are constructed using

n = 2 scaling functions. If the scaling functions have compact supports then by reindexing the mul-

tiresolution analysis the scaling functions canall be assumed tobe supported in [−1, 1]. In [6] a general

theory was developed for constructing orthonormal scaling vectors in [−1, 1].
In [7], Hardin and Marasovich give a procedure for constructing biorthogonal wavelet vectors as-

sociated with a given pair of biorthogonal scaling vectors, the components of which have supports in

[−1, 1]. And they provide necessary and sufficient conditions for the existence of biorthogonal mul-

tiwavelets supported in [−1, 1]. Further, they give biorthogonal scaling vectors and corresponding

wavelet vectors of multiplicity 2.

In [8], Yang et al. give a procedure for constructing easily compactly supportedbiorthogonalwavelet

vector associated with a given biorthogonal scaling vectors. But we note that it gives a way to obtain

only one wavelet vector. Those construction procedures could not completely characterize the corre-

sponding biorthogonal wavelet vectors.

In this paper, we give some theorems about the construction of biorthogonal wavelet vectors con-

taining the maximal number of wavelet functions supported in [0, 1] and generalize results in [7,9].

By using the existence theorem, we give the procedure for generalized construction of all possible

biorthogonal wavelet vectors corresponding to biorthogonal scaling vectors.

2. Preliminaries

2.1. Multiwavelets

A single scaling function φ that generates a multiresolution analysis of L2(R) cannot be compactly

supported, orthonormal, have any degree of regularity, and also be symmetric.

Recently, multiwavelets have been studied as a means of overcoming this obstacle. In the multi-

wavelet setting, n(>1) scaling functions are used to generate a multiresolution analysis of L2(R). In
[4,6,9] two scaling functions φ1 and φ2 are constructed that are compactly supported, orthonormal,

continuous, and symmetric. These scaling functions generated symmetric and antisymmetricwavelets

ψ1 andψ2 that were also compactly supported, orthonormal, and continuous.

Similar to the concept of a multiresolution analysis generated from a single scaling function φ is

the idea of a multiresolution analysis of multiplicity n > 1 for multiwavelets. LetΦ = (φ1, . . . , φn)T

be a column vector of length n whose elements are in L2(R). Let τ(Φ) denote the set of all integer

translates of components of Φ , that is τ(Φ) = {φi(· − j)|i = 1, . . . , n ; j ∈ Z} and let σ(Φ) denote
the L2 closed linear span of τ(Φ). A space V is called a finitely-generated shift invariant (FSI) space if

V = σ(Φ) for some finite-length vectorΦ . In this caseΦ is called a generating vector for V .

We will be most interested in FSI spaces that arise from a multiresolution analysis: A multiresolu-

tion analysis of multiplicity n is a sequence of closed linear subspaces (Vp)p∈Z in L2(R) satisfying the

following:

(1) · · · V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · ,
(2)

⋃
p∈Z Vp = L2(R) and

⋂
p∈Z Vp = {0},

(3) f ∈ Vp if and only if f (2−p·) ∈ V0, ∀p ∈ Z,

(4) V0 is an FSI space generated by some n vector Φ = (φ1, . . . , φn)T such that τ(Φ) is a Riesz

basis of V0.

We callΦ a scaling vector for (Vp)p∈Z and the components ofΦ are called scaling functions.
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Without loss of generality, let us restrict our attention to multiresolution analyses with scaling

functions supported in [−1, 1] such that their support meets (0, 1) [6,11].
Let χ[0,1] denote the characteristic function of [0, 1] and let Φ have support [−1, 1] and be such

that none of the components have support contained in [−1, 0]. If Φ is such that the set of nonzero

restrictions of the components ofΦ and their integer shifts restricted to [0, 1], i.e.,
{φχ[0,1] |φ ∈ τ(Φ), φχ[0,1] �= 0}

is linearly independent, then we say that Φ is minimally supported in [−1, 1] (or just minimally sup-

ported for short). By the following lemma [6], we may assume that any multiresolution analysis is

generated by a scaling vector minimally supported in [−1, 1].
Lemma 2.1. Suppose (Vp)p∈Z is multiresolution analysis generated by compactly supported scaling func-

tions.Then there are some n and some set of scaling functionsminimally supported in [−1, 1] that generate
the multiresolution analysis (V ′

p)p∈Z given by

V ′
p = Vp+n.

IfΦ is minimally supportedwe say V = σ(Φ) isminimally generated andwe denote the number of

generators supported in [−1, 1] but not supported in [0, 1] by k = k(Φ). If Φ̃ is minimally supported

and generates the same FSI space V as Φ , i.e., σ(Φ̃) = V , then it follows that k(Φ) = k(Φ̃). Thus we

can define k(V) : = k(Φ) independent of the choice of minimally supported generating vector. Also

any componentφi ofΦ that is supported in [−1, 0]maybe replaced by its shiftφi(·−1) and sowewill

assume that supports of all of the components of Φ meet (0, 1). Furthermore, we order the compo-

nent of Φ minimally supported in [−1, 1] such that the components φk(V)+1, . . . , φn are supported

in [0, 1] while the supports of the components φ1, . . . , φk(V) meet (−1, 0) and (0, 1). In the sequel

we will assume that the components of any minimally supported generating vector are so ordered.

2.2. Biorthogonal multiwavelets

Let multiresolution analyses (Vp)p∈Z and (Ṽp)p∈Z be generated by scaling vectors Φ = (φ1,

. . . , φn)T and Φ̃ = (φ̃1, . . . , φ̃n)T . Then we say that (Vp)p∈Z and (Ṽp)p∈Z are biorthogonal with

respect to [−1, 1] (or just biorthogonal for short) [11] if k(V0) = k(Ṽ0) and Φ and Φ̃ are minimally

supported generating vectors for V0 and Ṽ0, respectively, such that〈
φi(·), φ̃j(· − k)

〉
= δijδ0k for i, j = 1, 2, . . . , n and k ∈ Z.

These vector functions Φ and Φ̃ are called biorthogonal scaling vectors. And the vector functions

Ψ = (ψ1, . . . , ψn)T and Ψ̃ = (ψ̃1, . . . , ψ̃n)T are called biorthogonalwavelet vectors if τ(Φ)∪τ(Ψ )
and τ(Φ̃) ∪ τ(Ψ̃ ) are Riesz bases of V1 and Ṽ1, respectively, and

2
l
2 2

m
2

〈
ψ i(2l·), ψ̃ j(2m · −k)

〉
= δijδlmδ0k for i, j = 1, 2, . . . , n and k, l,m ∈ Z.

In the paper [7], Hardin and Marsovich developed a theory of constructing compactly supported

biorthogonalmultiwavelets, corresponding to given compactly supported biorthogonal scaling vectors

Φ and Φ̃ generating multiresolution analyses (Vp)p∈Z and (Ṽp)p∈Z , respectively. Let us assume that

compactly supportedbiorthogonal scaling vectorsΦ and Φ̃ canbe found that generatemultiresolution

analyses (Vp)p∈Z and (Ṽp)p∈Z , respectively. It is desired that our scaling vectors Φ and Φ̃ and the

associated wavelet vectors Ψ and Ψ̃ generate a biorthogonal system.

Since our scaling and wavelet functions are compactly supported in [−1, 1], only a finite number

of matrix dilation coefficients will be nonzero, i.e.,

Φ(x) = 1∑
i=−2

CiΦ(2x − i),

Φ̃(x) = 1∑
i=−2

C̃iΦ̃(2x − i).

