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Abstract
Aerosol administration of peptide-based drugs plays an important role in the treatmentof pulmonary and systemic dis-
eases and the unique cellular properties of airway epithelium offers a great potential to deliver new compounds. As the
relative contributions fromthe large airways tothe alveolar space are importanttothe local and systemic availability, the
sites andmechanismof uptake and transportof differenttargetcompoundshave to be characterized. Among the differ-
ent respiratory cells, the ciliated epithelial cells of the larger and smaller airways and the type I and type II pneumocytes
are the key players in pulmonary drug transport.With their diverse cellular characteristics, each of these cell types dis-
plays a unique uptake possibility.Nextto the knowledge of these cellular aspects, the nature of aerosolized drugs, char-
acteristics of delivery systems and the depositional and pulmonary clearance mechanisms display major targets to
optimize pulmonarydrugdelivery.Based onthe growingknowledge onpulmonarycell biology andpathophysiologydue
tomodernmethods ofmolecularbiology, the future characterization of pulmonarydrug transportpathways canleadto
new strategies in aerosol drug therapy. r2003 Elsevier Science Ltd.Allrights reserved.

doi:10.1053.rmed.2002.1457, available online athttp://www.sciencedirect.com

Keywords airways; drug; aerosol; transport.
INTRODUCTION
In addition to their prominent role in the regulation of
the airway tone and the production of airway lining £uid,
the respiratory epithelial cells display an important bar-
rier between higher organisms and their environment
which can be used for pharmacological interventions. In
this respect, the large surface area of approximately
70^140 m2 in adult human lungs can be e⁄ciently used
for the aerosolic administration of a large variety of
drugs. The topical administration of non-peptide and
peptidomimetic drugs already plays an important role
in the treatment of various pulmonary and systemic dis-
eases and on the basis of new knowledge on distinct
transport systems (1,2) aerosolic drug delivery may be
optimized and is reaching a higher bioavailability.
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TOPICALANDSYSTEMICDRUGS
ANDCOMPOUNDS

A general distinction between topical and systemic com-
pounds has to be made: for the aerosolic administration
of topical, respiratory drugs, a large number of sub-
stances already exists encompassing di¡erent classes of
asthma(3), antimicrobial (4) and pulmonary antihyper-
tensive therapeutics (Table1) (5).

Also, a large number of reports on the pulmonary
delivery of systemic drugs exist. In this respect, di¡erent
non-peptide and peptide-based drugs such as insulin
(6^8), human growth hormone (9) and oxytocin have
been reported to reach the systemic circulation follow-
ing aerosol administration (Table 2).

With regard to the most socio-economically most im-
portant systemic compound, insulin, recent studies have
addressed the optimization of the delivery process.
Using human monocomponent insulin in lyophilized dex-
tran starch microspheres, a bioavailability of 30% was
achieved after administration to the nasal cavity of rats
with peak insulin concentrations within 7^10 min and a
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TABLE 1. Examples of aerosol drugs for topical treatmentof pulmonarydiseases (exceptobstructive diseases)

Class Drugs Diseases

Antimicrobial Aminoglycosides Penicillins Pentamidine Cystic ¢brosis Bronchiectasis AIDS
Antiviral Ribavirin RS-virus-infections
Vaccines Viral/bacterial Infectious diseases
Immunosuppressive drugs Steroids Lung ¢brosis
Surfactant ARDS/IRDS
Protease Trypsin Alveolar proteinosis
Prostaglandins Primarypulmonaryhypertension

TABLE 2. Examplesof aerosoldrugs for systemic treatment

Drugs Diseases

Insulin Diabetes
Heparin Anticoagulation
Ergotamine Headache
Calcitonin Osteoporosis
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maximal decrease in glucose blood concentration after
20^30min.

As the relative contributions from the large airways to
the alveolar space are important to the local and sys-
temic availability, the sites and mechanism of uptake of
the di¡erent target compounds have to be character-
ized. Among the di¡erent respiratory cells, the ciliated
epithelial cells of the larger and smaller airways and the
type I and type II pneumocytes are the key players in pul-
monary drug transport.With their diverse cellular char-
acteristics, each of these cell types displays unique
uptake characteristics.

