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Classifying magnetic resonance spectra is often difficult due to the curse of dimensionality;
scenarios in which a high-dimensional feature space is coupled with a small sample size.
We present an aggregation strategy that combines predicted disease states from multiple
classifiers using several fuzzy integration variants. Rather than using all input features for
each classifier, these multiple classifiers are presented with different, randomly selected,
subsets of the spectral features. Results from a set of detailed experiments using this strat-
egy are carefully compared against classification performance benchmarks. We empirically
demonstrate that the aggregated predictions are consistently superior to the corresponding
prediction from the best individual classifier.

Crown Copyright � 2010 Published by Elsevier Inc. All rights reserved.
1. Introduction

Magnetic resonance (MR) spectroscopic experimental techniques, which exploit the interaction between an external
homogenous magnetic field and a nucleus that possesses spin, are often used to create non-invasive, robust diagnostic clin-
ical procedures for the analysis of biofluids and tissues [1–3]. Unfortunately, the curse of dimensionality typically plagues
these biomedical spectra; the dimensionality of the spectral feature space is high, O(103–104), while the sample size is small,
O(101–102). Combined, these two characteristics present a significant challenge for the classification of biomedical spectra as
the inordinate degrees of freedom during the design (training) phase easily cause overfitting that affects the reliability of the
classification outcomes [4]. While a careful selection of a classifier is important in dealing with this issue, equally significant
are the pre- and post-processing strategies to be employed.

Feature selection is a typical pre-processing strategy for dealing with this curse of dimensionality by reducing, in some fash-
ion, the dimensionality of the feature space to an order similar to the sample size. The strategy used here is stochastic feature
selection [5] that randomly selects feature subsets using a frequency histogram of the discriminatory power of each feature as
stochastically determined by previous classification iterations. The feature subsets, which may undergo a quadratic transfor-
mation, are used to construct corresponding classifiers. After a classification accuracy threshold is reached, or a maximum
number of iterations is exceeded, the best sets of feature subsets, and their respective classification outcomes, are retained.

Classification may sometimes involve the aggregation of predictions as a post-processing strategy [6]. An aggregation
technique combines the predicted classification outcome (here, a disease state class label), for each pattern (here, an MR
spectrum), from the best set of individual outcomes. A typical aggregation technique involves the use of a fuzzy integral,
2010 Published by Elsevier Inc. All rights reserved.
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a non-linear numeric approach to combining multiple information sources to arrive at a ‘‘confidence value” for a decision.
While several interpretations exist for the meaning of a fuzzy integral [7], in this study, it is considered to mean the max-
imum degree of belief (for a predicted classification outcome) obtained by the fusion of several sources of objective evidence
(credibility).

In this investigation, these two pre- and post-processing strategies are combined in order to collate feature subsets for
presentation to a set of respective classifiers whose independent predictions are aggregated using fuzzy integration. The
motivation behind this approach is twofold: often, only a subset of features possesses discriminatory power while the
remainder has a tendency to confound the effectiveness of the underlying classifier; often, a prediction based on an aggre-
gated consensus from a set of classifiers operating upon different feature subsets will be more accurate than the prediction of
any individual classifier.

The paper will be divided into several sections beginning with a discussion of the stochastic feature selection strategy
including: the underlying classifier types; the random sampling approach using the feature frequency histogram; the vali-
dation procedure; and, parameters and stopping criteria. The next section describes the aggregation technique and the fuzzy
integrals that were tested. This is followed by a description of the heterogeneous classifiers used in the experiments. The
characteristics of the MR spectral dataset will then be described. The classification results coming from the independent clas-
sifiers are aggregated via fuzzy integration to produce a final consensus, the predictive power of which is assessed using an
external validation dataset. Results are presented with the aggregated results benchmarked against the corresponding best
individual classifier. We empirically demonstrate that the aggregated predictions are consistently superior to the corre-
sponding prediction from the best individual classifier.
2. Stochastic feature selection

Consider a c-class classification problem in which X = {(xk,xk), k = 1, . . . ,N} is a set of N labeled patterns (MR spectra).
Here, xk 2 Rn and xk 2X, where X = {1, . . . ,c}. A classifier may be viewed as a mapping f: X ? X. Let xip be the class label
predicted by classifier p for pattern, xi. If xip = xi, classifier p has generated a correct classification (prediction) result for xi.
The motivation for pre-processing strategies exploiting feature selection [8–10] is to simplify the determination and con-
struction of optimal decision boundaries for classification problems. Formally, feature selection involves finding a mapping
g0: X ? X0, where X 0 # Rmðm� nÞ is the reduced feature space. Classification involves the subsequent determination of a
mapping from the reduced feature space to the space of class labels, g: X0 ? X.