(1)



1174 S.Y. Hwang, J.Y. Lee / Linear Algebra and its Applications 434 (2011) 1171–1188

And the wavelet generating vectors Ψ and Ψ̃ can be written in terms of the scaling functions at the

next finest scale

Ψ (x) = 1∑
i=−2

DiΦ(2x − i),

Ψ̃ (x) = 1∑
i=−2

D̃iΦ̃(2x − i).

(2)

Let lm = [C2m C2m+1] and l̃m = [C̃2m C̃2m+1] for m ∈ Z. Then the following theorem gives the neces-

sary and sufficient conditions for given biorthogonal scaling vectors Φ and Φ̃ to have the associated

biorthogonal wavelet vectors Ψ and Ψ̃ , respectively.

Theorem1 [7]. Letmultiresolutionanalyses (Vp)p∈Z and (Ṽp)p∈Z bebiorthogonalmultiresolutionanalyses

generated by scaling vectorsΦ = (φ1, . . . , φn)T and Φ̃ = (φ̃1, . . . , φ̃n)T . Then there exist biorthogonal

wavelet vectors Ψ and Ψ̃ if and only if

range lT0 ∩ range lT−1 = {0},
range l̃T0 ∩ range l̃T−1 = {0}.

3. Construction of biorthogonal multiwavelets

If a compactly supported scaling function is found that generates a multiresolution analysis of

L2(R), then a construction of the compactly supported wavelet is given easily by Daubechies [2]. But

for scaling vector generating a multiresolution analysis of multiplicity n > 1, it is not easy to find

the corresponding wavelet vector. Theorem 1 gives the necessary and sufficient conditions that the

biorthogonal scaling vectors Φ and Φ̃ in multiresolution analysis of multiplicity n have the corre-

sponding wavelet vectors Ψ and Ψ̃ .

In this section, we give several lemmas about biorthogonality. And by using these lemmas, we

develop two theoremswithproofs thatwill illustrate the simple computational algorithmconstructing

complete form of biorthogonal wavelet vectors corresponding to given scaling vectors of biorthogonal

multiresolution analyses.

If not mentioned otherwise, all subspaces are assumed to be of finite dimension in L2(R).
We need the following lemma to provide a necessary and sufficient condition on the subspaces U

and Ũ that enables us to construct biorthogonal bases.

Lemma 3.1. Let U and Ũ be subspaces of the same finite dimension. Then U ∩ Ũ⊥ = {0} is equivalent to
U⊥ ∩ Ũ = {0}.
Proof. Let u = (u1, . . . , un) and ũ = (ũ1, . . . , ũn) be bases of U and Ũ, respectively. Then U ∩ Ũ⊥ �=
{0} if and only if there exists a nonzero vector α = (α1, . . . , αn) ∈ Rn such that v = ∑n

i=1 αiui and
for every i,

〈ũi, v〉 =
n∑

j=1

〈
ũi, uj

〉
αj = 0.

Putting G = (gij) by gij = 〈ũi, uj〉, it implies that U ∩ Ũ⊥ = {0} if and only if n × n matrix G

is nonsingular. Since the nonsingularity of G is equivalent to that of GT , U ∩ Ũ⊥ = {0} must be

equivalent to U⊥ ∩ Ũ = {0}. �

By the above equivalence of U ∩ Ũ⊥ = {0} and U⊥ ∩ Ũ = {0} we have the following necessary

and sufficient condition for constructing biorthogonal bases.

Lemma 3.2. Let U and Ũ be subspaces of the same finite dimension. If u = (u1, . . . , un) is a basis for U,

then there exists a basis ũ = (ũ1, . . . , ũn) for Ũ which is biorthogonal to u if and only if U ∩ Ũ⊥ = {0}.
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Proof. Let u = (u1, . . . , un) be a basis forU. Suppose ũ = (ũ1, . . . , ũn) is the dual basis for Ũ. Assume

v ∈ U ∩ Ũ⊥. Since v ∈ U there exist αi ∈ R, i = 1, . . . , n such that v = ∑n
i=1 αiui. In addition since

v ∈ Ũ⊥, for each j

〈v, ũj〉 =
n∑

i=1

αi〈ui, ũj〉 = αj = 0.

This implies v = 0, hence U ∩ Ũ⊥ = {0}. Conversely assume that U ∩ Ũ⊥ = {0} and {ṽ1, . . . , ṽn} is
a basis for Ũ. Define n × n matrix G = (gij) by gij = 〈ui, ṽj〉. In the proof of Lemma 3.1 G = (gij) is

shown to be nonsingular. If we set G−1 = (hij)n×n, then∑
k

〈ui, ṽk〉 hkj =
〈
ui,

∑
k

hkjṽk

〉
= δij.

Let ũj = ∑
k hkjṽk , then 〈ui, ũj〉 = δij . Hence ũ = {ũ1, . . . , ũn} is the basis for Ũ, such that u and ũ are

biorthogonal. �

By the Lemma 3.2, we define biorthogonal subspaces as follows.

Definition 3.1. Let U and Ũ be subspaces of the same dimension. If U ∩ Ũ⊥ = {0}, then U is said to

be biorthogonal to Ũ.

IfV is a subspace that is orthogonal to Ũ, thenV is a subset of Ũ⊥, whichmeans thatU∩V ⊂ U∩Ũ⊥.
Hence we can get the following lemma obviously.

Lemma 3.3. Let U and Ũ be subspaces such that U ∩ Ũ⊥ = {0}. If a subspace V is orthogonal to Ũ, then

U ∩ V = {0}.
To prove our main results we need the following lemmas.

Lemma 3.4. Let W0 and W̃0 be subspaces such that W0 ∩ W̃⊥
0 = {0}. If V0 is orthogonal to W̃0, then

(V0 ⊕ W0) ∩ W̃⊥
0 = V0.

Proof. Assume thatW0 ∩ W̃⊥
0 = {0}. If V0 is orthogonal to W̃0, then by Lemma 3.3 V0 ∩W0 = {0} and

V0 ⊂ W̃⊥
0 . Hence V0 ⊂ (V0 ⊕W0)∩ W̃⊥

0 . To show (V0 ⊕W0)∩ W̃⊥
0 ⊂ V0, let u ∈ (V0 ⊕W0)∩ W̃⊥

0 .

Then u = v + w for v ∈ V0 and w ∈ W0, and u ∈ W̃⊥
0 . Since V0 ⊂ W̃⊥

0 ,w = u − v ∈ W̃⊥
0 , which

implies w ∈ W0 ∩ W̃⊥
0 = {0}. Hence u = v ∈ V0. �

Lemma 3.5. Let U and V be orthogonal to Ṽ and Ũ, respectively. If (U + V) ∩ (Ũ + Ṽ)⊥ = {0}, then
U ∩ V = {0}.
Proof. Suppose that (U + V)∩ (Ũ + Ṽ)⊥ = {0}. To show that U

⋂
V = {0}, assume that there exists

a nonzerow ∈ U ∩ V . Since U ⊥ Ṽ and V ⊥ Ũ, U ⊂ Ṽ⊥ and V ⊂ Ũ⊥. Hencew ∈ U ∩ V ⊂ Ṽ⊥ ∩ Ũ⊥,

and also w ∈ U + V . From the fact that (Ũ + Ṽ)⊥ = Ũ⊥ ∩ Ṽ⊥,

(U + V) ∩ (Ũ + Ṽ)⊥ = (U + V) ∩ (Ũ⊥ ∩ Ṽ⊥).
This implies that nonzero vectorw is in (U+V)∩(Ũ+Ṽ)⊥, which contradicts to (U+V)∩(Ũ+Ṽ)⊥ =
{0}. Therefore U

⋂
V = {0}. �

For subspaces A, B of U and Ã, B̃ of Ũ, we have the following two lemmas.

