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Biorthogonal wavelet vectors

1. Introduction

Most orthonormal wavelets can be constructed using the multiresolution analysis formalism in-
troduced by Mallat in [1]. In this setting there is a single scaling function ¢ whose integer translates
form an orthonormal basis of a central approximation space V. In many applications it is desirable for
¢ to be compactly supported. Daubechies constructed such scaling functions in [2]. The conditions of
orthonormality and compact support together are restrictive and it is known that certain other desir-
able properties such as symmetry and continuity cannot also be simultaneously achieved. Recently,
two generalizations of orthonormal wavelets, namely biorthogonal wavelets and multiwavelets, have
been introduced which have all desirable properties, see [4,6-8].

Biorthogonal wavelets are constructed using two dual multiresolution analyses generated by dual

scaling functions ¢ and ¢ satisfying

(6C =), ¢ —m)=bum.
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In [3], Cohen, Daubechies and Feauveau give a method for finding a compactly supported dual scaling
function ¢ given a compactly supported scaling function ¢. Once the biorthogonal scaling functions
are found there is a simple formula giving the biorthogonal wavelets. Also, if ¢ is symmetric then <5
can be chosen to be symmetric as well. This allows great freedom in the choice of ¢.

Orthonormal multiwavelets are constructed from n(>1) scaling functions whose integer translates
form an orthonormal basis of a central approximation space Vy. In [4,5], symmetric, compactly sup-
ported, continuous and orthogonal scaling functions (and associated wavelets) are constructed using
n = 2 scaling functions. If the scaling functions have compact supports then by reindexing the mul-
tiresolution analysis the scaling functions can all be assumed to be supportedin[—1, 1].In[6] a general
theory was developed for constructing orthonormal scaling vectors in [—1, 1].

In [7], Hardin and Marasovich give a procedure for constructing biorthogonal wavelet vectors as-
sociated with a given pair of biorthogonal scaling vectors, the components of which have supports in
[—1, 1]. And they provide necessary and sufficient conditions for the existence of biorthogonal mul-
tiwavelets supported in [—1, 1]. Further, they give biorthogonal scaling vectors and corresponding
wavelet vectors of multiplicity 2.

In [8], Yang et al. give a procedure for constructing easily compactly supported biorthogonal wavelet
vector associated with a given biorthogonal scaling vectors. But we note that it gives a way to obtain
only one wavelet vector. Those construction procedures could not completely characterize the corre-
sponding biorthogonal wavelet vectors.

In this paper, we give some theorems about the construction of biorthogonal wavelet vectors con-
taining the maximal number of wavelet functions supported in [0, 1] and generalize results in [7,9].
By using the existence theorem, we give the procedure for generalized construction of all possible
biorthogonal wavelet vectors corresponding to biorthogonal scaling vectors.

2. Preliminaries
2.1. Multiwavelets

A single scaling function ¢ that generates a multiresolution analysis of L2(R) cannot be compactly
supported, orthonormal, have any degree of regularity, and also be symmetric.

Recently, multiwavelets have been studied as a means of overcoming this obstacle. In the multi-
wavelet setting, n(>1) scaling functions are used to generate a multiresolution analysis of L(R). In
[4,6,9] two scaling functions ¢; and ¢, are constructed that are compactly supported, orthonormal,
continuous, and symmetric. These scaling functions generated symmetric and antisymmetric wavelets
Y1 and v, that were also compactly supported, orthonormal, and continuous.

Similar to the concept of a multiresolution analysis generated from a single scaling function ¢ is
the idea of a multiresolution analysis of multiplicity n > 1 for multiwavelets. Let & = (¢', ..., ¢™)7
be a column vector of length n whose elements are in L?(R). Let (&) denote the set of all integer
translates of components of @, thatis 7(®) = {¢'(- —j)li=1,...,n; j € Z} and let o (®) denote
the L? closed linear span of 7(®). A space V is called a finitely-generated shift invariant (FSI) space if
V = o (®) for some finite-length vector @. In this case @ is called a generating vector for V.

We will be most interested in FSI spaces that arise from a multiresolution analysis: A multiresolu-
tion analysis of multiplicity n is a sequence of closed linear subspaces (V;)pez in L?(R) satisfying the
following:

(1
(2
(3
(4

eV CVeCViCVy e,
Upez Vp = L*(R) and Npez Vp = {0},

f eVpifandonlyif f(27P-) € Vo, Vp € Z,

V is an FSI space generated by some n vector @ = (¢!, ..., ¢™7 such that 7(®) is a Riesz
basis of V.

T = —

We call @ a scaling vector for (V,)pez and the components of @ are called scaling functions.
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Without loss of generality, let us restrict our attention to multiresolution analyses with scaling
functions supported in [—1, 1] such that their support meets (0, 1) [6,11].

Let x[o0,1] denote the characteristic function of [0, 1] and let @ have support [—1, 1] and be such
that none of the components have support contained in [—1, 0]. If @ is such that the set of nonzero
restrictions of the components of @ and their integer shifts restricted to [0, 1], i.e.,

{¢X[0,1] |¢ € ‘L’((D), ¢X[O,1] 75 O}
is linearly independent, then we say that @ is minimally supported in [—1, 1] (or just minimally sup-
ported for short). By the following lemma [6], we may assume that any multiresolution analysis is
generated by a scaling vector minimally supported in [—1, 1].

Lemma 2.1. Suppose (V}),¢z is multiresolution analysis generated by compactly supported scaling func-
tions.Then there are some n and some set of scaling functions minimally supported in [—1, 1] that generate
the multiresolution analysis (Vé)pez given by

Vy = Vpin.

If @ is minimally supported we say V = o (@) is minimally generated and we denote the number of
generators supported in [—1, 1] but not supported in [0, 1] by k = k(®).If @ is minimally supported
and generates the same FSI space V as @, i.e., o (®) = V, then it follows that k(®) = k(®). Thus we
can define k(V) : = k(@) independent of the choice of minimally supported generating vector. Also
any component ¢; of @ that is supported in [—1, 0] may be replaced by its shift ¢'(- — 1) and so we will
assume that supports of all of the components of @ meet (0, 1). Furthermore, we order the compo-
nent of @ minimally supported in [—1, 1] such that the components ¢k<v)+1, ..., @" are supported
in [0, 1] while the supports of the components ¢, ..., ¢>"(V) meet (—1, 0) and (0, 1). In the sequel
we will assume that the components of any minimally supported generating vector are so ordered.