Stochastic feature selection (SFS) is a dimensionality reduction technique used in problems of classification. SFS may be
used with any homogeneous or heterogeneous set of classifiers. Essentially, SFS iteratively presents, in a highly parallelized
fashion, many feature regions (contiguous subsets of pattern features) to the set of classifiers retaining the best set of clas-
sifier/region pairs. SFS randomly assigns the original dataset samples (in this case, MR spectra) into design and test sets. Once
the design phase is complete, the test set is used to validate the classification performance. Coupled with internal n-fold val-
idation, this provides a reliable measure of the effectiveness of the underlying classification system. During the design phase,
SFS generates classification coefficients and assesses their performance.

Fig. 1 is a flowchart for the SFS approach. The first step involves parameter initialization. The user selects the minimum
and maximum number of feature regions and the minimum, a, and maximum, b, sizes (cardinality) for a feature region. For a
pattern, x = [x1, . . . ,xn], a feature region is defined to be a contiguous subset of its features, xab = [xa, . . . ,xb] (1 6 a 6 a 6
b 6 b 6 n). Feature regions may be either disjoint or overlapping. The user may also choose to transform the regions by com-
puting their mean, variance, or other statistical moment. The feature regions may also be quadratically transformed (see be-
low). Other parameters include: those specific to each selected classifier type; sampling rate for each classifier type; fitness
function used to evaluate performance; stopping criteria (accuracy threshold, Pe, and maximum number of iterations, g); and
the number, k, of top performing classifier instances to retain.

The remaining steps in the flowchart (except the last one) are iteratively performed until one of the stopping criteria is
satisfied. The first block of steps (see Fig. 1) involves: (i) selection of the classifier instance; (ii) selection of a candidate set of
feature regions from the dataset’s original features; and (iii) possible transformation of the selected feature regions. The clas-
sifier instance is randomly selected from one of several classifier types based on their sampling distribution (pre-determined
by the user). Here, linear discriminant analysis, radial basis function neural network, and probabilistic neural networks (see
Section 4) were used with equal likelihood of being selected; however, any classifier type may be used with SFS. The set of
feature regions is randomly selected (satisfying the above mentioned criteria) and all other features are pruned.

The second block of steps in SFS assesses the performance of each specific classifier instance (as selected in the previous
block). First, the feature region set is randomly allocated to either a design set or a test set. Second, the classifier instance is
trained using the design set feature regions to produce prediction coefficients. Third, its performance (classification accu-
racy) is assessed using the prediction coefficients with the test set feature regions. This block is repeated several times
(n-fold validation) with different random allocations to design and test sets.

If the performance, P, of the current classifier instance exceeds the histogram fitness threshold then the feature frequency
histogram (see below) is updated to reflect the fact that the feature regions contributed to a ‘‘successful” classification. Fur-
thermore, if P exceeds the performance, Pi (i = 1, . . . ,k), of any of the previous top k classifier instance list, the list is updated to
include the current classifier instance.



Fig. 1. Flowchart for stochastic feature selection and classifier integration.
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The above SFS steps are repeated until: (i) P > Pe; or (ii) the number of iterations exceeds g. The final step is to aggregate
the classification results from the best k classifier instances using fuzzy integration as described in Section 3.2.

Classification accuracy, P, is measured using the c � c confusion matrix, R, of desired versus predicted class labels. Several
fitness functions may be used (i, j = 1, . . . ,c) including: Po ¼ N�1P

iRii, the (conventional) ratio of correctly classified patterns to
total number of patterns; PA ¼ c�1P

iðRii=
P

jRijÞ the average classification accuracy for each class; or a chance-corrected mea-
sure of agreement ðPL ¼ N�2P

ið
P

jRij
P

jRjiÞ is the agreement due to chance) such as the j-score, Pj = (Po � PL)/(1 � PL) [11].
The stochastic selection mechanism of SFS may be controlled by a feature frequency histogram whereby the performance

of each classification task (the current selected classifier instance coupled with the current selected set of feature regions) is
assessed using the selected fitness function. If the fitness exceeds the histogram fitness threshold, Pf, the histogram is incre-
mented at those feature indices corresponding to the regions used by the classification task. This histogram is used to gen-
erate an ad hoc cumulative distribution function, which is used when randomly sampling new feature regions. So, rather
than each feature having an equal likelihood of being selected for a new classification task, those features that were used
in previous ‘‘successful” classification tasks have a greater likelihood of being chosen. A temperature term, 0 6 t 6 1, provides
additional control over this process. If t = 0, the ad hoc cumulative distribution function is used but as t ? 1 the randomness
becomes increasingly uniform (when t = 1 a strict uniform distribution is used).