Lemma 3.6. Let U = A + B and Ũ = Ã + B̃. If A and B are orthogonal to B̃ and Ã, respectively, then

U ∩ Ũ⊥ = {0} if and only if A ∩ Ã⊥ = {0} and B ∩ B̃⊥ = {0}.
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Proof. Suppose U ∩ Ũ⊥ = {0}, and let B be orthogonal to Ã. Then B ⊂ Ã⊥. But

U ∩ Ũ⊥ = (A + B) ∩ (̃A + B̃)⊥

= (A + B) ∩ (̃A⊥ ∩ B̃⊥)
⊃ (A + B) ∩ (B ∩ B̃⊥)
= ((A + B) ∩ B) ∩ B̃⊥ = B ∩ B̃⊥,

which implies that B ∩ B̃⊥ = {0}. If A is orthogonal to B̃, then we can easily get A ∩ Ã⊥ = {0}.
Conversely, let A ∩ Ã⊥ = {0} and B ∩ B̃⊥ = {0}. And assume that B is orthogonal to Ã. Then

(A + B) ∩ (̃A + B̃)⊥ = (A + B) ∩ Ã⊥ ∩ B̃⊥.

Since A ∩ Ã⊥ = {0}, by Lemma 3.4 (A + B) ∩ Ã⊥ = B. And since B ∩ B̃⊥ = {0},
U ∩ Ũ⊥ = (A + B) ∩ (̃A + B̃)⊥

= (A + B) ∩ Ã⊥ ∩ B̃⊥

= B ∩ B̃⊥

= {0}.
Hence U ∩ Ũ⊥ = {0}. �

Lemma 3.7. Let U = A + B and Ũ = Ã + B̃. If A and B are orthogonal to B̃ and Ã, respectively, then U

and Ũ are biorthogonal if and only if A and B are biorthogonal to Ã and B̃, respectively.

Proof. Let A and B are orthogonal to B̃ and Ã, respectively, and suppose U = A + B is biorthogonal to

Ũ = Ã + B̃. Then by Lemma 3.6, A ∩ Ã⊥ = {0} and B ∩ B̃⊥ = {0}. And by Lemma 3.5, A ∩ B = {0}
and Ã ∩ B̃ = {0}. Hence U = A ⊕ B and Ũ = Ã ⊕ B̃. Now to show that dim A = dim Ã and

dim B = dim B̃, let c and c̃ be coordinate functions for given biorthogonal bases of U and Ũ. Since

B is orthogonal to Ã, c(B) is orthogonal to c̃(̃A) in RdimU , and dim c(B) + dim c(A) = dimU. Hence

dim Ã = dim c̃(̃A) � dim c(A) = dim A. Since A is also orthogonal to B̃, dim A � dim Ã. That is,

dim A = dim Ã. And similarly we have also dim B = dim B̃. It follows that A and B are biorthogonal to

Ã and B̃, respectively.

Conversely, let A and B be biorthogonal to Ã and B̃, respectively. By Lemma 3.6, U ∩ Ũ⊥ = {0}. And
by Lemma 3.3,

dimU = dim A + dim B

= dim Ã + dim B̃

= dim Ũ.

Hence U is biorthogonal to Ũ. �

Nowwe are ready to consider the problemof constructing biorthogonalmultiwavelets correspond-

ing to a given pair of biorthogonal scaling vectors.

Let (Vp)p∈Z and (Ṽp)p∈Z be biorthogonal multiresolution analyses of multiplicity n, and let Φ =
(φ1, . . . , φn)T and Φ̃ = (φ̃1, . . . , φ̃n) be the corresponding multiscaling vectors, respectively. As-

sume that Φ and Φ̃ are minimally supported in [−1, 1], that is, the nonzero restrictions to the unit

interval [0, 1] of the integer shifts of the scaling functions are linearly independent, none of the scaling
functions are supported in [−1, 0], and all of the scaling functions are supported in [−1, 1]. And let

k = k(V) = k(Ṽ). To simplify the notation, we let

φi
m,j(x) : = 2

m
2 φi(2mx − j).
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Since the scaling functions φi are supported in [−1, 1], each of these can be represented as linear

combination of the following functions:

φ
j
1,−2, φ

i
1,−1, φ

l
1,0, φ

j
1,0, φ

i
1,1,

where j = k + 1, . . . , n, i = 1, . . . , n, l = 1, . . . , k.
For scaling vectorΦ = (φ1, . . . , φn)T minimally supported in [−1, 1], let

Φ0 : =
(
φ1, . . . , φk

)T
,

Φr : =
(
φk+1, . . . , φn

)T
,

Φ1l : =
(
φk+1
1,−2, . . . , φ

n
1,−2, φ

1
1,−1, . . . , φ

n
1,−1

)T
,

Φ10 : =
(
φ1
1,0, . . . , φ

k
1,0

)T
,

Φ1r : =
(
φk+1
1,0 , . . . , φ

n
1,0, φ

1
1,1, . . . , φ

n
1,1

)T
.

Similarlywe denote by Φ̃0, Φ̃r, Φ̃1l, Φ̃10, Φ̃1r for the dual scaling vector Φ̃ = (φ̃1, . . . , φ̃n)T . And also

for biorthogonal wavelet vectorsΨ , Ψ̃ we follow the same notations as inΦ, Φ̃ . Denoting the span of

the components ofΦ by spanΦ , we let

Q0 : = spanΦ0,

Qr : = spanΦr,

Q1l : = spanΦ1l,

Q10 : = spanΦ10,

Q1r : = spanΦ1r,

and also Q̃0, Q̃r, Q̃1l, Q̃10, Q̃1r for Φ̃ . Since the scaling functions Φ, Φ̃ are minimally supported in

[−1, 1], we have

V1[−1,1] : = {f ∈ V1 | suppf ⊂ [−1, 1]}
= Q1l ⊕ Q10 ⊕ Q1r,

Ṽ1[−1,1] : = {f ∈ Ṽ1 | suppf ⊂ [−1, 1]}
= Q̃1l ⊕ Q̃10 ⊕ Q̃1r .

Define three canonical projections restricted to Q0 as

πl : Q0(· − 1) −→ Q1l(· − 1),

π0 : Q0 −→ Q10,

πr : Q0 −→ Q1r,

and also the duals π̃l, π̃0, π̃r of πl, π0, π̃r to Q̃1l(· − 1), Q̃10, Q̃1r , respectively. And let

ml : = dimKer(πl), m̃l : = dimKer(π̃l),

m : = dim (Ker(πl) ∩ Ker(πr)) ,

m̃ : = dim (Ker(π̃l) ∩ Ker(π̃r))

mr : = dimKer(πr), m̃r : = dimKer(π̃r).

These canonical projections πl, π0, πr and the duals have the following properties.
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Lemma3.8. Let (Vp)p∈Z and (Ṽp)p∈Z bebiorthogonalmultiresolutionanalyses generatedby scalingvectors

Φ = (φ1, . . . , φn)T and Φ̃ = (φ̃1, . . . , φ̃n)T . Then

(1) Im(πl) ⊥ Im(π̃r) and Im(πr) ⊥ Im(π̃l),
(2) Qr ⊥ (Im(π̃l)+ Im(π̃r)) and Q̃r ⊥ (Im(πl)+ Im(πr)) ,
(3) (Im(πl)+ Im(πr)) ∩ Qr = {0} and (Im(π̃l)+ Im(π̃r)) ∩ Q̃r = {0},
(4) (Im(πl)⊕ Im(πr)(· + 1)) ∩ Q0 = {0} and (Im(π̃l)⊕ Im(π̃r)(· + 1)) ∩ Q̃0 = {0},
(5) Q0 ∩ Qr = {0} and Q̃0 ∩ Q̃r = {0}.