CELLULAR ASPECTSOF
PULMONARYDRUGTRANSPORT
The transepithelial transport of compounds along the
respiratory epithelium from the upper airways with na-
sopharynx, trachea and large bronchi to the lower re-
spiratory tract with small bronchioles and alveoli is
characterizedby large quantitative di¡erences. In this re-
spect, the transport in the upper airways is limited by a
smaller surface area and lower regional blood £ow. Also,
the upper airways possess a high ¢ltering capacity and
remove 70^90% of pressurized particles. In contrast,
the smaller airways and alveolar space account for more
than 95% of the lung’s total surface area(10). Also, this
compartment is directly connected to the systemic cir-
culation via the pulmonary circulation.

There are two major cell types found in the alveolar
epithelium: type I and type II pneumocytes. Whereas
type I cells have a very thin cell body with long membra-
nous extensions, occupying an area of about 95% of the
alveolar surface(11), the type II pneumocytes are charac-
terized by a more cuboidal morphology and cover about
5% of the total alveolar surface (12,13). Studies on the
subcellular morphology of type I cells revealed the pre-
sence of endocytotic vesicles which may function as car-
riers in the absorption processes of larger proteins such
as insulin (5.7 kDa) (14,15). Although type II pneumocytes
express a variety of transport proteins (1,2), it is gener-
ally accepted that their main functions are the produc-
tion of surfactant proteins and the di¡erentiation into
type I cells after epithelial barrier injuries.

The pulmonary blood^gas barrier consists of a thick
and a thin side, which are composed of the alveolar
epithelium, the capillary endothelium, and the interven-
ing extracellular matrix (basement membranes of the
two cell layers)(16).

Out of the two cell types involved in the blood^gas
barrier, the type I cells display most likely the rate-limit-
ing step concerning the uptake of compounds into the
pulmonary circulation as previous studies reported a103

times lower permeability for substances such as sucrose
in comparison to endothelial cells (17). This is based on
the di¡erence in pore size between alveolar cells (0.6^
1nm) and endothelial cells (4^5.8 nm) (18)and the tight
junctions depth which is 0.26170.023mm (signi¢cantly)
higher than the tight junctions depth of the capillary en-
dothelial cells (0.16670.011mm)(19).

In contrast to these conditions at the blood^gas bar-
rier, three other di¡erent types of tight junctions have
been identi¢ed for extra- and intrapulmonary air-
ways(20). Most importantly, they di¡er in the degree of
luminal ¢bril interconnections which are sparsely inter-
connected in type I, more densely interconnected in
type II and most densely interconnected in type III tight
junctions.While the type I is almost exclusively found be-
tween extrapulmonary airway ciliated cells, the type II is
primarily present in smaller airways and between Clara
cells and the type III between mucous cells (20) with a
secretory cycle-associated change in permeability.

This dependence upon the secretory cycle, which is
leakier when the mucous cells are in a state of active se-
cretion has also been reported for other cell types such
as mammary gland epithelial cells (21,22). It is most likely
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that theregional di¡erences in tight junctionmorphology
are directly linked to the transepithelial transport capa-
cities of water and ions in contrast to actively trans-
ported larger molecules.

AEROSOLADMINISTRATIONAND
DEPOSITION
There are two primary modes of pulmonary aerosol ad-
ministration: nasal and oral inhalation. As the nasal inha-
lation is limited by anatomical features such as a
narrower airway lumen, oral inhalation of compounds is
generally preferred. In this respect, previous studies de-
monstrated (23,24) a far better oral inhalative adminis-
tration of 5mm diameter particles with a concentration
loss of only 20% in comparison to 85% by nasal adminis-
tration.