SFS exploits the quadratic combination of feature regions. The intent is that if the original feature space had non-linear
decision boundaries between classes, the new (quadratic) parameter space may have decision boundaries that are more lin-
ear. SFS has three categories of quadratic combinations: using the original feature region; squaring the feature values for the
region; using all pair-wise cross-products of features from two regions. The probabilities of selecting one of these quadratic
feature combination categories must sum to 1.

SFS was implemented using Scopira [12], a C++ software development library that provides facilities for high performance
numerical computing, visual application development (2D/3D) and parallel processing [13]. Algorithm functionality may be
mapped onto a computer cluster to better utilize CPU processing power while decreasing overall execution time. SFS takes
full advantage of parallel computations using the Scopira Agent Library [14], a sophisticated message-passing library similar
in functionality to MPI [15]. In the specific case of SFS, classification tasks are distributed to slave nodes for computation. A
master node coordinates the distribution of tasks, records intermediate results, and updates the feature frequency histogram
and cumulative distribution function. To minimize inter-process communication and maximize CPU loads, SFS ‘‘bundles”
classification tasks. Furthermore, while SFS exploits parallelism, it remains (optionally) strictly deterministic. That is, exper-
imental results are perfectly reproducible regardless of computational load, which is extremely important in the analysis,
and interpretation of complex biomedical data.
3. Prediction using fuzzy integration

3.1. Fuzzy integrals

The fuzzy integral [16–18], which is based on a fuzzy measure [19] (a set function used to express the grade of fuzziness),
is a non-linear aggregation scheme for combining multiple sources of information to arrive at a ‘‘confidence value” for a deci-
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sion (hypothesis). Let us define a mapping h: X ? [0,1] where a finite ordered X = {x1, . . . ,xn} is of interest. In this investiga-
tion, we use the Sugeno, Su(x), Choquet, Ch(x), and Shilkret, Sh(x), integrals [20–22]. The fuzzy integrals of h over X with re-
spect to the Sugeno fuzzy measure [23], gk, are defined as:
SuðxÞ ¼ _i hðxiÞ ^ gkðXiÞ½ �;
ChðxÞ ¼ _i hðxiÞ � hðxi�1Þð ÞgkðXiÞ½ �;
ShðxÞ ¼ _i hðxiÞ � gkðXiÞ½ �;

ð1Þ
where Xi = {x1, . . . ,xi}, xi are descending ordered with respect to h(xi), the max and min operators are used respectively for
disjunction and conjunction, and h(x0) = 0. While several interpretations exist for the meaning a fuzzy integral [22,24], here
it is considered to mean the maximum degree of belief (for a classification outcome) obtained by the fusion of several sources
of objective evidence.

3.2. Combining classifier results

Integrating the results from multiple classifiers involves using their respective confusion matrices to compute the fuzzy
densities for each of the classifiers in order to determine the fuzzy measures used in (1). To this end, the technique described
in [25] will be followed primarily and is briefly described here. Let Rk ¼ ðnkxixj

Þ be the c � c confusion matrix for classifier, k,
where nkxixi

is the number of xi MR spectra that were correctly classified by k and nkxixj
(xi – xj) is the number of xi spec-

tra that were incorrectly assigned to xj by k. The preliminary fuzzy density of xi with respect to classifier k; 0 < g�kxi
< 1, is
g�kxi
¼ nkxixiPc

j¼1nkxixj

: ð2Þ
These densities must be adjusted to take into account the frequencies of correct and incorrect classifications within and
across the set of classifiers. This leads to the following expressions
dkxixj
¼

1; xi ¼ xj;
nkxixi

�nkxixj

nkxixi
; xi – xj;

e; nkxixi
< nkxixj

;

8>><
>>: ckxixj

¼

1; nkxixj
< nlxixj

;
nlxixj

nkxixj
; nkxixj

P nlxixj
;

e; nkxixj
¼ 0;

8>><
>>: ð3Þ
where e is a small positive value. The corrected fuzzy density, gkxi
, may now be computed as
gkxi
¼ g�kxi