Proof. Let Φ = (φ1, . . . , φn)T and Φ̃ = (φ̃1, . . . , φ̃n)T be scaling vectors minimally supported in

[−1, 1]. And let Φr = (φk+1, . . . , φn)T and Φ̃r = (φ̃k+1, . . . , φ̃n)T be biorthogonal scaling vectors

supported in [0, 1]. Then Qr = spanΦr and Q̃r = span Φ̃r are subspaces of Q1r and Q̃1r , respectively.

(1) By the biorthogonality of scaling vectorsΦ and Φ̃,Q0 = spanΦ0 is orthogonal to Q̃0(· − 1) =
span Φ̃0(· − 1). Since Q0 is a subset of Q1l ⊕ Q10 ⊕ Q1r,

Q̃0(· − 1) ⊂ Q̃1l(· − 1)⊕ Q̃10(· − 1)⊕ Q̃1r(· − 1).

But since Q̃1l(· − 1) = Q̃1r and 〈φi
1,k, φ̃

j
1,l〉 = δijδkl, Im(πr) is orthogonal to Im(π̃l). Similarly we can

prove the orthogonality of Im(πl) and Im(π̃r).
(2) SinceΦ0 and Φ̃0 are orthogonal to Φ̃r andΦr , respectively, Im(πr) and Im(π̃r) are orthogonal to

Q̃r and Qr , respectively. Also sinceΦ0(· − 1) and Φ̃0(· − 1) are orthogonal to Φ̃r andΦr , respectively,

Im(πl) and Im(π̃l) are orthogonal to Q̃r and Qr , respectively.

(3) Since Im(πl) and Im(πr) are orthogonal to Q̃r , by Lemma 3.3

Im(πl) ∩ Qr = {0}, Im(πr) ∩ Qr = {0}.
That is, (Im(πl)+ Im(πr)) ∩ Qr = {0}. Similarly, we can obtain

(Im(π̃l)+ Im(π̃r)) ∩ Q̃r = {0}.
(4) Q0 and Q̃0 are biorthogonal subspaces of V1[−1, 1]. Since Φ̃0 is orthogonal to Φ0(· + 1) and

Φ0(· − 1), by Lemma 3.3

Im(πl)⊕ Im(πr)(· + 1) ∩ Q0 = {0}.
Similarly, we have Im(π̃l)⊕ Im(π̃r)(· + 1) ∩ Q̃0 = {0}.

(5) Q0 and Qr are biorthogonal to Q̃0 and Q̃r , respectively. Since Q0 ⊥ Q̃r and Qr ⊥ Q̃0, by Lemma

3.3 Q0 ∩ Qr = {0} and Q̃0 ∩ Q̃r = {0}. �
Let Φ = (φ1, . . . , φn)T and Φ̃ = (φ̃1, . . . , φ̃n)T be biorthogonal scaling vectors minimally sup-

ported in [−1, 1], and let Ψ = (ψ1, . . . , ψn)T and Ψ̃ = (ψ̃1, . . . , ψ̃n)T be the corresponding

biorthogonal wavelet vectors minimally supported in [−1, 1]. The spans of wavelet functions are

denoted by

R0 = spanΨ0,

Rr = spanΨr,

and also R̃0, R̃r for Ψ̃ . Define canonical projections restricted to R0 as

ηl : R0(· − 1) → Q1l(· − 1),

η0 : R0 → Q10,

ηr : R0 → Q1r,

and also the duals η̃l, η̃0, η̃r .
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Theorem 2. Let (VP)P∈Z and (ṼP)P∈Z be biorthogonal multiresolution analyses generated by scaling

vectors Φ = (φ1, . . . , φn)T and Φ̃ = (φ̃1, . . . , φ̃n)T . And let Ψ = (ψ1, . . ., ψn)T and Ψ̃ =
(ψ̃1, . . . , ψ̃n)T be biorthogonal wavelet vectors associated with Φ and Φ̃ , respectively. If Im(πl) ∩
Im(πr) = {0} [resp., Im(π̃l) ∩ Im(π̃r) = {0}], then the number κ̃r [resp., κr] of wavelet function

ψ̃ i [resp., ψ i] supported in [0, 1] is
κ̃r � n − 2k + ml + mr

[
resp., κr � n − 2k + m̃l + m̃r

]
.

Proof. Let Im(πl) ∩ Im(πr) = {0} and let Ψ = (ψ1, . . . , ψn)T and Ψ̃ = (ψ̃1, . . . , ψ̃n)T be

biorthogonal wavelet vectors. We can assume that Ψ̃ has n − k̃ wavelet functions ψ̃ i supported in

[0, 1], i = k̃ + 1, . . . , n. Suppose that k̃ < 2k − ml − mr . Thenψ
k̃+1, . . . , ψn are wavelet functions

biorthogonal to ψ̃ k̃+1, . . . , ψ̃n, but not supported in [0, 1] in general. If we note that ψ̃ k̃+1, . . . , ψ̃n

are supported in [0, 1], it can be seen that ηr(ψ
k̃+1), . . . , ηr(ψ

n) are in fact biorthogonal to these

functions. Let

W0 = span

(
ηr

(
ψ k̃+1

)
, . . . , ηr(ψ

n)

)
,

W̃0 = span

(
ψ̃ k̃+1, . . . , ψ̃n

)
.

Then dimW0 = dim W̃0 = n − k̃. By the orthogonality ofΦ and Ψ̃ , Im(πr) and Qr are orthogonal to

W̃0. By the orthogonality ofΦ(·−1) and Ψ̃ , Im(πl) is also orthogonal to W̃0. It implies that by Lemma

3.3 and 3.8,

(Im(πl)⊕ Im(πr)⊕ Qr) ∩ W0 = {0}.
But Im(πl), Im(πr),Qr and W0 are subspaces of Q1r . Since Ker(πl) = ml and Ker(πr) = mr,

dim(Im(πl)) = k−ml and dim(Im(πr)) = k−mr andmoreover dimQr = n−k and dimW0 = n− k̃.

Hence Im(πl)⊕ Im(πr)⊕ Qr ⊕ W0 is a subspace of Q1r , and

dim(Im(πl)⊕ Im(πr)⊕ Qr ⊕ W0) = k − ml + k − mr + n − k + n − k̃

= 2n + k − ml − mr − k̃

> 2n − k,

which contradicts to dimQ1r = 2n− k. Therefore Ψ̃ has at most n− 2k +ml +mr wavelet functions

supported in [0, 1]. Similarly we can show that Ψ has at most n − 2k + m̃l + m̃r wavelet functions

supported in [0, 1]. �

If (Vp)p∈Z is an orthogonal multiresolution analysis, then Im(πl) and Im(πr) are orthogonal. Thus

we have the following corollary from the theorem.

Corollary 3.1 [9]. Let (Vn)n∈Z be an orthogonal multiresolution analysis generated by scaling vector

Φ = (φ1, . . . , φn)T minimally supported in [−1, 1]. And let Ψ = (ψ1, . . . , ψn)T be a wavelet vector

associated with the scaling vector Φ . Then the number of wavelet functions ψ i supported in [0, 1] is at
most n − 2k + ml + mr.

To prove our main theorem, we need the following lemma.

Lemma 3.9. Let U and Ũ be biorthogonal subspaces of finite dimension, and let Ã be a subspace of Ũ. Then

there exists a subspace B ⊂ U of dimension dim Ũ − dim Ã which is orthogonal to Ã.