2.2. Biorthogonal multiwavelets

Let multiresolution analyses (Vp)pez and (Vp)pez be generated by scaling vectors @ = (¢>1,
oo ¢MTand @ = (@, ..., d™T. Then we say that (Vp)pez and (V,)pez are biorthogonal with
respect to [—1, 1] (or just biorthogonal for short) [11] if k(Vg) = k(Vp) and @ and & are minimally
supported generating vectors for Vy and Vj, respectively, such that

<¢f(.), H(— k)) = 8jdor for i,j=1,2,...,nandk € Z.

These vector functions @ and @ are called biorthogonal scaling vectors. And the vector functions

v = (1/~/l, .. ,lp")T and¥ = (1}1, cee, 1}"~)T are called biorthogonal wavelet vectors if 7 (@)Ut (¥)
and t(®) U t(¥) are Riesz bases of V1 and V7, respectively, and

2523 (Y@, W @" - —K)) = y8moe for ij=1,2,....nandk I meZ.

In the paper [7], Hardin and Marsovich developed a theory of constructing compactly supported
biorthogonal multiwavelets, corresponding to given compactly supported biorthogonal scaling vectors
@ and @ generating multiresolution analyses (V,),cz and (Vp)pez, respectively. Let us assume that
compactly supported biorthogonal scaling vectors ¢ and & can be found that generate multiresolution
analyses (V)pez and (Vp)pez, respectively. It is desired that our scaling vectors ¢ and @ and the
associated wavelet vectors & and ¥ generate a biorthogonal system.

Since our scaling and wavelet functions are compactly supported in [—1, 1], only a finite number
of matrix dilation coefficients will be nonzero, i.e.,

o0 = ¥ Gox—,

~ l=172~~ (-l)

) = > GERx—i).
i=—2



1174 S.Y. Hwang, J.Y. Lee / Linear Algebra and its Applications 434 (2011) 1171-1188

And the wavelet generating vectors ¥ and ¥ can be written in terms of the scaling functions at the
next finest scale

1

v = 3 Ddx— i),

~ 121—2 o (2)

¥U(x) = > Di®(2x —i).

i=—2

Let I, = [Com Com+1] and Tm = [Com E2m+1] for m € Z. Then the following theorem gives the neces-
sary and sufficient conditions for given biorthogonal scaling vectors @ and & to have the associated
biorthogonal wavelet vectors ¥ and ¥, respectively.

Theorem 1[7]. Letmultiresolution analyses (Vp)pez and (Vp)pez be biorthogonal multiresolution analyses

generated by scaling vectors @ = @', ..., oM and ® = ((]31, e, &")T. Then there exist biorthogonal
wavelet vectors ¥ and ¥ if and only if

range lg M range IL = {0},

range [} Nrangel” | = {0}.

3. Construction of biorthogonal multiwavelets

If a compactly supported scaling function is found that generates a multiresolution analysis of
L?(R), then a construction of the compactly supported wavelet is given easily by Daubechies [2]. But
for scaling vector generating a multiresolution analysis of multiplicity n > 1, it is not easy to find
the corresponding wavelet vector. Theorem 1 gives the necessary and sufficient conditions that the
biorthogonal scaling vectors @ and @ in multiresolution analysis of multiplicity n have the corre-
sponding wavelet vectors ¥ and ¥.

In this section, we give several lemmas about biorthogonality. And by using these lemmas, we
develop two theorems with proofs that will illustrate the simple computational algorithm constructing
complete form of biorthogonal wavelet vectors corresponding to given scaling vectors of biorthogonal
multiresolution analyses.

If not mentioned otherwise, all subspaces are assumed to be of finite dimension in L?(R).

We need the following lemma to provide a necessary and sufficient condition on the subspaces U
and U that enables us to construct biorthogonal bases.

Lemma 3.1. Let U and U be subspaces of the same finite dimension. Then U N Ut = {0} is equivalent to
utnU={o}.

Proof. Letu = (uq, ..., u;)and i = (if3, . . ., U,) be bases of U and U, respectively. Then U N U+ #

{0} if and only if there exists a nonzero vector @ = (o1, ..., on) € R" such thatv = X! ; oju; and
for every i,
n
(ﬁ,‘, V) = Z(ﬁi, Uj>01j =0.
j=1

Putting G = (gi) by g = (U, uj), it implies that U N U+ = {0} if and only if n x n matrix G
is nonsingular. Since the nonsingularity of G is equivalent to that of G', U N Ut = {0} must be
equivalent to U+ N U = {0}. O

By the above equivalence of U N U+ = {0} and UL N U = {0} we have the following necessary
and sufficient condition for constructing biorthogonal bases.

Lemma 3.2. Let U and U be subspaces of the same finite dimension. If u = (uy, . .., up) is a basis for U,
then there exists a basis it = (ily, . . ., ilp) for U which is biorthogonal to u if and only if U N UL = {0}.
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Proof. Letu = (uq, ..., uy) beabasis for U. Suppose i = (iiq, . .., llp) is the dual basis for U. Assume
veUunUt.Sincev e U there exist; € R,i =1, ,nsuch thatv = X' ; ou;. In addition since

v e U+, for eachj
(v, flj) = Zai(ui, ﬁj) =a; =0.
i=1

This implies v = 0, hence U N U+ = {0}. Conversely assume that U N U+ = {0} and {71, ..., ¥} is
a basis for U. Define n x n matrix G = (gj) by g = (u;, V;). In the proof of Lemma 3.1 G = (gj) is

shown to be nonsingular. If we set G~! = (hij)nxn, then

> (g, Vi) by = <Uz’, Zhl<j\7k> = §j;.
k

k
Let itj = > hyjVi, then (u;, Ul;) = &;. Hence ti = {iiy, ..., 1} is the basis for U, such that u and i are
biorthogonal. O

By the Lemma 3.2, we define biorthogonal subspaces as follows.

