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The Decidability of the Equivalence Problem for DOL-Systems* 

K. CUL~K II AND I. FRISK 

Department of Computer Science, University of Waterloo, Waterloo, 
Ontario, Canada N2L 3GI 

The language and sequence equivalence problem for DOL-systems is shown 
to be decidable. In an algebraic formulation the sequence equivalence problem 
for DOL-systems can be stated as follows: Given homomorphisms h, and h, on 
a free monoid z1* and a word D from Z*, is %rn(r,) = &“(o) for all n > O? 

The DOL sequence equivalence problem can be stated algebraically as follows. 
Given two homomorphisms h, , h, on a free monoid Z:* and a word 0 in Z*, 
is hi”(a) = h,“(u) for all n > 0 ? This paper shows that this problem is decidable. 
The problem originated in Lindenmayer systems which are mathematical models 
of cellular development. In that context it can be restated as the problem of the 
developmental equivalence of two genetic encodings in filamental organisms 
developing deterministically without interaction. The Lindenmayer systems 
without interaction (OL-systems) were introduced in Lindenmayer (1971) and 
the equivalence problem for them was posed shortly afterwards (Problem Book, 
1973). Its undecidability for nondeterministic OL-systems has been shown 
(e.g., Salomaa, 1973). The same question for deterministic OL-systems (DOL- 
systems) was conjectured to be decidable but remained open. Some partial 
results were obtained in Paz and Salomaa (1973), Johansen and Meiling (1974), 
Ehrenfeucht and Rozenberg (1974), Nielsen (1974) Culik (1975), Valiant (1975), 
and Karhumaki (1976). Our full solution is based on the results and methods 
shown in Culik (1975). A part of these results, namely, the decidability of the 
equivalence problem for smooth DOL-systems, appeared independently and 
using different terminology in Valiant (1975). 

Now, we explain intuitively the basic ideas of our approach. The technical 
terms which are not fully explained in the introduction are enclosed in quotation 
marks on first use. 
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No. A7403. 

+ On leave from the University of New England, Armidale, N.S.W., Australia. 

20 
Copyright 0 1977 by Academic Press, Inc. 
All rights of reproduction in any form reserved. ISSN 0019-9958 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81939222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DOL EQUIVALENCE PROBLEM 21 

We start by showing that, without loss of generality, the testing for equivalence 
may be restricted to "normal" systems. The essence of this paper is to show that 
every pair of equivalent normal systems has "bounded balance." I t  has been 
shown in Culik (1975) that the equivalence problem is decidable for each family 
of DOL-systems in which the equivalence implies bounded balance. 

Neglecting many technical details, we will now informally describe the prin- 
cipal ideas of the proof that for normal systems the equiva!ence implies bounded 
balance. In Culik (1975) it has already been shown that "simple" systems have 
bounded balance. A normal system is simple iff it has no "subsystem" in the 
sense of general algebra. If  a system'has a subsystem, then the underlying set 
of the subsystem is called a "subalphabet." 

For two equivalent systems which are not simple we find a common subalphabet 
and show" that either all substrings of the language generated by the systems 
which are entirely in this subalphabet are "short" (such a subalphabet is called 
"limited") or the two systems "induced" by this subatphabet are equivalent. 
A second pair of normal systems is obtained by "removing" the subsystem (i.e., 
by omitting the symbols from the common subalphabet). As before, these 
"remainder" systems are equivalent because the original systems are equivalent. 
Since both the subsystem and the remainder system are systems over a smaller 
alphabet we can use the boundedness as an induction hypothesis. The base of 
the induction deals (essentially) with systems over one letter, so the claim is 
easy to verify. This allows us to assume that the remainder pair and (in the case 
of a subalphabet which is not limited) also the induced pair have bounded 
balance. As the case of limited subalphabets causes no problem, this allows us 
to construct a bound on the balance for the original pair. 

Some of the more important technical details which were omitted above are as 
follows. In every step of the induction we have to consider the nonpropagating 
systems and another singular case separately. Since a propagating system may 
have a nonpropagating remainder system, we cannot include the propagating 
property in the requirements for normality. 