� dkxixr � � � � � dkxixs

� �w1 � ckxixr
� � � � � ckxixs

� �w2
; ð4Þ
where w1 and w2, (w1 + w2 = 1) are weighting factors and r and s are the indices of those classes for which classifier k pro-
duced the highest accuracy score. The first adjustment, d 2 (0,1], reflects the misclassifications within the confusion matrix
for k. As the misclassifications increase, d ? 0 (the third condition in (3) is the degenerate case when more patterns of a par-
ticular class are misclassified than correctly classified). The second adjustment, c 2 (0,1], reflects the misclassifications
across all classifiers with respect to k. As the misclassifications increase, c ? 0 (the third condition in (3) is the degenerate
case when no patterns of a particular class are correctly classified). Finally, the Sugeno, Choquet, and Shilkret integrals will
use several variants of h:
hcðxÞ ¼
2x2; 0 6 x 6 0:5;
1� 2 x� 1ð Þ2; 0:5 < x 6 1;

(

hpðxÞ ¼ xpðp > 0Þ;
ð5Þ
where x 2 [0,1] is the classifier’s predicted class assignment and hc(x) is the standard definition for contrast intensification
[26]. When 0 < x < 1, h(x) will act to dilate membership values, while concentration will occur when x > 1. In order to con-
strain the number of parameters in the experiments described in Section 6, we will use the standard fuzzy set based defi-
nitions for concentration (p = 2) and dilation (p = 0.5) [26]. In total, four variants will be used: hc(x), h0.5(x), h2(x), and
h1(x) (identity). Fig. 2 shows the effect on membership values for these variants of h(x). Finally, using (1)–(5), the actual class
label output from the set of classifiers is the one with the highest integrated value.

4. Classifiers

In this section, we provide a brief discussion of the three different classifiers, linear discriminant analysis (LDA), radial
basis function networks (RBF), and probabilistic neural networks (PNN), used in the experiments described in Section 6.
All three classifier types exploit the notion of radial functions in the feature space. In PNN they are hyper-spherical Gaussians
located at data point clusters, in LDA they are hyper-ellipsoidal Gaussians located at the class means, and in RBF they are
usually hyper-spherical (or hyper-ellipsoidal) Gaussian, of a user-defined number, located at points in the data space that
is determined by a gradient descent approach.
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Fig. 2. The effect on membership values for different h: identity, h1(x) (solid line); contrast intensification, hc(x) (dashed line); concentration, h2(x) (dotted
line); and dilation, h0.5(x) (dot-dashed line).
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While we constrain the experiments to only use these classifier types, it should be noted that any type of analytic or iter-
ative classifier may be used with the SFS strategy. Finally, as a benchmark experiment, we compare the results obtained
using the SFS method to classification results using an implementation of a support vector machine (SVM).

4.1. Linear discriminant analysis

LDA [27] is a conventional classification strategy, which determines linear decision boundaries between c classes while
taking into account between-class and within-class variances. LDA allocates a pattern, x, to class d for which the probability
distribution, pd(x), is greatest, that is, x is allocated to class d, if qdpd(x) P qipi(x) ("i – d), where q are the prior probabilities
(or proportional probabilities). The discriminant function is
LdðxÞ ¼ log qd þ lT
dW�1

d x� 1
2
ld

� �
; ð6Þ
where ld is the mean for class d and Wd is its covariance matrix. The feature space hyperplane separating class d from class i
is defined by Fdi(x) = Ld(x) � Li(x) = 0. If the error distributions for each class are the same, LDA will find the optimal linear
class decision boundary; however, this optimality is seldom achieved with ‘‘real world” datasets since different classes typ-
ically give rise to different distributions. Nevertheless, LDA can be a useful linear classifier when combined with appropriate
dimensionality reduction pre-processing techniques such as feature subset selection [28].

4.2. Radial basis function neural network

An RBF [29] is a neural network of receptive fields that possess radial symmetry, f(x) = /(kx �łlk)(l is the centre, k�k is a
metric to determine the distance between a pattern and l, and / 2 [0,1] approaches zero as the distance between a pattern
and l increases. A typical definition for a receptive field, i, is
fiðxÞ ¼ exp �ðx� liÞ
Tðx� liÞ

2r2
i

" #
; ð7Þ
where ri is the diameter of the receptive region. Standard k-means clustering is used to find the location (l) of the receptive
fields, the P-nearest neighbour heuristic is used to find their shapes (r), and a set of pattern layer weights are trained (for
example, via back-propagation) [30]. As the receptive fields are localized, RBFs do not perform well if discriminatory features
are globally distributed through the space.