Definition 3.1. Let U and U be subspaces of the same dimension. If U N U+ = {0}, then U is said to
be biorthogonal to U.

IfV is a subspace that is orthogonal to U, then V is a subset of U+, which means thatUNV ¢ UNU-L.
Hence we can get the following lemma obviously.

Lemma 3.3. Let U and U be subspaces such that U N Ut = {0). If a subspace V is orthogonal to U, then
unv ={o).

To prove our main results we need the following lemmas.

Lemma 3.4. Let Wy and Wy be subspaces such that Wo N Wg- = {0}. If V is orthogonal to W, then
(Vo ® Wp) N W5 = V.

Proof. Assume that Wo N Wz~ = {0}.1f V; is orthogonal to Wp, then by Lemma 3.3 Vo N W, = {0} and
Vo C Wy Hence Vo C (Vo @ Wp) N Wy To show (Vo @ Wo) N W5~ C Vo, letu € (Vo @ W) N W
Thenu = v+ wforv € Vopandw € Wp, and u € Wy Since Vo C Wg",w = u — v € Wy, which
implies w € Wy N W3- = {0}. Henceu = v € Vo. [

Lemma 3.5. Let U and V be orthogonal to V and U, respectively. If (U + V) N (U 4+ V)L = {0}, then
Uunv = {0}.

Proof. Suppose that (U-+ V)N (U +t = {0} To show that U (| V = {0}, assume that there exists
anonzerow € UNV.SinceU L VandV 1L U,U C V+andV C U+.Hencew e UNV Cc VN T+,
and alsow € U + V. From the fact that (U 4+ V)+ = 0+ N VL,

U+V)NO 4+ =w+v)n@*-nvh.

This implies that nonzero vector w is in (U+ V)N (U+ V)L, which contradicts to (U+ V)N (O +V)* =
{0}. Therefore UV = {0}. O

For subspaces A, B of U and A, B of U, we have the following two lemmas.

Lemma 3.6. LetU = A+ Band U = A + B. If A and B are orthogonal to B and A, respectively, then
unit = {0} ifand only if A NAL = {0}and BN Bt = {0}.
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Proof. Suppose U N UL = {0}, and let B be orthogonal to A. Then B C AL. But

Unit=@+BNA+B*
=A+B) NA-NBYH
SA+BNBNEY
=(A+B)NB NBt=BNnB*,

which implies that B N Bt = {0}. If A is orthogonal to B, then we can easily get AN AL = {0}.
Conversely, let AN AL = {0} and BN B = {0}. And assume that B is orthogonal to A. Then

A+BNA+B)*T=@A+B NA-NB.
Since AN AT = {0}, by Lemma 3.4 (A 4+ B) N A = B. And since BN B = {0},

unit=@A+BNA+B"*
=(A+B)NAtNB*
=BNB*
= {0}.
HenceUN UL = {0}). O

Lemma3.7. LetU =A+Band U = A+ B. If A and B are orthogonal to Band A, respectively, then U
and U are biorthogonal if and only if A and B are biorthogonal to A and B, respectively.

Proof. Let A and B are orthogonal to B and A respectively, and suppose U = A + B is biorthogonal to

—A+BThenbyLemma36AﬂA {O}andBﬂB = {0}. And by Lemma 3.5, A N B = {0}
and AN B = {0}. Hence U = A® Band U = A ® B. Now to show that dimA = dimA and
dimB = dimB, let ¢ and ¢ be coordinate functions for given biorthogonal bases of U and U. Since
B is orthogonal to A, c(B) is orthogonal to ¢(A) in RY™Y and dim c(B) + dim ¢(A) = dim U. Hence
dimA = dim C(A) dimc(A) = dimA. Since A is also orthogonal to B, dimA < dimA. That is,
dimA = dimA. And snmllarly we have also dim B = dim B. It follows that A and B are biorthogonal to
Aand B, respectively. _

Conversely, let A and B be biorthogonal to A and B, respectively. By Lemma 3.6, U N U+ = {0}. And
by Lemma 3.3,

dimU =dimA 4 dimB
=dimA + dimB
=dimU.
Hence U is biorthogonal to U. [J

Now we are ready to consider the problem of constructing biorthogonal multiwavelets correspond-
ing to a given pair of biorthogonal scaling vectors.
Let (Vp)pez and (V)pez be biorthogonal multiresolution analyses of multiplicity n, and let @ =

@', ...,¢MT and~5§ = (qgl, R ¢~)”) be the corresponding multiscaling vectors, respectively. As-
sume that @ and @ are minimally supported in [—1, 1], that is, the nonzero restrictions to the unit
interval [0, 1] of the integer shifts of the scaling functions are linearly independent, none of the scaling
functions are supported in [—1, 0], and all of the scaling functions are supported in [—1, 1]. And let
k = k(V) = k(V). To simplify the notation, we let

Ph (0 =226/ (2x — j).
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Since the scaling functions ¢i are supported in [—1, 1], each of these can be represented as linear
combination of the following functions:

. , 1 . A
P —2s D115 Pros Pros Bins
wherej=k+1,...,n,i=1,...,n,1=1,...,k.
For scaling vector @ = (¢!, ..., »™)T minimally supported in [—1, 1], let

T
1 K
= (o1 ¢5)
T
@ = (91 gn)
. k-+1 1 T
P 1= (¢‘1,—27""¢‘I]‘l’72’ ¢1,71,-~-7¢?)71) s
1 kT
. ¢1,o,--~7¢1’o , ;
. k41 1
T (3 S L P L)

S
o
Il

5
o
I

Similarly we denote by &g, &, &1, @19, @1, for the dual scaling vector & = (¢', ..., ¢™)'. And also

for biorthogonal wavelet vectors ¥, ¥ we follow the same notations as in @, @. Denoting the span of
the components of @ by span @, we let

Qp := span @,
Q; := span &,
Qu 1= span &y,

Qio : = span Py,
Q1 1= span @y,

and also Qq, Q;, Q1;, 010, Qi for @. Since the scaling functions @, @ are minimally supported in
[—1, 1], we have

Vil-1,11 1= {f € V1 | suppf C [—1, 1]}
= Qu ® Qo & Qir,

Vij—11y := {f € V1 | suppf C [~1,1])
= Qu® Qo ® Q.