Finally, and independently of the main result, we discuss in Section 6 an 
interesting property of pairs of equivalent DOL-systems which is equivalent 
to bounded balance. The property requires the existence of a regular set R such 
that: 

(i) R contains the language generated by either of the systems. 

(ii) The homomorphisms of the two systems are equal on every string in R. 

An alternative algorithm for testing equivalence of DOL-systems can be based 
on this property. We conjecture that such a regular set exists for every pair of 
equivalent DOL-systems, i.e., every pair of equivalent systems has bounded 
balance. Note that although we solve the decision problem for all DOL-systems, 
the conjecture is shown correct for normal systems only. 
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1. NOTATION 

Given an alphabet Z, Z* denotes the free monoid generated by Z, with unit  
(empty string) E. 

A DOL-system is a 3-tuple G = (X, h, ~) consisting of alphabet Z, homomor- 
phism h, and a starting string ~ ~ Z*. L( G), the language generated by G, is 
defined as {h~(e): n / >  0}. G is said to be reduced, if every symbol from Z occurs 
in at least one hn(~), n > / 0 .  To reduce G means to omit from Z all symbols 
which do not have this property.  

For  w E Z* and a ~ Z, #aw denotes the number  of occurrences of a in w. 
I f  (a 1 ,..., as) is an ordering of Z, then (#alw,..., #%w) is called the Parihh vector 
of w and is denoted by [w]. The  matrix M = (mi~)l<i<~,l<~<.~, where mij 
#a~h(ai) is called the growth matrix for G. 

I f  i is a number,  I i [  denotes the absolute value of i; if w is a string, i w F 
denotes the length of w; later on [ A I is also used for length of a vector A or 
maximum characteristic value of a matrix A. 

For  w E Z*,  let min(w) = {a: a occurs in w}. 

Given G = (Z, h, ~), we say that  w is a G-prefix (G-substring,  G-suffix) 
if w is a prefix (substring, suffix) of  h~(e) for some n > /0 .  

Two DOL-sys tems  Gi = (Z, hi, ai), i = 1, 2 are called (sequence) equivalent 
if hl~(crl) = h2~(a2) for all n z 0, 1 . . . . .  Two DOL-sys tems  G1, G~ are called 
Parihh equivalent if [hl~(el)] = [h2~(~2)] for all n = 0, 1 . . . . .  The  balance (with 
respect to G~, Gz) of a string w in Z* is defined as in Culik (1975), /3(w) = 

I l hx(w)] - -  I h~(w)l I. I f  there exists c / >  0 so that fl(x) ~< c for all Gl-prefixes , 
then the pair (G 1 , G2) is said to have bounded balance. In  this case the smallest 
such c is called the balance of the pair (G1, G2). 

For  two sets A, B, ~i to B denotes their union. I f  A, B are disjoint, we stress 
this by writing A + B for the union. Finally, we will often write a instead of {a} 
for a one-element set. 

2. THE NORMAL SYSTEMS 

Let  G - -  (S, h, a) be a DOL-sys tem.  We define the function m: ~(27) --+ ~ ( Z ) ,  
where # ( Z )  is the set of all subsets of Z by put t ing 

m(¢)  = ¢, 
m({a}) ----- min(h(a)) for a ~ 27, 

m(A V B) = re(A) u re(B). 

I t  is easy to see that  mi(a) = rain(hi(a)) for all i >/ 1. We  will write m(a) for 
m({a}) and use m l ,  m 2 , m12 , etc. to denote similar functions based on h i ,  h2, 
hxh 2 , etc. 
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DEFINITION" 1. A D O L - s y s t e m  G = (Z, h, a) is called an /r-system if 
Z' = X~ -5 Z'~ - / Z ,  is a decomposi t ion of 27 into three nonempty  disjoint sets 
such that h(a) E Z ~ &  * for a E 2z , h(a) c & * for a e No,  h(a) ~ Zo*Z~ for a e X~., 
and ~ ~ 2~27,'27~.. We call 27~ the core of 27, Z~ is called the left side, and 27~ the 
right side of S. T h e  number  of symbols in the core 27~ of 27 is calIed the order 

of G. 