Proof. Let u = (u1, . . . , un)
T and ũ = (ũ1, . . . , ũn)

T be biorthogonal bases for U and Ũ, respectively.

And let c : U → Rn, c̃ : Ũ → Rn be coordinate functions, defined by c(XTu) = X, c̃(X̃T ũ) = X̃
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for column vectors X, X̃ ∈ Rn. Let B be a subspace of U, defined by B = c−1(c̃(̃A)⊥). To show B is

orthogonal to Ã, let v = αTu ∈ B, α ∈ Rn. Then c(v) = α ∈ c̃(̃A)⊥. If ṽ = α̃T ũ ∈ Ã is any element,

α̃ ∈ Rn, then c̃(ṽ) = α̃ ∈ c̃(̃A) is orthogonal to c(v) = α. By the biorthogonality of u and ũ,

〈v, ṽ〉 =
〈
αTu, α̃T ũ

〉
= αT α̃ = 0.

Hence B ⊥ Ã. �

Theorem3. Let (Vp)p∈Z and (Ṽp)p∈Z be biorthogonalmultiresolution analysis generated by scaling vectors

Φ = (φ1, . . . , φn)T and Φ̃ = (φ̃1, . . . , φ̃n)T . Then Im(πl)+Im(πr) is biorthogonal to Im(π̃l)+Im(π̃r)
if and only if γ = dim(Im(πl)+ Im(πr)) = dim(Im(π̃l)+ Im(π̃r)) and there exist biorthogonal wavelet

vectors Ψ , Ψ̃ each of which has exactly n − γ wavelet functions supported in [0, 1].
Proof. Suppose Im(πl)+ Im(πr) is biorthogonal to Im(π̃l)+ Im(π̃r). Then dim(Im(πl)+ Im(πr)) =
dim(Im(π̃l)+ Im(π̃r)) and

(Im(πl)+ Im(πr)) ∩ (Im(π̃l)+ Im(π̃r))
⊥ = {0},

which implies that by Lemma 3.1 and 3.5,

Im(πl) ∩ Im(πr)= {0},
Im(π̃l) ∩ Im(π̃r)= {0}.

Let c : Q1r → R2n−k be a coordinate system defined by c(XTΦ1r) = X for column vectors X ∈ R2n−k.

Similarly, we define a coordinate system c̃ : Q̃1r → R2n−k. Let

A = Im(πl)⊕ Im(πr)⊕ Qr,

Ã = Im(π̃l)⊕ Im(π̃r)⊕ Q̃r

be subspaces of biorthogonal spaces Q1r and Q̃1r , respectively. Then dim A = dim Ã = n − k + γ . By
Lemma 3.9, there exist subspaces B and B̃ of Q1r and Q̃1r , respectively, such that A ⊥ B̃, B ⊥ Ã, and

dim B = dim B̃ = n−γ . Nowwenote that Im(πl)⊕Im(πr) andQr arebiorthogonal to Im(π̃l)⊕Im(π̃r)

and Q̃r , respectively. Moreover, Im(πl) ⊕ Im(πr) and Qr are orthogonal to Q̃r and Im(π̃l) ⊕ Im(π̃r),
respectively. Thus by Lemma 3.7, A is biorthogonal to Ã. Since B ⊥ Ã and B̃ ⊥ A, A ∩ B = {0} and

Ã ∩ B̃ = {0}. It follows that

Q1r = Im(πl)⊕ Im(πr)⊕ Qr ⊕ B,

Q̃1r = Im(π̃l)⊕ Im(π̃r)⊕ Q̃r ⊕ B̃.

Since Q1r is biorthogonal to Q̃1r , by Lemma 3.7 B is biorthogonal to B̃. Thus we can take biorthogonal

bases Ψr = (ψγ+1, . . . , ψn)T and Ψ̃r = (ψ̃γ+1, . . . , ψ̃n)T of B and B̃, respectively. To complete the

proof, it remains only on the construction of wavelet vectorsΨ0 and Ψ̃0. By Lemma 3.8, V1[−1, 1] and
Ṽ1[−1, 1] have the following subspaces

X = Q0 ⊕ Im(πl)⊕ Im(πr)(· + 1)⊕ Qr ⊕ Qr(· + 1)⊕ Rr ⊕ Rr(· + 1)

and

X̃ = Q̃0 ⊕ Im(π̃l)⊕ Im(π̃r)(· + 1)⊕ Q̃r ⊕ Q̃r(· + 1)⊕ R̃r ⊕ R̃r(· + 1),

respectively. And the dimensions of X is

dim X = k + (k − ml)+ (k − mr)+ 2(n − k)+ 2(n − γ )

= 4n − k − γ.
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Similarly, dim X̃ = 4n − k − γ . By Lemma 3.9, there exists a subspace R̄0 of V1[−1, 1] such that

R̄0 ⊥ X̃ , and

dim R̄0 = dim Ṽ1[−1, 1] − dim X̃

= γ.

By Lemma 3.8, Im(πl) and Im(πr) are orthogonal to Im(π̃r) and Im(π̃l), respectively. Since Im(πl)+
Im(πr) is biorthogonal to Im(π̃l) + Im(π̃r), by Lemma 3.7 Im(πl) and Im(πr) are biorthogonal to

Im(π̃l) and Im(π̃r), respectively. Thus Im(πr)(· + 1) is biorthogonal to Im(π̃r)(· + 1). If we note that

Im(πl) and Im(πr)(· + 1) are orthogonal to Im(π̃r)(· + 1) and Im(π̃l), then by Lemma 3.7 Im(πl)⊕
Im(πr)(· + 1) is biorthogonal to Im(π̃l)⊕ Im(π̃r)(· + 1). Since Q0 ⊕ Qr ⊕ Qr(· + 1)⊕ Rr ⊕ Rr(· + 1)

is also biorthogonal to Q̃0 ⊕ Q̃r ⊕ Qr(· + 1)⊕ Rr ⊕ Rr(· + 1), by Lemma 3.7 X is biorthogonal to X̃ .

By the orthogonality of R̄0 and ˜̄R0 to X̃ and X resp.,

R̄0 ∩ X = ˜̄R0 ∩ X̃ = φ.

Since dim V1[−1, 1] = dim Ṽ1[−1, 1] = 4n − k,

V1[−1, 1] = X ⊕ R̄0,

Ṽ1[−1, 1] = X̃ ⊕ ˜̄R0.
The biorthogonality of V1[−1, 1] and Ṽ1[−1, 1] implies by Lemma 3.7 that R̄0 is biorthogonal to ˜̄R0.
Hence we can take biorthogonal bases Ψ0 = {ψ1, . . . , ψγ }T and Ψ̃0 = {Ψ̃ 1, . . . , Ψ̃ γ }T of R̄0 and ˜̄R0,
respectively. Now the remaining condition for Ψ and Ψ̃ to be wavelet vectors is〈

Ψ0, Ψ̃
T
0 (· ± 1)

〉
= 0,

which is equivalent to the following conditions:

Im(ηl) ⊥ Im(η̃r),

Im(η̃l) ⊥ Im(ηr).

To show that Im(ηl) and Im(ηr) are orthogonal to Im(η̃r) and Im(η̃l), respectively, we note that

Q1r = Im(πr)⊕ Im(πl)⊕ Qr ⊕ Rr,

Q̃1r = Im(π̃r)⊕ Im(π̃l)⊕ Q̃r ⊕ R̃r,

are biorthogonal subspaces. And by the constructions of Ψ0 and Ψ̃0, Im(ηr) is orthogonal to Im(π̃l)⊕
Q̃r ⊕ R̃r , which is orthogonal to Im(πr). Also Im(η̃r) is orthogonal to Im(πl) ⊕ Qr ⊕ Rr , which is

orthogonal to Im(π̃r). By Lemma 3.7, Im(πr) and Im(πl) ⊕ Qr ⊕ Rr are biorthogonal to Im(π̃r) and
Im(π̃l)⊕ Q̃r ⊕R̃r , respectively. Hence

Im(ηr)⊂ Im(πr),

Im(η̃r)⊂ Im(π̃r).