4.3. Probabilistic neural network

PNNs are artificial neural networks that are well suited for data classification [31,32]. Class-labeled design set patterns are
used to construct probability density functions (pdfs) to estimate the likelihood of a given pattern belonging to a given class.
A useful PNN property is that as more training patterns are used, it converges to a Bayesian classifier [33]. A PNN may be
constructed to correspond exactly to a Bayesian classifier if class pdfs are known; however, since this is rarely the case they
may be approximated using Parzen estimators [34]. In general, it is not possible to determine the number of patterns re-
quired to estimate the pdf to a specified accuracy using this approach.
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It is unnecessary to compute the approximated pdf but only the values at each pattern (n-dimensional point). If Nj is the
number of class j patterns, the class j pdf value for pattern x (assuming normalized patterns) is
fjðxÞ ¼ 2pn
2rnNj

� ��1XNj

i¼1

exp
xT xij

r2

� �
; ð8Þ
where xij is pattern i from class j, and r ¼ N�b
j ð0 < b < 1) is the estimator’s smoothing parameter (as r ? 0, the PNN approx-

imates a nearest neighbour classifier). A pattern x is assigned to class j, if hjfj(x) > hifi(x) ("i – j) where hj is the proportional
probability of a pattern belonging to class j.

4.4. Support vector machine

SVMs [35,36] are a family of supervised learning algorithms that select models that maximize the error margin of a train-
ing set. This approach has been successively used in many data classification problems [37]. Given a set of patterns that be-
long to one of two classes, an SVM finds the hyperplane leaving the largest possible fraction of patterns of the same class on
the same side while maximizing the distance of either class from the hyperplane. The approach is usually formulated as a
constrained optimization problem and solved using constrained quadratic programming. While the original approach [38]
could only be used for linearly separable problems, it may be extended by employing a ‘‘kernel trick” [39] that exploits
the fact that a non-linear mapping of sufficiently high dimension can project the patterns to a new space in which classes
can be separated by a hyperplane. In general, it cannot be determined a priori which kernel will contribute to producing the
best classification results for a given dataset and one must rely on heuristic (trial and error) experimentation. Common ker-
nel functions, for patterns x and y, are [39]: power, K(x,y) = (x � y)d; polynomial, K(x,y) = (ax � y + b)d; sigmoid, K(x,y) = tan-
h(ax � y + b); and Gaussian, K(x,y) = exp(�1/2jx � yj2/r).

5. Experiment design

5.1. Dataset

We use N = 191 MR spectra of a biofluid assigned, by a medical expert, to one of two classes: normal (116 spectra) or
abnormal (75 spectra). Each spectrum comprises n = 3380 features. For each classification task (see below), each spectrum
was randomly allocated to one of two subsets: a design set (Nd = 116) with 58 normal and 58 abnormal spectra; and a test set
(Nt = 75) with 58 normal and 17 abnormal spectra. Three transformed dataset variants were generated: first derivative; rank
ordered; and first derivative with rank ordering. It should be noted that these transformations, including any transforma-
tions occurring during the classification runs employing SFS and fuzzy integration, maintain a direct 1:1 mapping to the ori-
ginal feature space. This is often an essential requirement to ensure that medical experts and biomedical researchers can
map results back to the original discriminatory features in order to assess the relevance of the underlying metabolites
and their relative concentrations in tissues or biofluids.

5.2. Parameters

Rather than using Po, the standard ratio of correctly classified patterns to total number of patterns to measure perfor-
mance, results are ordered using the j-score, Pj, a conservative chance-corrected measure of agreement [11]. In other words,
Pj is used to determine whether or not a particular classification run is considered ‘‘successful” (Pj exceeds a pre-defined
threshold). However, for the sake of simplicity, the final classification results (based on the test sets) are presented using
the standard measure of agreement, Po. That is, once the design phase is complete and the best test set classification out-
comes, based on Pj, are determined, the corresponding standard measure of agreement is then computed and presented
in the tables in Section 6.

With respect to SFS, 2–10 averaged non-overlapping regions were used of length 10–50. It was equally likely that LDA,
RBF, or PNN were selected for a classification run. The quadratic combination likelihoods were 70%, 15%, and 15% for using
the original features, squaring them, or using pair-wise cross-products, respectively. The histogram sampling threshold was
set to Pf = 0.25, t = 0.1 and 7-fold internal validation was performed. Concerning specific parameters for the classifiers: b = 0.1
and P = 1 for PNN; six receptive fields were used for RBF; and proportional probabilities were used for LDA. For the SVM
benchmark, we use Platt’s implementation using sequential minimal optimization [40] using the kernels described in Sec-
tion 4.4 with a broad range of parameter values. For clarity, in Section 6 we report only the best classification results using
the SVM benchmark. Finally, in the case of the corrected fuzzy densities in (4), w1 = 0.8 and w2 = 0.2 when using fuzzy inte-
gration to aggregate the best classification outcomes.