DEFINITICN 2. A D O L - s y s t e m  G = (27, h, ~) is called normal if 

G is an / r - sys tem,  (1) 

G is reduced, (2) 

if a ~ he(b) for some j > 0, then a E m(b) holds for every a, b e 2 e . (3) 

T h e  following lemma, which is used to prove that we may consider normal  
systems only, is given in somewhat  more  general form as needed for L e m m a  7. 

Le t  Gi = (Z, h i ,  a), i = 1, 2, be two DOL-sys tems .  Given n /> 1 let i = 
(i 1 ,..., i~) be a sequence of length n of integers i 1 ,..., i,~ c {1,2}. We denote h (i) = 
hi1"'" hi~ , a composi t ion of homomorph i sms  h i ,  h2, i.e., h ( i ) ( x )  z hi1(.., hi(x ) ...). 

LEMMA 1. Let  Gi = (£,  h i ,  a), i = 1, 2, n ~ 1, i~ = (i 1 ,..., i,), i2 = 
(Jl  .... , in)  be given. Denote a~ hl~(a ) and let i 1 = l ,  Jl = 2. Under these 
assumptions G 1 , G 2 are equivalent i f f  

G1J = (Z, h (i), a~-), Gfl = (L ~, h (i9, %-) (4) 

are equivalent for  every j = 0, 1 .... , n - -  1 and at the same time 

h?(~) = h;(~) (5) 

also for  every j = 0, 1,..., n - -  I. 

Proof. I f  G1,  G 2 are equivalent then Eq. (5) holds for every j and thus 
h(il)(a) = h(i~)(~r) for all possible sequences i l ,  i2 • This  means that Eq. (4) holds 
for all possible pairs. 

Conversely, for each l ~ O, hl~(a) = (h~hi2 ... h iJ :h l~(a)  z (h(il))khlm(a), 

hz~(a) = (hzhj~ "'" hj~)kh2m(a) = (h'i~')kh~(a), where l = kn + m and 0 < 
m < n. Since G~ 5 and G2J are equivalent and by Eq. (5) h~'*(a) hz~(a) we have 
h~(cr) ~ hz~(cr), i.e., G1,  G 2 are equivalent. | 

Note.  i t  is sometimes more  convenient  to write GiJ = (2J, h(il ), hlt(a)) and 
instead Eqs. (4) and (5) require that G~ i, G2 j be equivalent f o r j  = 0, 1,..., n " 1. 

LEMMA 2. Let  G = (27, h, a). Then there is k >/ 1 such that in all the systems 
G ~ = (Z, h ~, hi(a)), j = O, 1,..., h - -  1, Eq. (3) holds for  all a, b E Z.  
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Proof. As the validity of Eq. (3) does not depend o n j  we may consider any 
single j. For every a e 27 consider the sets re(a), m2(a),.., where m is based on the 
original h of G. All the sets mS(a) are subsets of X, so we can find r(a) > O, 
d(a) > 0 such that m~{a)(a) = m~(~)+a(a)(a). From this mS(a) = m~(a) for all j,  
l>~ r(a) for which j ~ l (mod(d(a)). Consider the least common multiple 
d = 1.c.m.(d(a): a e 27) and let r be such that r >/r (a)  for all a E 27 and r ~ 0 
(mod d). 

Obviously m~(a) ~ m~J(a) for all a e 27 and all j  = 1, 2,.... I t  is thus sufficient 
to takek = r .  | 

THEOREM 1. The testing whether or not a pair G 1 , G 2 is equivalent may be 
restricted to normal systems. 

Proof. Given any pair Gi = (Z, h i ,  ai), i - -  1, 2 of DOL-systems we can 
effectively construct a finite set S of pairs of normal DOL-systems such that 
G 1 , G 2 are equivalent iff each pair in S is a pair of equivalent systems. 

By Lemma 2 we can find h i ,  kz for which h~l, h~2 meet Eq. (3). The  systems 
constructed for h = 1.c.m.(k 1 , k2) meet Eq. (3) and G 1 , G~ are equivalent, by 
Lemma 1, iff all G1 ~, G2J thus constructed are equivalent. Next, we reduce each 
Gi j. Clearly G1J and G,a j are equivalent iff the corresponding reduced systems 
are equivalent. 