Define three canonical projections restricted to Qg as

m Q- —1) — Qu(-—1),
o Qo —> Qo
T Q —> Qir,

and also the duals 77, 7o, 7, of 7y, 7o, 7 to Qq;(- — 1), Qq0, Q1 respectively. And let

m; : = dimKer(sw;), m; := dimKer(7m)),
m := dim (Ker(sr;) N Ker(77,)) ,
m : = dim (Ker(77;) N Ker(7,))

m, := dimKer(wr;), m, := dimKer(7,).

These canonical projections 7, 7o, 71 and the duals have the following properties.
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Lemma3.8. Let (V})pez and (Vp)pez be biorthogonal multiresolution analyses generated by scaling vectors

=(p',....,¢" and ® = (¢", ..., ¢"". Then

(1) Im(rr) L Im(7,) and Im (7)) L Im(77p),

(2) @ L (Im(7p) + Im(7y)) and Q- L (Im(my) + Im(y)),

(3) (Im(m) + Im(7;)) N Qr = {0} and (Im(7r)) + Im(7,)) N Qr = {0},

(4) (Im(m) @ Im () (- + 1)) N Qo = {0} and (Im(77y) & Im(7T;) (- + 1)) N Qo = {0},
(5) Qo N Qr = {0} and Qo N Q; = {0}.

Proof. Let ® = (¢!,...,¢") and @ = (<;~51 ., &7 be scaling vectors minimally supported in

[—1,1]. And let &, = (¢*1, ..., ¢") T and &, = (¢k+1 ..., ®MT be biorthogonal scaling vectors
supported in [0, 1]. Then Q, = span @, and Q, = span @; are subspaces of Qi and Qqy, respectively.

(1) By the biorthogonality of scaling vectors @ and @, Qp = span @y is orthogonal to Q(-—1) =
span @ (- — 1). Since Qg is a subset of Q1; @ Q10 @ Qi

Q-1 CQu-—1)®Qo(-—1) & Qi (- —1).

But since Qyi(- — 1) = Qir and (¢} ;. & ;) = 0, Im(7r;) is orthogonal to Im (7). Similarly we can
prove the orthogonality of Im(r7;) and Im(77;).

(2) Since @¢ and @ are orthogonal to @, and @, respectively, Im(r;) and Im(7,) are orthogonal to
Q; and Q;, respectively. Also since ®o(-—1) and @0 (- — 1) are orthogonal to &, and &,, respectively,
Im(7r;) and Im(7;) are orthogonal to Q, and Q;, respectively.

(3) Since Im(7r;) and Im(7r,) are orthogonal to é, by Lemma 3.3

Im(z)) N Qr = {0}, Im(wy) NQy = {0}
That is, (Im(7r;) + Im(7,)) N Q, = {0}. Similarly, we can obtain
(Im(7)) + Im(#,)) N Q- = {0}.

(4) Qg and Qg are biorthogonal subspaces of V4[—1, 1]. Since @ is orthogonal to @ (- + 1) and
@o(- — 1), by Lemma 3.3

Im(m) @ Im(7,) (- + 1) N Qo = {0}

Similarly, we have Im(77;) @ Im(77;)(- + 1) N Qo {0}.
(5) Qo and Q; are biorthogonal to Qp and Q, respectively. Since Qp L Q; and Q; L Qp, by Lemma

33QNQ, = {0}and @y N Q; = {0}. O

Letd = (¢!, ...,¢" and & = (¢~>1, R qB")T be biorthogonal scaling vectors minimally sup-
ported in [—1,1],and let ¥ = (¥',....,y™MTand ¢ = (¥',...,¥™T be the corresponding
biorthogonal wavelet vectors minimally supported in [—1, 1]. The spans of wavelet functions are
denoted by

Rg = span ¥,
Ry span ¥,

and also Ry, R; for ¥. Define canonical projections restricted to Ry as

m: Ro(-—1) = Qu(-—1),
no : Ro = Qo,
Ny Ro — Qup,

and also the duals 7;, 79, 7;.
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Theorem 2. Let (Vp)pez and (Vp)pez be biorthogonal multiresolution analyses generated by scaling
vectors ® = (@', ..., oM and @ = @', ..., . Andlet v = Y',.., Yy and ¥ =
(1}1 1} )T be biorthogonal wavelet vectors associated with ® and ®, respectively. If Im(m;) N
Im(nr) = {O} [resp., Im(7r;) N Im(7,) = {0}], then the number i, [resp., k;] of wavelet function

1// [resp., ¥' ' supported in [0, 1] is
< n—2k+ m + my [resp., kr < n—2k+m +m,].

Proof. Let Im(r;) N Im(w;) = {0} and let ¥ = (Y',....y"" and ¥ = = @' ....9M" be
biorthogonal wavelet vectors. We can assume that ¥ has n — k wavelet functlons 1//1 supported in
[0,1],i= k+ 1, co M Suppose that k <2k — m; — m,. Then wk“, ..., Ymare wave}et functions
biorthogonal to 1}"“, ey 1}”, but not supportecj in [0, 1] in general. If we note that 1}"“, ey 1}”

are supported in [0, 1], it can be seen that nr(w"+l), ..., nr(y¥™) are in fact biorthogonal to these
functions. Let

Wp = span (nr (fo‘“) e nr(w”)) ,

Wy = span (1/}’;“, e &") .
Then dim Wy = dimWy = n — k. By the orthogonality of @ and ¥, Im(s,) and Q; are orthogonal to

Wp. By the orthogonality of @ (- — 1) and &, Im(7)) is also orthogonal to Wj. It implies that by Lemma
3.3 and 3.8,

(Im(7r;) @ Im(mr;) @ Q) N Wo = {0}.