Similarly,

Im(ηl) ⊂ Im(πl),

Im(η̃l) ⊂ Im(π̃l).

Since Im(πr) ⊥ Im(π̃l) and Im(πl) ⊥ Im(π̃r), Im(ηr) ⊥ Im(η̃l) and Im(ηl) ⊥ Im(η̃r). That is,

〈Ψ0, Ψ̃
T
0 (· ± 1)〉 = 0. Therefore

Ψ = Ψ0 ∪ Ψr =
(
ψ1, . . . , ψγ , ψγ+1, . . . , ψn

)T
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and

Ψ̃ = Ψ̃0 ∪ Ψ̃r =
(
ψ̃1, . . . , ψ̃γ , ψ̃γ+1, . . . , ψ̃n

)T
are biorthogonal wavelet vectors.

Conversely, let Ψ = (ψ1, . . . , ψn) and Ψ̃ = (ψ̃1, . . . , ψ̃n) be biorthogonal wavelet vectors such

that ψγ+1, . . ., ψn and ψ̃γ+1, . . . , ψ̃n are only supported in [0, 1]. Let Rr = span(ψγ+1, . . . , ψn)

and R̃r = span(ψ̃γ+1, . . . , ψ̃n). Then Rr and Qr are biorthogonal to R̃r and Q̃r , respectively. Since

Rr ⊥ Q̃r and Qr ⊥ R̃r , by Lemma 3.7 Rr ⊕ Qr is biorthogonal to R̃r ⊕ Q̃r . And also since Rr ⊕ Qr ⊥
(Im(π̃l)+Im(π̃r)) and R̃r⊕Q̃r ⊥ (Im(πl)+Im(πr)), by Lemma3.3Rr⊕Qr∩(Im(πl)+Im(πr)) = {0}
and R̃r ⊕ Q̃r ∩ (Im(π̃l)+ Im(π̃r)) = {0}. Hence

dim Rr ⊕ Qr ⊕ (Im(πl)+ Im(πr))= dim R̃r ⊕ Q̃r ⊕ (Im(π̃l)+ Im(π̃r))

= (n − γ )+ (n − k)+ γ = 2n − k.

If we note that Rr ⊕ Qr ⊕ (Im(πl)+ Im(πr)) and R̃r ⊕ Q̃r ⊕ (Im(π̃l)+ Im(π̃r)) are subspaces of Q1r

and Q̃1r , respectively, and dimQ1r = dim Q̃1r = 2n − k, then

Q1r = Rr ⊕ Qr ⊕ (Im(πl)+ Im(πr)), Q̃1r = R̃r ⊕ Q̃r ⊕ (Im(π̃l)+ Im(π̃r)).

SinceQ1r is biorthogonal to Q̃1r , by Lemma3.7 Im(πl)+ Im(πr) is biorthogonal to Im(π̃l)+ Im(π̃r). �

If Φ is an orthogonal scaling vector, then Im(πl) + Im(πr) is biorthogonal to itself, and Im(πl) ∩
Im(πr). Thus we have the following corollary.

Corollary 3.2 [9]. Let (Vp)p∈Z be orthogonal multiresolution analysis generated by scaling vector Φ =
(φ1, . . . , φn)T , minimally supported in [−1, 1]. Then there exists a wavelet vector Ψ = (ψ1, . . . , ψn)T

which has exactly n − dim Im(πl)+ dim Im(πr) wavelet functionsψ i supported in [0, 1].

4. Applications

In this section, we consider the computation algorithm to find multiwavelet coefficients corre-

sponding to a given multiscaling coefficients by using the developed theorem of multiwavelet con-

struction in previous chapter. The dilation Eqs. (1) and (2) of biorthogonal scaling and wavelet vectors

Φ, Φ̃, Ψ , Ψ̃ can be modified as

Φ0 = C0lΦ1l(· + 1)+ C00Φ10 + C0rΦ1r,

Φr = CrrΦ1r,

Ψ0 = D0lΦ1l(· + 1)+ D00Φ10 + D0rΦ1r,

Ψr = DrrΦ1r,

and the duals

Φ̃0 = C̃0lΦ̃1l(· + 1)+ C̃00Φ̃10 + C̃0rΦ̃1r,

Φ̃r = C̃rrΦ̃1r,

Ψ̃0 = D̃0lΦ̃1l(· + 1)+ D̃00Φ̃10 + D̃0rΨ̃1r,

Φ̃r = D̃rrΦ̃1r .

These matrix coefficients of dilation equation of biorthogonal scaling vectors can be composed as

matrices L and L̃ called biorthogonal low pass filters, as follows:

L : =
⎡⎣ C0l C00 C0r

0 0 Crr

⎤⎦
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and

L̃ : =
⎡⎣ C̃0l C̃00 C̃0r

0 0 C̃rr

⎤⎦ .
Also matrix coefficients of dilation equation of biorthogonal wavelet vectors can be composed as

matrices H and H̃ called biorthogonal high pass filters, as follows:

H : =
⎡⎣ D0l D00 D0r

0 0 Drr

⎤⎦
and

H̃ : =
⎡⎣ D̃0l D̃00 D̃0r

0 0 D̃rr .

⎤⎦ .
By these matrix coefficients, Theorem 3 can be rewritten as follows.

Theorem4. Let (Vp)p∈Z and (Ṽp)p∈Z bebiorthogonalmultiresolutionanalyses generatedby scaling vectors

Φ = (φ1, . . . , φn)T and Φ̃ = (φ̃1, . . . , φ̃n)T . Then range CT
0l + range CT

0r is biorthogonal to range C̃
T
0l +

range C̃T
0r if and only if γ = dim(range CT

0l + range CT
0r) = dim(range C̃T

0l + range C̃T
0r) and there exist

biorthogonal wavelet vectorsΨ , Ψ̃ each of which has exactly n− γ wavelet functions supported in [0, 1].
Given above matrix coefficients C of dilation equations of biorthogonal scaling vectors, by the

theorem we can find matrix coefficients D of dilation equations to construct corresponding wavelet

vectors. The algorithmto computewaveletmatrix coefficients of dilationequations canbe summerized

by the proof of Theorem 3 as follows.

(Algorithm to construct biorthogonal multiwavelets.)

1. Choose any scaling vector so that range CT
0l + range CT

0r is biorthogonal to range C̃T
0l + range C̃T

0r .

2. Find any matrix D̃rr such that range[CT
0l, C

T
0r, C

T
rr] is orthogonal complement of range[D̃T

rr].
3. Find any matrix Drr such that range[C̃T

0l, C̃
T
0r, C̃

T
rr] is orthogonal complement of range[DT

rr].
4. Drr : = (DrrD̃

T
rr)

−1Drr .

5. Find any matrix [D̃0l, D̃00, D̃0r] such that range [(C0l, C00, C0r)T , (0, 0, C0l)T , (C0r, 0, 0)T , (0, 0,
Crr)

T , (Crr, 0, 0)
T , (0, 0,Drr)

T , (Drr, 0, 0)
T ] is orthogonal complement of range [D̃0l, D̃00, D̃0r]T .