5.3. Outcomes analysis

Two major categories of experiments were performed. The first category involves testing the fuzzy aggregation approach
described in Section 3 using SFS, the four dataset variants (as described in Section 5.1), and the Sugeno integral, Su(x), with
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hc(x). Here, detailed test results focus on: overall classification accuracy; the sets of discriminatory features discovered; and
assessment of the different dataset transformations. As benchmarks, the aggregated prediction is compared against the cor-
responding (i) best individual classifier; (ii) aggregation using a simple majority voting scheme; and (iii) aggregation using a
weighted vote (predictions are summed and the class with the largest sum becomes the prediction). The second category of
experiments involves testing the classification performance of the three different fuzzy integrals, Su(x), Ch(x), and Sh(x), in
combination with hc(x), h1(x), h2(x), and h0.5(x). For this category, we constrain the analysis to only one dataset transforma-
tion, the rank ordered variant, which happened to produce the best overall classification outcomes from the first category of
experiments. Here, the focus is on a comparison of overall classification performance between the 12 combinations of aggre-
gators. For each experiment, SFS ran for 106 iterations retaining the best 10 classification runs, over which the fuzzy aggre-
gation method was applied.
6. Results

6.1. Aggregation using the Sugeno integral

Fig. 3 shows the overall accuracies for the design set using the fuzzy aggregation approach with Su(x) and hc(x) versus the
best individual classifiers with: the original MR spectral features; the first derivative (FD) of the features; rank ordering (RO)
of the features, and the first derivative combined with the rank ordering (FD + RO) of the features. Apart from FD + RO, the
aggregated approach produced better predicted outcomes. While the three underlying classifiers (LDA, PNN, RBF) used in SFS
had an equal likelihood of being selected for a classification run, slightly fewer ‘‘successful” runs (Pf P 0.25) involved RBF
(30%) than PNN (34%) or LDA (36%).

Significantly more important for measuring the efficacy of this classification approach are the results based on the pat-
terns (spectra) within the test set. Fig. 4 shows the classification accuracies based on the test set outcomes. The best result
was 79% (Po = 0.79, PA = 0.81, Pj = 0.50) correctly classified test set patterns (spectra) using the fuzzy aggregation approach
with rank ordering of the original features. This is an 8% improvement over the corresponding best individual classifier
(Po = 0.73, PA = 0.77, Pj = 0.42). However, if we look at Pj, we see a 19% improvement in performance. Further, the aggregated
approach outperformed the corresponding best individual classifiers across all variants: respectively, 0.76/0.74, 0.74/0.62,
0.79/0.73, 0.75/0.73. The best individual outcome used the original features (Po = 0.74, PA = 0.76, Pj = 0.42). Note that the
majority vote and weighted vote aggregation methods produced results comparable to the corresponding best individual
outcomes (except for the FD case where the weighted vote outperformed the best individual classifier); however, both
benchmark aggregation methods produced poorer outcomes than the aggregation method using fuzzy integration. For com-
pleteness, Table 1 lists the test set confusion matrices for each transformed feature set (original, FD, RO, and FD + RO) with
accuracies (Po and standard deviation) of predicted normal (N) and abnormal (A) class labels versus desired class labels. It
should be noted that due to 7-fold internal validation, matrices total 525 (7Nt) ‘‘patterns”. Note that the standalone SVM
benchmark had comparable classification results to the corresponding best individual classifiers using SFS but poorer than
the aggregated outcomes using fuzzy integration.
Fig. 3. Overall design set classification accuracy comparing aggregated and best individual classifier predictions using: the original features, first derivative
(FD), rank ordering (RO), and FD with rank ordering (FD + RO).



Fig. 4. Overall test set classification accuracy comparing SFS aggregated outcomes to the best individual classifier predictions, majority vote aggregation,
and weighted vote aggregation.

Table 1
Test set results for aggregated versus best individual classifier predictions and the SVM benchmark (normal (N), abnormal (A)).