The three principal mechanisms which lead to pul-
monary deposition are inertial impaction, sedimentation
and di¡usion. The inertial impaction occurs during the
passage through the oropharynx and large conducting
airways if the particles possess a certain mass and velo-
city. Inertial impaction can be partially in£uenced by hy-
perventilation and does not occur when particles have a
diameter below 3mm.These particles are subject to se-
dimentation by gravitational force which occurs in smal-
ler airways and is in£uenced by breath-holding. From a
range below 0.5^1mm, particles are deposited by di¡u-
sion which is based on the Brownian motion (25^27).

There are di¡erent parameters with a crucial in£u-
ence on the site, extent and e⁄cacy of speci¢c deposi-
tion of aerosolic drugs. Next to morphological aspects
and ventilatory parameters (26,28), the aspect of parti-
cle/droplet size and geometry is most important.Within
this area, there are numerous factors with an in£uence
on the deposition, including particle size (diameter), den-
sity, electrical charge, hygroscopy, or shape (i.e. ¢bers)
(25,29,30). Also, deposition is in£uenced by the particle
source which can be a solution, powder or suspension
(26,27). In this respect, it was demonstrated that solu-
tion-based aerosols were characterized by 2-mm mass-
median aerodynamic diameter (MMAD) particles
TABLE 3. Devices for generatingparticles

Device Particle size (

Metered-dose inhaler 1^35
Jet nebulizer 1.2^6.9
Ultrasonic nebulizer 3.7^10.5
Spinningdisc 1.3^30
Drypowder Flow-relate
Vibrating ori¢ce 0.5^50
Condensation 1.1
Solid particle 0.1^4
whereas suspension-based aerosols displayed 4-mm
MMAD particles (31). The particle size is commonly ex-
pressed as the aerodynamic diameter, which is a variable
depending on the shape, density and size of the object. If
aerosols contain di¡erent particles, the size distribution
is usually characterized by the MMAD. A maximal alveo-
lar deposition is reached with particle sizes of 3mm and
an increase of the MMAD leads to an inertial impaction-
based shift in deposition in larger airways. In this respect,
the oropharyngeal deposition of an 8-mm particle has a
probability of about 50%, whereas it reaches approxi-
mately100% for a16-mm particle (32).

Also, hygroscopic characteristics can in£uence the de-
position and due to the high levels of relative humidity,
reaching about 44mg/cm3 in the alveolar lumen,particles
may be subject to changes in size. In this respect, de-
pending on water content and airway tonicity, hyper-
tonic particles can increase in size by hygroscopic
growth with a consecutive change in deposition towards
larger airways (33).

Major ventilatory parameters with impact on the par-
ticle deposition are breath pattern, £ow rates and tidal
volume and there can be large inter-and intraindividual
variations in these parameters. As an example, breath-
holding for 5^10 s on completion of inhalation, a low £ow
rate (less than 20 l/min), and an increase in the inhaled
volume can lead to an increase in particle deposition,
especially for particles with a diameter around 0.5mm
which are subject to sedimentary deposition (34^36). In
contrast, low £ow rates of 15 l/min can lead to an in-
crease in large conductance airway deposition of
43mm particles due to inertial impaction (37) and also,
rapid inhalation together with a high respiratory rate in-
creases inertial impaction of particles in the large air-
ways (38).

DELIVERYDEVICES
Although there is a large number of devices (39,40) which
can be used to generate particles (Table 3), the most
common systems are nebulizers, metered dose inhalers
(MDIs) and dry powder inhalers (PDIs).
mm) Particle size uniformity

Heterogeneous
Heterogeneous
Heterogeneous
Monodisperse

d Heterogeneous
Monodisperse
Monodisperse

Heterogeneous/monodisperse



FIG 1. In£uencing factors onthe pulmonarydeliveryof drugs.

PULMONARYDRUGTRANSPORT 385
The currently available standard inhalation devices gen-
erally produce aerosols which are heterodisperse in size.
Although monodisperse particle-sized aerosols are bet-
ter speci¢cally targeted to the lower airways, theproduc-
tion of these is largely limited by complex and expensive
generation processes such as vibrating ori¢ce, spinning
disc method or electrostatic precipitation (40,41).