6. Find any matrix [D0l,D00,D0r] such that range [(C̃0l, C̃00, C̃0r)T , (0, 0, C̃0l)T , (C̃0r, 0, 0)T , (0, 0,
C̃rr)

T , (C̃T
rr, 0, 0)

T , (0, 0, D̃rr)
T , (D̃rr, 0, 0)

T ] is orthogonal complement of range [D0l,D00,D0r]T .
7. [D0l,D00,D0r] : = ([D0l,D00,D0r][D̃0l, D̃00, D̃0r]T )−1[D0l,D00,D0r].
8. The corresponding high pass filters H and H̃:

H =
⎡⎣ D0l D00 D0r

0 0 Drr

⎤⎦ ,

H̃ =
⎡⎣ D̃0l D̃00 D̃0r

0 0 D̃rr

⎤⎦ .
By using this algorithm, let us compute the biorthogonal wavelet coefficients corresponding to the

biorthogonal scaling vectors in the following examples.
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Example 4.1. From the symmetric biorthogonal scaling vectors constructed byHardin andMarasovich

[7], we have the following matrix coefficients:

C0l =
[

−√
2−5u(1+2u)

12
√

3
, −1+4u

6
√

2
,

√
2−5u(5−2u)

12
√

3

]
,

C00 =
[

1√
2

]
,

C0r =
[√

2−5u(5−2u)

12
√

3
, −1+4u

6
√

2
,

√
2−5u(1+2u)

12
√

3

]
,

Crr =
[
2+u

3
√

2
, −2(−1+u)√

6−15u
, 2+u

3
√

2

]
,

and the dual matrix coefficients

C̃0l =
[
3
√

6−15uu

4(2−5u)2
, 2+u√

2(−4+10u)
,

√
6−15u(4−7u)

4(2−5u)2

]
,

C̃00 =
[

1√
2

]
,

C̃0r =
[√

6−15u(4−7u)

4(2−5u)2
, 2+u√

2(−4+10u)
,

3
√

6−15uu

4(2−5u)2

]
,

C̃rr =
[

−1+4u√
2(−2+5u)

, −2(−1+u)√
6−15u

, −1+4u√
2(−2+5u)

]
.

If we combine above matrix coefficients of biorthogonal scaling vectors, then we obtain the following

biorthogonal low pass filter L

⎡⎢⎣ −√
2−5u(1+2u)

12
√

3

−1+4u

6
√

2

√
2−5u(5−2u)

12
√

3

1√
2

√
2−5u(5−2u)

12
√

3

−1+4u

6
√

2

√
2−5u(1+2u)

12
√

3

0 0 0 0 2+u

3
√

2

−2(−1+u)√
6−15u

2+u

3
√

2

⎤⎥⎦ (3)

and the dual low pass filter L̃

⎡⎢⎣ 3
√

6−15uu

4(2−5u)2
2+u√

2(−4+10u)

√
6−15u(4−7u)

4(2−5u)2
1√
2

√
6−15u(4−7u)

4(2−5u)2
2+u√

2(−4+10u)

3
√

6−15uu

4(2−5u)2

0 0 0 0 −1+4u√
2(−2+5u)

−2(−1+u)√
6−15u

−1+4u√
2(−2+5u)

⎤⎥⎦ . (4)

Now we will find the matrix coefficients of biorthogonal wavelet vectors by using the proposed

computational algorithm.

(1) Since the determinant of matrix [CT
0l, C

T
0r]T [C̃T

0l, C̃
T
0r] is 1

16
, it is nonsingular for any u.

(2)We can find that C0l, C0r and C̃0l, C̃0r are all nonzero for every u ∈ (−1, 1/7).Henceml,mr,m,

and m̃l, m̃r, m̃ are all zero for u ∈ (−1, 1/7). And since C̃1l, C̃10 are zero, k = 1. It means that our

biorthogonal wavelet functions does not have supports in [0, 1].
(3) To find the possible matrix coefficients of biorthogonal wavelet vector through step 5 and step

6, we put
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[X, Y] : = [D0l,D00,D0r]
T =

⎡⎣ x1 x2 x3 x4 x3 x2 x1

y1 y2 y3 y4 −y3 −y2 −y1

⎤⎦T

,

[
X̃, Ỹ

] : = [
D̃0l, D̃00, D̃0r

]T =
⎡⎣ x̃1 x̃2 x̃3 x̃4 x̃3 x̃2 x̃1

ỹ1 ỹ2 ỹ3 ỹ4 −ỹ3 −ỹ2 −ỹ1

⎤⎦T

,

which must satisfy the following linear system of equations

Ã[X Y] = 0,

A[X̃ Ỹ] = 0,

[X Y]T
[
X̃ Ỹ

] = I,

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
C0l C00 C0r

Crl Cr0 Crr

0 0 C0l

C0r 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
and

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̃0l C̃00 C̃0r

C̃rl C̃r0 C̃rr

0 0 C̃0l

C̃0r 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

With the help ofMathematica, we have th following general biorthogonal high pass filters H and H̃

by the computation algorithm:

H =
⎡⎣ x1 x2 x3 x4 x3 x2 x1

y1 y2 y3 y4 −y3 −y2 −y1

⎤⎦ (5)

and

H̃ =
⎡⎢⎣ x̃1 x̃2 x̃3 x̃4 x̃3 x̃2 x̃1

ỹ1 ỹ2 ỹ3 ỹ4 −ỹ3 −ỹ2 −ỹ1

⎤⎥⎦ , (6)

where

x1 = 4+u−14u2

−96x̃3+240ux̃3
,

x2 = −
√

12−30u(−1+4u)(−4+7u)

48(2−5u)2 x̃3
,

x3 = 20−43u+14u2

96x̃3−240ux̃3
,

x4 =
√

12−30u(−4+7u)

8(2−5u)2 x̃3
,

y1 = 4+u−14u2

−48ỹ3+120uỹ3
,

y2 = −(√12−30u(−1+4u)(−4+7u))
24(2−5u)2 ỹ3

,

y3 = 20−43u+14u2

48ỹ3−120uỹ3
,

y4 = 0,
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x̃1 = 3ux̃3
4−7u

,

x̃2 =
√

12−30u(2+u)x̃3
3(−4+7u)

,

x̃4 = 2
√

2
3
(2−5u)

3
2 x̃3

−4+7u
,

ỹ1 = 3uỹ3
4−7u

,

ỹ2 =
√

12−30u(2+u)ỹ3
3(−4+7u)

,

ỹ4 = 0.

By using this general formula of high pass filter, we can construct several biorthogonal wavelet vectors

with free variables x̃3 and ỹ3, given biorthogonal scaling vector.

For example, we give filters of biorthogonal wavelet vectors determined by particular values of u

and free variables.

(1) If we take u = − 1
5
and x̃3 = 9

20
, ỹ3 = 9

√
2

20
then we obtain the orthogonal GHM multiwavelet

filters introduced by Geronimo et al. [4,10].

(2) If we take u = 0 and x̃3 = 5

6
√

6
, ỹ3 =

√
3

2
then we obtain the biorthogonal multiwavelet filters

introduced by Hardin and Marasovich [7].

Remark 4.1. By step 2, ml, m̃l,mr, m̃r,m, m̃ are all zero for ∀u ∈ (−1, 1
7
), and k = 1. Thus by

Theorem 2, none of the correspondingwavelet functions are supported in [0, 1]. Hence for Hardin and

Marasovich’s symmetric biorthogonal scaling vectors with low pass filters L and L̃ in (3) and (4), all

the corresponding symmetric or antisymmetric biorthogonal wavelet vectors are given by high pass

filters H and H̃ in (5) and (6).