Finally, if Gi j is not yet an / r -sys tem we may create the sides "artificially." 
Let l, r be two distinct symbols ~ 27. Put 27' = {l} q- E + {r} and h'(a) = h(a) 
for a ~ Z,  while h'(1) = l, h'(r) = r in each Gi ~. The new G~ j is normal and again 
G1, G2 are equivalent iff all G1 j, G2 j are equivalent. | 

Note that systems obtained using the construction above meet Eq. (3) even 
for a, b ~ 27. We will, however, need the more general case subsequently. 

The  following definitions and facts from linear algebra are needed. A vector 
x = (x 1 ,..., x~) and a matrix M = (mis)l<i<~a<~<~ will mean a vector and a 
matrix over real numbers. I x ] =  ~ = , [ x i l  is the length of x, I] M[] = 
Z ~ j=l maxl<i<~ ] mij I is the norm of M. [ M [ will denote maxl<i< ~ I ri [, where ri 
are the (generally complex) characteristic numbers. A vector x and a matrix M 
are called positive (non-negative) and denoted by x > O, M > 0 (x >~ O,M >/O) 
if x i > O, mij > 0 (xi >/O, mi~ >/O) for all 1 ~ i, j ~ p. Finally, ( x , y }  will 
denote the scalar product ~-~,i=1 x iy i  , while (x, y)  will denote the direct sum 
of x and y. 

I t  is easy to establish the following facts. 

PROPOSITION 1. Let  M be a matrix and q = I M I, the absolute value of  the 
largest characteristic value. Then for every vector x I x M ~  [ < qo ~ I x l for all 
sufficiently large n and every qo > q. 

PROPOSITION 2. Let  M = (~ ~) be a decomposition of  a matrix M where A 
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and C are square matrices and 0 a zero matrix. Assume that C has a single charac- 

teristic vector g with respect to the maximal  characteristic value r - -  I C i which is 

real and positive. We  will  call such a vector the maximal  characteristic vector. 
Le t  ~ be the characteristic vector of  C r with respect to r. Denote by u = (0, ~) 
and v = (0, ~) the characteristic vectors of  M and M r respectively. Assume [ A ] ~ r 
and ~ > O, ~d > O. From this (u,  v )  = (~,  ~ )  > O, thus we may normalize them 

so that (u ,  v )  = 1. Finally,  let x = ( y ,  z)  be any vector also decomposed corre- 

spondingly to M .  N o w  i f  z >/O, z =~ 0 then there exist constants a, b and r o such 

that a > O, r o < r a n d  

! x M n  - -  ar~u I < bro '~ for  all sufficiently large n. (6) 

Proof. Let  x, u, v, u, v be as described. Wri t ing  x = (x, v ) u  4- w o we get 
(Wo,V) = 0 .  Denote a : ( x , v )  : ( z , ~ )  > 0 .  We have x M  ~ = a r ~ u q -  
Wo M'~. Let  W = {w I (w, v)  = 0}. By induction woM~ c W, thus W is a subspace 
invariant with respect to M. Obviously, u ¢ W. The  characteristic value r is 
simple, so all characteristic values of M on W are < r. Let  r 0 < r be any number  
larger than absolute values of all characteristic values of M on W. F rom Propo-  
sition 1 above we get Eq. (6) immediately.  | 

PROPOSITION 3• Let  M ,  u, x be as in Proposition 2. Consider the space X = 
ix, x M ,  xM2,.. .],  the space generated by the vectors { x M  i ! i >~ 0}. I t  is closed 

(as any subspace in a finite-dimensional vector space) and there is a sequence of  
vectors f rom X ,  namely, the sequence (1/r i) x M  i which converges to u. Consequently, 

the maximal  characteristic vector lies in every' space X generated by { x M  i} starting 
with x = ( y ,  z)  where z >~ O, z :~ 0. 

The  following definitions and facts about non-negative matrices can be found 
in Gantmacher  (1960). 

A matrix 34 r >~ 0 is called irreducible if M cannot be writ ten in the form ~ / =  
c), with A, C square submatrices, 0 a zero matrix, even after any permutat ion 

of rows and the same permutat ion of columns. I f  all M i, i = 1, 2 , . . ,  are irre- 
ducible, we call M primitive: 

PROPOSITION 4. I f  M is irreducible, but some power M a is reducible, then M a is 

f u l l y  reducible, i.e., it can be written (after a suitable permutation o f  rows and 
columns) as M = (~ o). 