But Im(7;), Im(7r;), Q- and Wy are subspaces of Qq,. Since Ker(r;)) = m; and Ker(w,) = my,
dim(Im(sr;)) = k—mjand dim(Im(r;)) = k—m, and moreover dim Q- = n—kanddim Wy = n—k.
Hence Im(7r;) @ Im(7r,) @ Qr @ Wy is a subspace of Qq, and

dim(Im(r) ® Im(r,) ® Q ®Wo) =k—m+k—my+n—k+n—k
=2n+k—m1—mr—l~<
> 2n — k,

which contradicts to dim Q;; = 2n — k. Therefore ¥ has at most n — 2k + m; + m, wavelet functions
supported in [0, 1]. Similarly we can show that ¥ has at most n — 2k + m; + m, wavelet functions
supported in [0, 1]. O

If (Vp)pez is an orthogonal multiresolution analysis, then Im(7r;) and Im(7r;) are orthogonal. Thus
we have the following corollary from the theorem.

Corollary 3.1 [9]. Let (Vy)nez be an orthogonal multiresolution analysis generated by scaling vector
@ = (¢!, ..., ¢"T minimally supported in [—1, 1]. And let ¥ = (y!, ..., ¥™T be a wavelet vector
associated with the scaling vector ®. Then the number of wavelet functions ' supported in [0, 1] is at
mostn — 2k + m; + m;.

To prove our main theorem, we need the following lemma.

Lemma 3.9. Let U and U be biorthogonal subspaces of finite dimension, and let A be a subspace of U. Then
there exists a subspace B C U of dimension dim U — dim A which is orthogonal to A.

Proof. Letu = (uq, .. un)T and il = (i, . .., iiy)" be biorthogonal bases for U and U, respectively.
Andletc : U — R ¢ : U — R"be coordinate functions, defined by c(XTu) = X, e(X'0) = X



1180 S.Y. Hwang, J.Y. Lee / Linear Algebra and its Applications 434 (2011) 1171-1188

for column vectors X, X e R™. Let B be a subspace of U, defined by B =c"! (C(A)J‘) To show B is
orthogonal to A letv = o ueB,aeR"Thenc(v) =« € tALIfv=a"t e Ais any element,
& € R", then &(V) = & € ¢(A) is orthogonal to c(v) = «. By the biorthogonality of u and

v, 7) = (aTu, &Ta) —a’a =o.

HenceB L A. O

Theorem 3. Let (V)pez and (\7,;) pez be biorthogonal multiresolution analysis generated by scaling vectors

=(p',....,¢"N and® = (¢, ..., ¢")". ThenIm(s;) +Im(z,) is biorthogonal to Im(7;) +Im(7,)
ifand only if y = dim(Im(sr;) +1Im(sr;)) = dim(Im(7;) +Im(7,)) and there exist biorthogonal wavelet
vectors ¥, W each of which has exactly n — y wavelet functions supported in [0, 1].

Proof. Suppose Im(7r;) + Im(7r;) is biorthogonal to Im(77;) + Im(7;). Then dim(Im () 4+ Im(7;)) =
dim(Im(77;) 4+ Im(7,)) and

(Im(m) + Im(,)) N (Im() + Im(7) " = {0},
which implies that by Lemma 3.1 and 3.5,

Im(7;) N Im(z;) = {0},

Im(77;) N Im(7,) = {0}.

Let ¢ : Qi — R*" ¥ be a coordinate system defined by c(X” ®;,) = X for column vectors X € Rk,
Similarly, we define a coordinate system ¢ : Q1r — R¥7K Let

=Im(m) & Im(7,) B Q.
=1Im(m;)) ® Im(7,) B éf

be subspaces of biorthogonal spaces Q; and Oy, respectively. Then dimA = dimA=n—k +y.By
Lemma 3.9, there exist subspaces B and B of Qq; and Qy, respectively, such that A 1. B, B L A, and
dimB = dimB = n— y.Now we note that Im(7r;) ®Im(7;) and Q; are blorthogonal toIm(77;) ®Im(7;)

and Q;, respectively. Moreover, Im(r;) @ Im(7) and Q, are orthogonal to Q, and Im(7;) @ Im(7;),
respectlvely Thus by Lemma 3.7, A is biorthogonal to A. Since B L. Aand B L A,AN B = {0} and
AN B = {0}. It follows that

Qir =Im(m) @ Im(;) @ Q @ B,
Qi =Im(F) ® Im(7,) & Q, ® B.

Since Q, is biorthogonal to Q", by Lemma 3.7 B is biorthogonal to B. Thus we can take biorthogonal
bases ¥, = (Yt ..., yMTand &, = (&VH, R &")T of B andj, respectively. To complete the
proof, it remains only on the construction of wavelet vectors ¥y and ¥,. By Lemma 3.8, V{[—1, 1] and
V1[—1, 1] have the following subspaces

X=Q®Im(m) ®Im@)(-+ 1) DL DQAU(-+1) SR ®R(-+ 1)
and

X=Q®m@m) &M@ +1)®Q S+ 1) SR ®R(- + 1),
respectively. And the dimensions of X is

dimX=k+ (k —m;) + (k —m;) +2(n — k) +2(n — y)
=4n—k—y.
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_ Similarly, dimX = 4n — k — y. By Lemma 3.9, there exists a subspace Ro of V4[—1, 1] such that
Ro L X, and

dimRg = dim V;[—1, 1] — dim X
By Lemma 3.8, Im(77;) and Im(7r,) are orthogonal to Im(77,) and Im(7;), respectively. Since Im(7;) +
Im(rr,) is biorthogonal to Im(7;) + Im(7;), by Lemma 3.7 Im(7r;) and Im(7;) are biorthogonal to
Im(7;) and Im(77,), respectively. Thus Im(s;) (- + 1) is biorthogonal to Im(77,) (- + 1). If we note that
Im(7r;) and Im(7r,) (- + 1) are orthogonal to Im(77;) (- + 1) and Im(77;), then by Lemma 3.7 Im(7t;) ®

Im(7rr) (- + 1) is biorthogonal to Im(77;) @ Im(77;) (- + 1).Since Q ® Q- B Q- (- + 1) R O R (- + 1)
is also biorthogonal to Qg (S Q(-+ 1) ® R ® R:(- + 1), by Lemma 3.7 X is biorthogonal to X.