Example 4.2. LetΦ(x) = (φ1, φ2)
T and Φ̃(x) = (φ̃1, φ̃2)

T be biorthogonal scaling vectors which are

supported in [−1, 1], satisfying the following equations [7,8]:

Φ(x) = P−1Φ(2x + 1)+ P0Φ(2x)+ P1Φ(2x − 1),

Φ̃(x) = P−1Φ̃(2x + 1)+ P0Φ̃(2x)+ P1Φ̃(2x − 1),

where

P−1 =
⎡⎢⎣ 1

2
1
5

−1 − 2
5

⎤⎥⎦ , P0 =
⎡⎢⎣ 1 0

0 1
2

⎤⎥⎦ , P1 =
⎡⎢⎣ 1

2
− 1

5

1 − 2
5

⎤⎥⎦

P̃−1 =
⎡⎢⎣ 1

2
5
4

−7
16

− 35
32

⎤⎥⎦ , P̃0 =
⎡⎢⎣ 1 0

0 1
2

⎤⎥⎦ , P̃1 =
⎡⎢⎣ 1

2
− 5

4

7
16

− 35
32

⎤⎥⎦ .
Then

C0l = P−1, C00 = P0, C0r = P1,

C̃0l = P̃−1, C̃00 = P̃0, C̃0r = P̃1,

Crr = C̃rr = 0.

Hence

κ = κ(Φ) = κ(Φ̃) = 2,

Im(πl) = span{[1/2, 1/5]}, Im(πr) = span{[1/2,−1/5]},
Im(π̃l) = span{[1/2, 5/4]}, Im(π̃r) = span{[1/2,−5/4]}.

And Im(πl) + Im(πr) = R2 is biorthogonal to Im(π̃l) + Im(π̃r) = R2. Since γ = 2, all the corre-

sponding biorthogonal wavelet functions are not supported in [0, 1]. By the computational algorithm,

we can compute complete biorthogonal wavelet functions. With the help of Mathematica, we get the

general form of biorthogonal wavelet vectors determined by the following coefficients:
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D−1 =
⎡⎢⎣ 5−40ỹ2y3

16x̃2

1−8ỹ2y3
8x̃2

5y3
2

y3

⎤⎥⎦ ,

D0 =
⎡⎢⎣ 5(−1+8ỹ2y3)(ỹ2−ỹ6)

2ỹ2(3ỹ2−5ỹ6)
35(−1+8ỹ2y3)(ỹ2+ỹ6)

32x̃2(3ỹ2−5ỹ6)

1−20ỹ2y3+20y3 ỹ6
3ỹ2−5ỹ6

− 7(−1+5ỹ2y3+5y3 ỹ6)
4(3ỹ2−5ỹ6)

⎤⎥⎦ ,

D1 =
⎡⎢⎣ − 5(−1+8ỹ2y3)(5ỹ2−3ỹ6)

16x̃2(3ỹ2−5ỹ6)
(−1+8ỹ2y3)(5ỹ2−3ỹ6)

8x̃2(3ỹ2−5ỹ6)

2−25ỹ2y3+15y3 ỹ6−6ỹ2+10ỹ6

2−25ỹ2y3+15y3 ỹ6
15ỹ2−25ỹ6

⎤⎥⎦ ,

D̃−1 =
⎡⎢⎣ x̃2

5x̃2
2

ỹ2
5ỹ2
2

⎤⎥⎦ ,

D̃0 =
⎡⎢⎣ − 8x̃2(−1+5ỹ2y3+5y3 ỹ6)−5+40ỹ2y3

8x̃2(−1+20ỹ2y3−20y3 ỹ6)−5+40ỹ2y3

−ỹ2 − ỹ6 4(ỹ2 − ỹ6)

⎤⎥⎦ ,

D̃1 =
⎡⎢⎣ x̃2(−3+40y3 ỹ6)−5+40ỹ2y3

x̃2(3−40y3 ỹ6)−2+16ỹ2y3

ỹ6
2

− 5ỹ6
2

⎤⎥⎦ ,
which have free variables y3, x̃2, ỹ2, ỹ6. In particular, by taking y3 = −2

√
7/35, ỹ2 = −√

7/16, ỹ6 =√
7/16, x̃2 = 1/2 we obtain a pair of biorthogonal wavelet vectors with the following coefficients:

D−1 =
⎡⎣ 1

2
1
5

−
√

7
7

− 2
√

7
35

⎤⎦ , D0 =
⎡⎣ −1 0

0 −
√

7
7

⎤⎦ , D1 =
⎡⎣ 1

2
− 1

5√
7

7
− 2

√
7

35

⎤⎦ ,
D̃−1 =

⎡⎣ 1
2

5
4

−
√

7
16

− 5
√

7
32

⎤⎦ , D̃0 =
⎡⎣ −1 0

0 −
√

7
2

⎤⎦ , D̃1 =
⎡⎣ 1

2
− 5

4√
7

16
− 5

√
7

32

⎤⎦ .
Note that the corresponding wavelet vectors are the same as in Example 1 in [8].

Example 4.3. Let Φ(x) = (φ1, φ2)
T be orthogonal scaling vector which is supported in [−1, 1],

satisfying the following equations [12,8]:

Φ(x) = P−1Φ(2x + 1)+ P0Φ(2x)+ P1Φ(2x − 1),

where

P−1 =
⎡⎣ 0

2+√
7

4

0
2−√

7
4

⎤⎦ , P0 =
⎡⎣ 3

4
1
4

1
4

3

4
√

2

⎤⎦ , P1 =
⎡⎣ 2−√

7
4

0

2+√
7

4
0

⎤⎦ .
Then

C0l = P−1, C00 = P0, C0r = P1, Crr = 0.

Sinceγ = Im(πl)+Im(πr) = 2, all the correspondingorthogonalwavelet functions arenot supported

in [0, 1]. By the computational algorithm, we can compute all wavelet functions. With the help of

Mathematica, we get the general form of wavelet vector determined by the following coefficients:
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D−1 =
⎡⎢⎣ 0

(
−15

√
2+24

√
2 y23−16 y3

√
5−8 y23

) √
45+56 y23−48

√
2 y3

√
5−8 y23

20 (−9+40 y23)

0 y3

⎤⎥⎦ ,

D0 =
⎡⎢⎣ a b

−2
(
4+√

7
)
y3+

√
2

(
−1+√

7
)√

5−8 y23

10

2
(
−4+√

7
)
y3−

√
2

(
1+√

7
)√

5−8 y23

10

⎤⎥⎦ ,

D1 =
⎡⎢⎣

√
45
2

+28 y23−24
√

2 y3
√

5−8 y3

10
0

3 y3+
√

2
√

5−8 y23
5

0

⎤⎥⎦ ,
where

a =
√
45+56 y23−48

√
2 y3

√
5−8 y23

(
3
√

2
(
4+√

7
)
+8

√
2

(
−4+√

7
)
y23+8

(
1+√

7
)
y3

√
5−8 y23

)
20 (−9+40 y23)

,

b = −
(√

45+56 y23−48
√

2 y3

√
5−8 y23

(
3
√

2
(
−4+√

7
)
+8

√
2

(
4+√

7
)
y23+8

(
−1+√

7
)
y3

√
5−8 y23

))
20 (−9+40 y23)

,

which have a free variable y3. In particular, if we take y3 = 1
4
, then we obtain a pair of biorthogonal

wavelet vectors with the following coefficients:

D−1 =
⎡⎣ 0 3

4

0 1
4

⎤⎦ , D0 =
⎡⎣ − 2+√

7
4

− 2−√
7

4

−−2−√
7

4
− 2+√

7
4

⎤⎦ , D1 =
⎡⎣ 1

4
0

3
4

0

⎤⎦ .
Note that the corresponding wavelet vector is the same as in Example 2 in [8].
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