Matrix M is primitive iff some power d of M is positive: M a > 0. Such a d, 
if it exists divides the order m of M, i.e., in particular d ~< m. 

A primit ive matrix has a positive characteristic value r which is simple, and 
r > I ri ] for all other characteristic values ri of ~/ .  The  characteristic vector 
belonging to r is positive. 

Finally, if M = (miz) is irreducible, then for the maximum characteristic 
• p 

value r we have  r > / m m l < i < ~ k = l  mik. 
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3. THE //'-SIMPLE SYSTEMS 

DEFINITION 3. Let  G = <27~ 4- Z~ 4- Z,. , h, a> be an /r-system. Homo-  
morphism h is called It-simple if for every a, b ~ Z~ and every h > 0 there is 
j > 0 such that a ~ mkJ(b). Equivalently, calling h lr-irreducible if for evew 
a, b ~ Z~ there is j > 0 such that a E m~(b), h i s / r - s imple  iff h ~" i s / r - i r reducib le  
for all k /> 1. We call G / r - s imp le  if h i s / r -s imple .  

i f  G is / r-simple and normal, then from a ~ rnT':J(b) we get a E re(b). Putt ing 
a = b we get a ~ re(a), which implies in turn that  a ~ m~(b) for all i >/ 1. Thus  
if G is normal, G is h'-simple iff re(b) = Z~ for all b E Z c . However, the following 
lemma is needed for systems not  necessarily normal. 

LEMMA 3. Let  Gi = (Z, h i ,  ~), i = 1, 2 be two DOL-systems, G1 lr-simple, 

the order m of  G a at least two. I f  G1,  G2 are Parikh equivalent then for  every e > 0 

there is n o > 0 such that for  every w E Z* ,  w ¢ (Zz 4- X~)* 

fi(hl"(w)) ~ e ] hl~(w)] for  all n ~ n o . (7) 

Proof. Let  M 1 be the growth matrix of G 1 . I f  27 is suitable ordered we can 
write 

(i M~---- I2 n~ ,  
0 N~  

where I a , Iz are matrices of the order ] Z~ 1, I Er  ], respectively, with exactly one 
1 in each row and all other elements zero. A 1 , A2 are rectangular matrices in 
general, and 0 denotes zero-matrices of appropriate orders. I f  the order of G is 
m, then N is m × m matr ix which is primitive, in particular irreducible. Being 
primitive, N a is positive, for some d ~ m. The  elements of N, and so of N a = 

(n!a!~ • ~,j, are integers. Thus  m m l < i < ~ j =  a n! a}~,J > / m .  By Proposit ion 4, for the 
maximal characteristic value r ' =  I N  a l, we have r ' > ~  m > 1. Denoting 
r = [ N l ,  w e b a v e r '  = r a ,  i .e . , r  > 1. 

Let  u be the characteristic vector of M 1 with respect to r. Since all the charac- 
teristic values of matrices I 1 , I 2 are in absolute value smaller than or equal to one, 
the assumptions of Proposit ion 2 are met for A = (1ol 1°), B = (~1), C = N. 
Let  5 be the Parikh vector of a. F rom Proposit ion 3 we get u E [if, 5M1,5M12, . . .]  = 
[ff, 5 M  2 , ffM2 2,...] = M ,  the first equali ty following from the Parikh equivalence 
of G1 and G2. For  every vector x c M we have x M  1 = x M ~ ,  thus, in particular,  
u ( M  1 -- M~) = 0. Let  x be now the Parikh vector of w. As ~v q~ (Z~ + Z~)*, 
the conditions on x in Proposit ion 2 are met  and Eq. (6) holds. Tha t  is, for suitable 
a, b > 0, r 0 we have [ xM1 ~ - -  ar~u [ ~ bro n. From this I xMI~(M1 --  M2)t <~ 

b l] M1 - -  2II~ i] ro ~- From Eq. (6) we further get [ xM1  n I ~ [ar ~ ] u [ --bro ~ ] 
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(a i u ]/2) r '~, again for sufficiently large n. These  two inequalities combined give 

2b !! MI  - -  e],l~ !i { t o  t '~ " 
alul i r  l 

xM;~ I. 