Aggregated outcomes Best individual outcomes SVM benchmark

N A Accuracy N A Accuracy N A Accuracy

Original features
N 306 100 0.75 ± 0.03 297 109 0.73 ± 0.05 294 112 0.72 ± 0.05
A 24 95 0.80 ± 0.10 25 94 0.79 ± 0.10 24 95 0.80 ± 0.08
Overall 0.76 0.74 0.74

First derivative
N 307 99 0.76 ± 0.03 221 185 0.54 ± 0.08 231 175 0.57 ± 0.05
A 37 82 0.69 ± 0.15 12 107 0.90 ± 0.08 11 108 0.91 ± 0.10
Overall 0.74 0.62 0.65

Rank ordered
N 314 92 0.77 ± 0.06 285 121 0.70 ± 0.06 279 127 0.69 ± 0.05
A 19 100 0.84 ± 0.11 19 100 0.84 ± 0.12 21 98 0.82 ± 0.12
Overall 0.79 0.73 0.72

First derivative, rank ordered
N 295 111 0.73 ± 0.06 295 111 0.73 ± 0.07 290 116 0.71 ± 0.06
A 21 98 0.82 ± 0.07 30 89 0.75 ± 0.10 29 90 0.76 ± 0.09
Overall 0.75 0.73 0.72
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Table 2 lists the discriminatory features that were selected using SFS indicating each region’s starting index, length, and
quadratic transform (for pair-wise, the second region’s starting index and length is listed). [Regions for the aggregated out-
comes are additional to the best individuals.] It should be noted that in all cases some of the highly discriminatory feature
regions were quadratic in nature. Furthermore, the best individual classifier outcomes required only 3–5% of the original fea-
tures, while the aggregated classifier results required 6–9%.

Recall that in Section 1, we mentioned the motivation behind the SFS approach were the suppositions that: (i) only a sub-
set of features possesses discriminatory power (the rest are confounding); and (ii) a prediction based on an aggregated con-
sensus from a set of classifiers operating upon different feature subsets will be more accurate than the prediction of any
individual classifier. The previous observation on the number of features used leads to an interesting question as to whether
the classifier type or the feature regions has a greater influence on the improvement to classification accuracy. To test the
impact on classification accuracy of the classifier type and the feature regions, we conducted an experiment with each of
the four dataset variants (original, RO, FD, and FD + RO) where we took the feature regions corresponding to the best
LDA, RBF, and PNN classifier instances. For each variant, this gives us three sets of feature regions that we subsequently
use to train consecutive instances of the three classifier types (this produces a set of nine classification outcomes). Now,
we aggregate these outcomes using our original fuzzy integration method (using Su(x) and hc(x)) and compare them to



Table 2
Discriminatory features selected for each experiment (aggregated versus best individual outcomes).

Aggregated Best individual

Start index Length Quadratic combination Start index Length Quadratic combination

Original features
112 11 Squared 1031 17 Original
192 18 1543 (15) 1226 13 1676 (10)
855 14 Original 1676 10 Original

1516 20 Original 1758 13 Original
1543 15 Original 2336 16 Original
1588 10 Original 2768 13 Original
1671 17 Original 3006 13 Original
1775 10 Squared
2107 16 Squared
2284 13 Original

First derivative
413 15 Squared 146 14 Original
686 13 Original 1006 20 Original
786 13 Original 1309 11 2155 (13)

1162 20 Original 1420 19 1309 (11)
1949 19 Original 2155 13 Original
2131 17 Original 2174 12 Original
2720 16 Squared 2553 19 Squared
3281 18 Original 2606 11 Original

Rank ordered
46 16 Original 10 16 Original

782 14 Squared 88 15 Original
860 16 Original 547 19 2745 (18)

1154 20 Squared 606 14 Original
1675 16 Original 1532 16 Original
2055 12 2162 (19) 2056 10 Original
2162 19 Squared 2584 19 Squared
2844 14 Original 2745 18 Original

2769 15 Original
3189 14 Original

First derivative, rank ordered
649 20 Original 8 15 Original
741 14 Original 259 10 Original
786 17 Original 1229 18 Squared

1151 11 Squared 1570 12 Original
1260 10 Squared 1626 18 Original
1639 11 Original 1822 12 Original
2313 18 Original 2213 13 Squared
3145 10 Original 2570 11 Original
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the SFS aggregation outcomes. If the results are comparable this would suggest that the classification improvement was the
result of using the different feature regions rather than the classifier types. On the other hand, if the results are comparable
to the corresponding best individual outcomes the improvement is likely as a result of the classifier types. However, if the
results are somewhere in between the SFS aggregation outcomes and the best individual outcomes, the improvement is a
result of both the classifier type and the feature regions. Fig. 7 plots the results of the SFS aggregation outcomes, best indi-
vidual outcomes, and the alternate aggregation outcomes described above. While certainly not conclusive, the results sug-
gest that both classifier type and feature regions play synergistic roles in improving the classification accuracy.1