By the orthogonality of Ry and Rg to X and X resp.,
RoNX=RyNX = ¢.

Since dim V;[—1, 1] = dim V;[—1, 1] = 4n — k,
Vi[-1,1] =X @ Ry,
Vi[-1,11=X & Ro.

The biorthogonality of V;[—1, 1] and V;[—1, 1] implies by Lemma 3.7 that Ry is biorthogonal to R:().

Hence we can take biorthogonal bases W = {y!, ..., ¥”}T and ¥ = {¥', ..., ¥ }T of Ry and Ry,
respectively. Now the remaining condition for ¥ and ¥ to be wavelet vectors is

(w0, &3 (- £ 1)) =0,
which is equivalent to the following conditions:
Im(n) L Im(7y),
Im(n) L Im(nr).
To show that Im(#;) and Im(#;) are orthogonal to Im(7,) and Im(7;), respectively, we note that
Qir = Im(r,) @ Im(m) @ Q- B Ry,
Qr = Im(7,) @ Im(7) & Q- B R,

are biorthogonal subspaces. And by the constructions of ¥y and W, Im(#,) is orthogonal to Im(77;) @
Qr @ Ry, which is orthogonal to Im(s;). Also Im(7;) is orthogonal to Im(s;) @ Q; @ R, which is
orthogonal to Im(77;). By Lemma 3.7, Im(7r;) and Im(7;) €@ Q; @ R, are biorthogonal to Im(77;) and
Im(77;) @ Qr PR, respectively. Hence

Im(n,) C Im(m;),

Im(7;) C Im(77;).
Similarly,

Im(n) C Im(my),

Im(7;) C Im(7).

Since Im(7r;) L Im(7) and Im(;) L Im(7;), Im(n,) L Im(7;) and Im(n;) L Im(#,). That is,
(W, 11107(. + 1)) = 0. Therefore

v=wUuw = (Y.t )

T
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and
T T T 71 7y .y+1 Tn T
11/='~I/0Ul1/r=(l/f YY)
are biorthogonal wavelet vectors.

Conversely, let ¥ = (¥, ..., y™ and ¥ = (&1, e, 1/~/") be biorthogonal wavelet vectors such
that ¥ 1, .. " and 71, ..., 4" are only supported in [0, 1]. Let R, = span(y? ™1, ..., y™)
and R, = span(¥¥*', ..., ¥"). Then R, and Q, are biorthogonal to R, and Q,, respectively. Since

R L Qrand Q- L R, by Lemma 3.7 R, & Q; is biorthogonal to R, @ Q. And also since Ry & Q; L
(Im(77)) +Im(7;)) and R, ©Q; L (Im(r;) +Im(zry)), by Lemma 3.3 R, & Q- N(Im(7r;) +Im(7r,)) = {0}
and R, ® Q; N (Im(71;) 4+ Im(7)) = {0}. Hence

dimR, @ Q; ® (Im(7)) + Im(7r;)) = dimR, @ Q- & (Im(7)) + Im(7,))

=m—y)+Mm—k) +y =2n—k.
If we note that R, @ Q- @ (Im(sr) + Im(7r;)) and Rr ® Qr ® (Im(#;) + Im(A,)) are subspaces of Q;,
and Qq, respectively, and dim Q;, = dim Q;, = 2n — k, then
Qir =R ® Q & (Im(rry) + Im(77)), Qqr = kr ® Q @ (Im(m) + Im(77;)).
Since Q;; is biorthogonal to Q;, by Lemma 3.7 Im(77;) 4 Im(7;) is biorthogonal to Im(77)) +Im(7,). O

If @ is an orthogonal scaling vector, then Im(s7r;) + Im(7,) is biorthogonal to itself, and Im(7r;) N
Im(77;). Thus we have the following corollary.

Corollary 3.2 [9]. Let (V,)pez be orthogonal multiresolution analysis generated by scaling vector & =

(@', ..., ™", minimally supported in [—1, 1]. Then there exists a wavelet vector & = (Y1, ..., y™T
which has exactly n — dim Im(7r;) 4+ dim Im(7r,) wavelet functions ' supported in [0, 1].

4. Applications

In this section, we consider the computation algorithm to find multiwavelet coefficients corre-
sponding to a given multiscaling coefficients by using the developed theorem of multiwavelet con-
struction in previous chapter. The dilation Egs. (1) and (2) of biorthogonal scaling and wavelet vectors
&, @, ¥ ¥ can be modified as

®g = CP1u(- + 1) + Coo P10 + CorPir,

@ = Gy Py,
Yy = Do ®1i(- + 1) + Doo @19 + DorP1r,
¥, = Dy P1y,

and the duals

@y = CauPu(- + 1) + Coo®10 + CorP1r,

5r = Erraslh
Wy = Doi®11(- + 1) + Doo P10 + Dor ¥y,
@r = Erra)lr-

These matrix coefficients of dilation equation of biorthogonal scaling vectors can be composed as
matrices L and L called biorthogonal low pass filters, as follows:

e Cor Coo Cor
0 0 Gy
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i-— Cor Coo Cor
" lo o G, |

Also matrix coefficients of dilation equation of biorthogonal wavelet vectors can be composed as
matrices H and H called biorthogonal high pass filters, as follows:

and

T Do Doo Dor
(0 0 D,
and
g Dot Doo ?Or .
|0 0 Dy

By these matrix coefficients, Theorem 3 can be rewritten as follows.

Theorem4. Let (V)yez and (Vp)pez be biorthogonal multiresolution analyses generated by scaling vectors
®=(',....,¢" and® = (¢, ..., $")". Then range C}, + range CJ,. is biorthogonal to range C, +
range Egr ifand only if y = dim(range Cg, + range Cgr) = dim(range Eg, + range Egr) and there exist
biorthogonal wavelet vectors ¥ , ¥ each of which has exactly n — y wavelet functions supported in [0, 1].

Given above matrix coefficients C of dilation equations of biorthogonal scaling vectors, by the
theorem we can find matrix coefficients D of dilation equations to construct corresponding wavelet
vectors. The algorithm to compute wavelet matrix coefficients of dilation equations can be summerized
by the proof of Theorem 3 as follows.