As r o < r, Eq. (7) can be met if n is large enough. | 

LEMMA 4. Un&r the assumptions of Lemma 3 

for every e > 0 there is K > 0 such that for every Gl-prefix w, w > K 

we have  5(w)  <~ ~ ~ i. (8) 

Proof. Using Lemma 3, given e/2, we find n 0 . Let  w be any Gl-prefix , i.e. 
hl'~(a)-- wx for suitable n, x. Assume Iw]  > 1, if n >~n 0, then denote 
u h~-'~o(cr). Let  u = u~au2, where a e 27 be such that h~o(u~) is a prefix of w 
but w is a proper  prefix of h~o(ula), i.e., w = h~o(ul)xl, h~o(ula ) = wxe,  
x~ , x.~ c Z'*. _Now 

E 
[3(w) ~ 5(h~°(u~)) -]- B(x~) ~< ~ I h~°(u~)l 4- B I x~ [ <~ ~ [ w ,[ @ B H  '~°, 

where B -  rna:%~{/3(a)}, and H = maxa~ s ] hl(a)l. To  prove Eq. (S) it is 
sufficient to take H"aB/[ w I ~ e/2, i.e., to take K > H ~'0 max(2B/e, 1). The  
second case in max-function guarantees that n >~ n o . | 

THEOREM 2. Let G i = (Z, hi,  a ) f o r  i = 1, 2 be two It-systems and let 
G1 be It-simple. Let (71 and Ge be sequence equivalent and let the order of G 1 be at 
least two. Then the pair (G1, G2) has bounded balance. 

Pro@ This  result is shown in Culik (1975, Theorem 3.2) for pairs of 
equivalent simple DOL-sys tems.  However, in the proof of this result only the 
following properties are essential: 

(a) hl'~(a) is exponentially growing for each a in 27, except possibly for sym- 
bols which occur only as a first or last symbol in any hl~(a) for n >~ 0. 

(b) Equation (8) holds. 

In  our case for each a in Z c , hfl~(a) grows because G 1 i s / r - s imple  and of order 
at least two, therefore (a) is satisfied. By Lemma 4, (b) is satisfied. Therefore,  
the proof of Theorem 3.2 from Culik (1975) also proves our Theorem 2. The  
only modification required is that when comparing formulas (2) and (3) we may 
not say that without  restriction of generality [ ht(u')l >~ h2(u')l since the assump- 
tions of the theorem are not symmetric with respect to G 1 and G 2 here. However, 
the proof for the case i hl(u')] ~ I h~(u')! is fully analogical since only the equival- 
ence of G 1 and G 2 is used and this is a symmetric property.  | 
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4. SUBALPHABETS AND INDUCED SYSTEMS 

Given  a D O L - s y s t e m  G - -  (2:, h, a ) ,  a set H ,  ¢ ~ H C 2 J ~  is called a 

subalphabet i f  h(a) ~ H*  for each a ~ H.  Deno te  12 = 27 - -  H .  I f  G is an h'-  

sys tem we will  also use 12~ for Z'~ - -  H .  Fo r  every z ~ 22" we denote  by z n the  

s tr ing z wi th  all symbols  f rom H omit ted ,  thus  z n ~  12". W e  define G ~ as 

(12, h e, a ~ )  where  hn(x) = (h(x)) ~ for x ~ sg. I f  for a sequence  s = s i ,  s~ .... 

we write  s ~ = s~ ~ , s~n,..., then  obviously  

( s (G)F  = s(a~),  (9) 

where  s(G) is the sequence  genera ted  by G. G iven  two D O L - s y s t e m s  G 1 , G~, H 

is called their  common subalphabet  i f  H is a subalphabet  of  Gi for i = 1, 2. F r o m  

Eq.  (9) we g e t  immedia te ly  that  if G I ,  G2 are equivalent  and have a c o m m o n  

subalphabet  H then  G~ n, G~ ~ are equivalent .  I t  is also obvious that  if  G is 

normal ,  so is G n. 