Finally, Fig. 5(a)–(d) shows the feature frequency histogram for the best individual classifiers using the four feature trans-
formations: the original features (a); FD (b); RO (c); and FD + RO (d).
6.2. Aggregation using fuzzy integral variants

We now turn to the second category of classification experiments in which the various aggregation methods are com-
pared against each other. As discussed in Section 5.3, we constrain our analysis to the rank ordered feature set transforma-
tion, which produced the best classification outcome in Section 6.1. Fig. 6 shows the aggregated classification outcomes
using all 12 fuzzy integration variants. Recall that in the previous section, the best classification accuracy, 79% (Po = 0.79,
1 We thank the second reviewer for this useful suggestion for assessing the roles of classifier type and feature regions in improving classification accuracy.



Fig. 5. The feature frequency histograms for the best individual classifiers using the original features (a), first derivative (b), rank ordering (c), and first
derivative with rank ordering (d).

Fig. 6. Aggregated classification outcomes using all 12 fuzzy integration variants (Su(x) with hc(x) produced the best outcome in Section 6.1).
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PA = 0.81, j = 0.50), was achieved using Su(x) and hc(x), which is represented as the left-most column in Fig. 6. Here, we see
that the Sugeno integral using the identity function (Su(x) and h1(x)) produced an overall classification accuracy of 82%
(Po = 0.82, PA = 0.83, j = 0.56). Interestingly, the worst performing aggregation combination, Sh(x) with h0.5, did no worse than
the overall best individual classification outcome (the one that used the original features): Po = 0.74 (PA = 0.77, j = 0.42) and
Po = 0.74 (PA = 0.76, j = 0.42), respectively. Fig. 6 also suggests that: Sh(x) generated more misclassifications than the other
two fuzzy integrals regardless of h; Su(x) produced the best classification outcomes across all variants of h; and, apart from
the best outcome, h2 was a consistently solid performer for all three integrals. For completeness, Table 3 lists the aggregation
method confusion matrices for all 12 fuzzy integration variants.



Fig. 7. Comparison of SFS aggregation with aggregation of classifier types with best feature regions.

Table 3
Test set results for 12 different fuzzy integration variants.

Sugeno, Su(x) Choquet, Ch(x) Shilkret, Sh(x)

N A Accuracy N A Accuracy N A Accuracy

hc N 314 92 0.77 ± 0.06 312 94 0.77 ± 0.06 300 106 0.74 ± 0.07
A 19 100 0.84 ± 0.11 18 101 0.85 ± 0.10 23 96 0.81 ± 0.12
Overall 0.79 0.79 0.75

h1 N 325 81 0.80 ± 0.04 310 96 0.76 ± 0.06 298 108 0.73 ± 0.07
A 16 103 0.87 ± 0.11 21 98 0.82 ± 0.11 21 98 0.82 ± 0.12
Overall 0.82 0.78 0.75

h2 N 322 84 0.79 ± 0.06 319 87 0.79 ± 0.05 309 97 0.76 ± 0.06
A 18 101 0.85 ± 0.11 20 99 0.83 ± 0.10 20 99 0.83 ± 0.12
Overall 0.81 0.80 0.78

h0.5 N 310 96 0.76 ± 0.05 308 98 0.76 ± 0.07 295 111 0.73 ± 0.08
A 19 100 0.84 ± 0.12 21 98 0.82 ± 0.10 23 96 0.81 ± 0.12
Overall 0.78 0.77 0.74
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7. Conclusion

In this investigation, we developed an aggregation strategy using fuzzy integration to successfully classify magnetic res-
onance spectra of a biological fluid. The best classification results from a parallelized stochastic feature subset selection algo-
rithm were aggregated using the original spectral features and three feature space variants. Two categories of experiments
were used to demonstrate the efficacy of this approach. First, the aggregation method was constrained to only one fuzzy
integral and compared to the corresponding best individual classification outcome using all four feature spaces. There
was a 19% improvement in the chance-corrected measure of agreement from the best individual classifier outcome using
the rank ordered spectral features to the aggregated outcome (0.42 versus 0.50). In the second category of experiments,
the feature space was constrained to rank ordered features while several different fuzzy integration variants were used as
outcome aggregators. In this case, there was a 33% improvement in the chance-corrected measure of agreement from the
best fuzzy integration variant to the overall best individual classification outcome using any feature space variant (0.42 ver-
sus 0.56). Furthermore, these results were achieved using only 9% of the original spectral features.
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