(Algorithm to construct biorthogonal multiwavelets.)

. Choose any scaling vector so that range Cgl -+ range Cgr is biorthogonal to range Egl -+ range Egr.

. Find any matrix D, such that range[CJ;, CJ., CT]is orthogonal complement of range[D,].

. Find any matrix Dy, such that range[fg,, 5&, QTr] is orthogonal complement of range[DZr].

Dy 1= (Drrbz:r)_lDrr-

. Find any matrix [Dor, Doo, Dor] such that range [(Cor, Coo, Cor)T, (0,0, Co)T, (Cor, 0,0)7, (0,0,
)T, (Gr, 0,0)7, (0,0, D;)T, (D), 0,0)7] is orthogonal complement of range [Do;, Doo, Dor ]

. Find any matrix [Dq;, Doo, Dor] such that range [(Cor, Coo, Cor)', (0, 0, Co))”, (Cor, 0, 0)7, (0, 0,

C)T, (€L, 0,00, (0,0, D), (Dyr, 0, 0)7] is orthogonal complement of range [Doj, Doo, Dor]” -

7. [Dot. Doo, Dor] : = ([Dot, Doo, Dorl[Dot, Dog, Dor]™) ™ [Dot, Doo, Dorl-
8. The corresponding high pass filters H and H:

. Do; Doo Dor ’
0 0 D,

b Doi Doo ?Or .
0 0 D,

By using this algorithm, let us compute the biorthogonal wavelet coefficients corresponding to the
biorthogonal scaling vectors in the following examples.

<]
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Example4.1. From the symmetric biorthogonal scaling vectors constructed by Hardin and Marasovich
[7], we have the following matrix coefficients:

Co = [—/2=Bu(1+2u) —1+4u 2=5u(5—2u)
ol = L 12ﬁ ’ 6\/5 ’ 12«/§ )
Coo = %] ,

Cr = [V2=5u(5—2u) —144u ~/2—5u(14+2u)
or — I 12\/§ ) Gﬁ ) 12\/3 5

Co = [2tn 214w 24w
m 13v2’ V6=15u > 3.2

and the dual matrix coefficients

G = [3/6—T5uu 24u /6—T5u(4—7u)
O = | a@=su)? " Va(—4+iou)  4@—su)? |’
Co = 55).

= [ /6—T5u(4—7u) 24u 36— 15uu
or = 42-5u)2 ' J2(—4+10u)° 4Q2-5u)? |’
. — [ i 214w —144u

T L Va(=2+45u)"  V6=T5u 7 V2(—2+45u)

If we combine above matrix coefficients of biorthogonal scaling vectors, then we obtain the following
biorthogonal low pass filter L

—+/2=5u(1+2u) —1+4u +/2—5u(5—2u) 1 +/2—5u(5—2u) —14+4u  +/2—5u(14+2u)
124/3 6+/2 1243 NG 124/3 642 12/3 (3)
0 0 0 0 24u —2(—14u) 2+u
372 V6—15u 372

and the dual low pass filter L

34/6—15uu 24u /6—15u(4—7u) 1 +/6—15u(4—7u) 24u 34/6—15uu
42—5u)?  /2(—4+10u) 4(2—5u)? V2 4(2—5u)? V2(—4+10u)  4(2—5u)? (4)
0 0 0 0 —1+4u —2(—1+u) —1+4u '
V2(—2+5u) V6—15u  V/2(—2+5u)

Now we will find the matrix coefficients of biorthogonal wavelet vectors by using the proposed
computational algorithm.

(1) Since the determinant of matrix [COI, COr] [CO,, COr] is 16, it is nonsingular for any u.

(2) We can find that Cg;, Co, and Co;, Cor are all nonzero for everyu € (—1,1/7). Hence m;, m;, m,
and my, m,, m are all zero foru € (—1, 1/7). And since Ci1, Cyo are zero, k = 1. It means that our
biorthogonal wavelet functions does not have supports in [0, 1].

(3) To find the possible matrix coefficients of biorthogonal wavelet vector through step 5 and step
6, we put
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T
[X, Y]: = [Do1, Doo, Dor]" = MR e A
Y1 Y2Y3Y4 —y3 —Y2 =N

T
[X, Y] : = [Dor, Doo, Dor]" = {;‘1 Lk Ko K
’ - k] k] T -

V1 Y2 V3 ya —Y3 —V2 =
which must satisfy the following linear system of equations
AIXY] =0,
AIXY] =0,
XYI'[XY] =1,
where

Cor Coo Cor
Crl CrO Gir
0 0 Cy
Cor 0 0 |
and
Cot Coo Cor

Cu ErO Err

)
Il

0 0 Cy

Cor 0 O

1185

With the help of Mathematica, we have th following general biorthogonal high pass filters H and H

by the computation algorithm:

H X1 X2 X3 X4 X3 X2 X1
LY1 Y2 Y3 V4 —Y3 —YV2 —V1 |
and
- X1 X X3 X4 X3 X2 Xi
H= ,
| Y1 Y2 Y3 Y4 —Y3 —V2 = V1 |
where
4+u—14u° 4 14u?
X] = = = y = 74:,"_ u =
—96X3+2401X3 ’ 1 —48y3+120uy3 °
- _ J/12=30u(—1+4u) (—4+7u) = (J/12=30u(—1+4u)(—4+7u))
2= 48(2—5u)%3 V2 = 24(2—5u)%j3 ’
o 20—43u+14u? _ 20—43u+14u?
3 = "96%;—240u%; ° Y3 = g5 120095 °
_ J12=30u(—4+7u) _
X = TRa st ya =0,

(3)

(6)
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52 _ 3uxz ~ _ 3ujs

1= 2= Y1 = A—7u°
)~<2 — /12—30u(2+u)x3 ~ 122300+
3(-4+7w) 0 V2 = T3arwy

3
- 2/2(2-5u)2 % 5
X4 = \/;—4+7u . Na=0
By using this general formula of high pass filter, we can construct several biorthogonal wavelet vectors
with free variables x3 and y3, given biorthogonal scaling vector.
For example, we give filters of biorthogonal wavelet vectors determined by particular values of u
and free variables.