LEMMA 5. Let Gi - -  (27, h i ,  @,  i = 1, 2 be two normal propagating equiv- 
alent DOL-systems. Then G 1 and G2 have a common subalphabet H, or the com- 
posite homomorphism hih 2 is h'-simple. 

Pro@ First ,  we will show that  i f  there  is no c o m m o n  subalphabet  then  

hih 2 i s / r - i r r educ ib l e .  Fo r  a, b ~ Z~ we say that  a immediately derives b, wri t t en  

a ~ b, if  b ~ mi(a ) u m~(a). (See Sect ion 2 for the ldef in i t ion  of m i , m 2 .) Also, 

we say that  a derives b using m i or m2 if  b c m i ( a ) o r  b ~ m2(a), respect ively.  

L e t  ~ *  be the reflexive and transi t ive closure of binary relat ion ~ .  Final ly ,  

for a c t ,  let  gz(a) { b ~ & : a ~ * b } .  Obviously,  mi(r~(a))C_rh(a ) for 

i = 1, 2; so ei ther  rh(a) = Z' c or rh(a) is a c o m m o n  subalphabet  of  Gt  an~d G~.  

T h i s  means  that  if  there  is no c o m m o n  subalphabet ,  then  a ~ *  b for any two  

a, b E • .  
L e t  A i be the subset  of  27~ of  symbols  which  occur  in hin(a) for infinitely m a n y  

n > / 0 ,  i = 1, 2. Since G 1 and G z are equivalenL A 1 = A 2 . Assume  that  A 1 C 27e • 

Since G i is propagat ing  A i =# ¢ and thus  clearly A i is a c o m m o n  subalphabet  of  

G i and G2 • There fo re ,  if  G i and G 2 have no c o m m o n  subalphabet  A 1 = A 2 = Z, .  
Cons ider  arbi t rary a, b E Zc .  Since G 1 is propagat ing,  there  exists c ~ ~ ,  

such that  c c mi(a ). T h e r e  exists d ~ 2J c such that  b ~ m2(d), otherwise,  i.e., if  G 2 

produces  b f rom a " s ide"  only there  obviously  exists a c o m m o n  subalphabet .  I f  

there  is no c o m m o n  subalphabet ,  then  c ~ *  d. T h i s  means  that  a can derive b 

us ing m i in the  first and m 2 in the  last step of  the derivation.  F r o m  condi t ion  (3) 

of  normal i ty  it  follows that,  if  x ~ * y for x, y e Z'~ using only m i (m2) in all steps, 
t hen  x ~ y using m i (m2). There fo re ,  a derives b using m 1 and me al ternately 

start ing wi th  rn 1 and ending wi th  m e . T h u s  we have shown that  for eve ry  

a, b ~ 22~ there exist n >~ 0 and q ..... cn ~ Z'~ so that  c 1 ~ ml~(a); e~-+l ~ mi~(c~) 
f o r j  - -  1, 2,..., n - -  1; and b c mie(Cn). W e  used the fact that  the funct ion  ml2 as 

defined at the beginning  of Sect ion 2 is the compos i t ion  of m i and m~. 
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Thus  we have shown that h~hz is/r-irreducible and we proceed to show that 
hxh~ is/r-simple. A system is /r-simple iff its growth matrix restricted to 2:~ is 
primitive. From results in Gantmacher (1960) it follows that, if the growth 
matrix is not primitive, then there exist q > 1 and a partition -~ of X~ with q 
classes such that for every a, b ~ Z c , if a ~ m~2(b), then a and b belong to the 
same class of .~. 

CLAIM !. Let  a, b ~ Z~ . I f  b ~ a then a and b belong to the same class of  ~ .  

Proof. Suppose that a ~ ml(b ). Since G 1 and G 2 are propagating there exists 
c c ml(a), and similarly there exists d E me(c ). Therefore d ~ ml2(a ) and, since 
G 1 is normal c c ml(b ) (condition (3)), also d e ml2(b ). This means that m12(a ) 
m~2(b) ~ 0 and thus, since G~ and G 2 are propagating, also m~2(a ) n m~2(b ) ~ O. 