PULMONARYCLEARANCEOF
AEROSOL-ADMINISTEREDDRUGS
There are two major clearance pathways for substances
which are transported across the respiratory epithe-
lium: the mucociliary system and alveolar macrophages.
Whereas the mucociliary system is bound to the larger
airways, the macrophages are found both in the alveolar
space and along larger and smaller airways.

Mucociliary clearance

The mucociliary clearance displays an integrative func-
tion ofbeatingcilia and lining £uid with the two main pur-
poses of trapping and transporting airborne particles.

Ciliated epithelial cells cover 30^65% of the airway
epithelial cells in the human respiratory tract, and each
ciliated cell houses about 200 cilia of 5^6mm length at a
density of 6^8mm-2(42). Parallel to the decrease of mu-
cociliary transport activity as the airways become smal-
ler, the distribution of ciliary epithelial cells changes and
thepercentage decreases from 53% in the trachea to 45%
in the ¢rst airway generation, to 15% in the ¢fth airway
generation(43).

The lining £uid is composed of the periciliary £uid, a
lubricating layer surrounding the cilia, the viscous layer
of mucus and the gel layer.Transport through these layers
is functionally distinct as they consist of di¡erent compo-
nents such as soluble and gel-forming mucins which can
be altered in their composition in disease (44,45).

The mucociliary clearance rate, which can be used as
an outcome measure for potential therapeutic agents, is
about10 mm/min in the trachea of normal individuals(46).
The clearance rate can be examined indirectly as ciliary
beat frequency (47) or directly as the rate of removal of
marker substances.The ciliarybeat frequency and muco-
ciliary transport are generally well correlated (48) and
the beat frequency can be assessed in vivo and in vitro
(49^51).

ALVEOLARCLEARANCE
Aerosol particles which have been deposited in the
alveolar space and terminal airway units can be subject
to absorptive or non-absorptive removal processes.
Whereas the nature of non-absorptive transport
processes of particles from the terminal airway units to
the airways with mucociliary clearance activity has not
been fully elucidated so far, the absorptive removal pro-
cesses involves uptake by macrophages and epithelial
cells(52). The adhesion of airborne particles to alveolar
macrophages is mediated through electrostatic interac-
tion or receptor mediation and particles are then inter-
nalized through surface cavitation, or vacuole and
pseudopod formation(53). Depending on the nature of
the particles, internalization is followedby furthermeta-
bolization or digestion by peptidases in case of proteins
(52,54).

Activated macrophages may then secrete a variety of
cyto-and chemokines and migrate to the ciliated airway
epithelium for transportvia mucociliaryclearance or pe-
netrate through the respiratory epithelium into the in-
terstitial tissue(13).

The internalization of airborne particles depends on
the particle size and composition of coating material.
Both features can be used to selectively control drug up-
take by alveolar macrophages. While particles of 3mm
diameter are far better internalized than particles with
6mm, a diameter of less than 0.26mm prevents from
macrophageal phagocytosis (55^57).

The diversity of the clearing processes can be illu-
stratedby the deposition of radio-labeled aluminosilicate
particles of diameter sizes 1.2 and 3.9mm, which was
shown to be a triphasic process with half-lives of approxi-
mately 1, 20 and 4300 days. These phases were sug-
gested to correspond to the processes of mucociliary
clearance, alveolar macrophages clearance and alveolar
epithelium penetration(58).

CONCLUSION
Pulmonary administration of drugs plays an important
role in the treatment of various respiratory and systemic
diseases and displays an attractive area of future drug
development. The e¡ects of an aerosol-based drug are
dependent on a variety of factors: starting from the nat-
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ure of the compounds, cellular aspects, characteristics
of delivery systems and aerosol administration to deposi-
tion in pulmonary clearance mechanisms (Fig.1), multiple
ways to manipulate drug delivery exist.

An optimal delivery system would speci¢cally deposit
the drug at its pulmonary target region, independent of
ventilatory or pathophysiological parameters. To opti-
mize current delivery systems, future studies addressing
the unique molecular, biochemical, and physiological
characteristics of various respiratory regions have to be
carried out applying modern techniques of molecular
biology(59), morphology (60,61) and physiology (62,63).
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