(1) If we take u = —% and X3 = 2%, y3 = 92‘—05 then we obtain the orthogonal GHM multiwavelet
filters introduced by Geronimo et al. [4,10].
(2) If we takeu = 0 and x3 = e%/é’ V3 = ? then we obtain the biorthogonal multiwavelet filters

introduced by Hardin and Marasovich [7].

Remark 4.1. By step 2, my, m;, m;, m,, m, m are all zero for Yu € (-1, %), and k = 1. Thus by
Theorem 2, none of the corresponding wavelet functions are supported in [0, 1]. Hence for Hardin and
Marasovich’s symmetric biorthogonal scaling vectors with low pass filters L and L in (3) and (4), all
the corresponding symmetric or antisymmetric biorthogonal wavelet vectors are given by high pass
filters H and H in (5) and (6).

Example 4.2. Let & (x) = (¢1, ¢»)" and D(x) = ((51, (]32)7 be biorthogonal scaling vectors which are
supported in [—1, 1], satisfying the following equations [7,8]:

D(x) =P_1P2x + 1) + Py®(2x) + P1d(2x — 1),
D(x) = P_1®(2x + 1) + Py (2x) + Py d(2x — 1),

where

11 11
705 10 775
Py = , | Py = e Py = 5
—-1-3 03 1-3
1 5 1 5
2 2 ‘l 0 2 —2
~ 2 3 ~ - 2 T2

Py = , Pp = , P =
=7 _35 ol 7 _35
Then 6 32 2 6 32

Coo=P-1, Coo =Py, Cor =P,
Ca=P_1, Coo=Py, Cor =P,
Cr =Gy = 0.
Hence
K =Kk(P) =Kk(P) =2,
Im(m) = span{[1/2,1/5]}, Im(m,) = span{[1/2, —1/5]},
Im(7t;) = span{[1/2, 5/4]}, Im(7,;) = span{[1/2, —5/4]}.

And Im(7r})) + Im(r;) = R? is biorthogonal to Im(77;) + Im(77;) = R?. Since y = 2, all the corre-
sponding biorthogonal wavelet functions are not supported in [0, 1]. By the computational algorithm,
we can compute complete biorthogonal wavelet functions. With the help of Mathematica, we get the
general form of biorthogonal wavelet vectors determined by the following coefficients:
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[ 5—40§,y3 1-87y3
16X, 8xy
Df] = 5 9’
Y3
L 2 Y3
[ 5(=1+8V2y3)(J2—F6) 35(=1+87>y3)F2+7s)
D 2y2(3y2—5¥6) 32x2(3y2—5¥6)
0= - - - -
1-20y,y3+20ysys  __ 7(=145y2y3+5y3¥6)
L 3y2—5¥6 4(3y2—5y6)
[ 5(=148§2y3) (57, —3¥6) (=148§2y3) (57, —36)
D 16x2 (3y2—5y6) 8x2(3y2—5Y6)
1= - - - -
2—25y,y3+15y3¥6 2—25y,y3+15y3Y6
L —6y2+10y6 15y, —25y6
[~ 5%
. X %
D_1= s
L))
Y2 72
[ __ 8% (—1+552y3+5y3¥s) 8% (—1+20§2y3—20y3¥5)
= —5+40y2y3 —5+40y2y3
Do = )
L —V2 — V6 4(y2 — ¥s)
[ %2(=3+40y356) X2 (3—40y3¥6)
~ —5+40y2y3 —2+16y2y3
D = B N
Y6 _ 36
L 2 2

which have free variables y3, X2, 72, Js. In particular, by taking y3 = —2+/7/35, J, = —+/7/16, 5 =
J7 /16, X, = 1/2 we obtain a pair of biorthogonal wavelet vectors with the following coefficients:

1 1 1 1

D.—| 2_ 5 b —| 10 Do —| 2 T
R AN VA e IR/ A I IVG AN IV I

35

7 35 7 7
1 5 1 5
5| 2 a g |10 Bo_| 2 ~a
R A IV i I/ A I IV NIV I
16 32 2 16 32

Note that the corresponding wavelet vectors are the same as in Example 1 in [8].

Example 4.3. Let ®(x) = (¢1, ¢2)" be orthogonal scaling vector which is supported in [—1, 1],
satisfying the following equations [12,8]:

D(x) =P_1®2x+ 1) + Pg®(2x) + PP (2x — 1),

where

Then
Co =P-1, Coo =Po, Cor="P1, Gr=0.
Since y = Im(sm;)+Im(r;) = 2,all the corresponding orthogonal wavelet functions are not supported

in [0, 1]. By the computational algorithm, we can compute all wavelet functions. With the help of
Mathematica, we get the general form of wavelet vector determined by the following coefficients:



1188 S.Y. Hwang, J.Y. Lee / Linear Algebra and its Applications 434 (2011) 1171-1188

0 (—15v2+24v/2y3—16y3 A/5-8)3) 45456248 V23 /582

D_4 = 20 (—9-+40y%) ,
0 y3
i a b
Do =1 3 (41v7)yst-v2 (<14V7) /5837 2(—4+7)ys—v2 (14v7) /5—872 |
10 10

[ /2 428)2-242y; \/5-8y; 0

Dy = 10 ,
3y3+v/24/5-8%3 0
L 5
where
/45456 Y348 V23 /5813 (3v/2 (4++/7) +8v/2 (~4++/7) 348 (14+/7) y3 /5-813)
- 20 (—9+40y3) ’
b (\/4S+56y§—48 V2y34/5-8% (32 (—4++/7) 48 V2 (4++/7) Y348 (—1++/7) y3 /5-82 ))

20 (—9+40y3)

which have a free variable y3. In particular, if we take y; = %, then we obtain a pair of biorthogonal
wavelet vectors with the following coefficients:

3 247 2-7 1
03 T4 T4 3 0
D4 = Dy = Dy =
1 1] =7 2447 | 39
3 4 4 4

Note that the corresponding wavelet vector is the same as in Example 2 in [8].
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