Therefore, a and b are in the same class of ~ ,  namely, in the class including 
,n,~;~(d). 

Similarly, suppose a c m2(b ). Since A 1 = A~. = X~ there exist c, d ~ Z c such 
that b e m2(c ) and c E ml(d ). Therefore, b e mlz(d ) and using condition (3) of 
normality for Gz we have a ~ mz(c) and thus also a ~ m~(d) .  Therefore, again a 
and b are in the same class of ~ .  | 

Having proven the claim, let a, b be again any two elements of Z', .  We know 
that a ~ *  b. From the claim and the definition of ~ *  through =~, it follows 
that a and b belong to the same class of -~. Since this holds for arbitrary a, b in 
2J c , partition # has a single class, i.e., q = 1, which shows that hahz is/r-simple. 

! 

DEFINITION 4. Given G = (Z, h, @. A subalphabet/7 C X is called limited 
if there is a constant k such that for every substring u ~ /7*  of L(G)  we have 
' u I < k. Note t h a t / 7  is limited with respect to every DOL-sys tem equivalent 
to G. 

LEMIVIA 6. Let  G 1 , G~ be two equivalent systems, with a common subalphabet 17. 
I f  17 is limited and i f  the pair  (G~ n, G2 ~) has a bounded balance, then the pair  (G~ , 
G2) has bounded balance. 

Proof. Let the balance of (G1 ~, G2 ~) be c and let h be such that I u I ~< k for 
all Gl-substrings u f rom/7* .  Then  the balance of the pair (G 1 , G2) is clearly 
smaller or equal to (c @ 1) k + c. | 

DEFINITION 5. Let G1, G 2 be a pair of DOL-systems, G i = (Z, hi,  a). 
Given i = i l l  2 ' ' ' i ,~  with n ~ 1 and i 1 , . . . , i~e{1,2},  the set S = { G l J  ,G2j: 
0 ~ j ~ n} of pairs of DOL-systems is called i-combination of (G 1 , G2) where 
Gd = (27,/~i, a~-j), f o r / =  l, 2 ; j  ~ 0,..., n,/~1 = hlhilhi, - "'" h%, h2 = h2hilh % "'" 
hi~ , o-i. o --or  and ai.y = hi~ "'" bin(or ) for i = l, 2 and j = 1 ..... n. Finally, 
we reduce each system Ge~, if necessary. 
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Instead of 1-combination we will say just  combination. I f  i = (21) k for the 
minimal k > 0 such that each Gi j is normal we call the i -combinat ion the 
normal combination of (G 1 , G2). We show that for normal systems G 1 , G 2 such 
k always exists. We find k according the proof of Lemma 2 for G ~ (Z, h~h 1 , ~). 
So, we have m~l(a ) k~ = m21(a ) for all a ~ Z and s 1, 2 , . . . .  Therefore also 
mi(m~l(a)) ks mi(m~i(a)) for i = 1, 2 and s = l,  2, . . . .  

Now, to show that  the homomorphisms of the normal combination satisfy 
condition (3) of normali ty we note that 

~1 1¢2 ]~2n --1 ~2n z " n m~ m 1 ... m~ m 1 (a) = m21(a ) 

for each a e 27, n ~ 1 and arbitrary k i .... , k2~ >/ 1 ; since, because of normali ty 
of Gi  and G.~, the repetitions of the same homomorphisms are irrelevant. 
Specifically, 

[m2m~l ] S(a ) ~s = me~(a) = m~l(a ) = mem~l(a) 

and 

[mlm~l]S(a) ~ m lm~(a  ) = mlm~l(a ) 

for each a ~ 27 and s ~ 1, which shows that the systems of a normal combination 
satisfy condit ion (3) of normality. 

Note. The  normal combinations have been introduced in the revised version 
of this paper to close a gap pointed out to the authors by K. Ruohonen. 

We will say that  the set S has bounded blance if each pair  (GlJ , G2J ) c S has 
bounded balance. 

LEMMA 7. Let  (G 1 , G~) be a pair of DOL-systems. Let  S be their i-combination 
for  some i ~ {1,2} +. Then 

(i) G1, G 2 are equivalent iff for  all (G1 j, G2 j) ~ S,  GI j, G2 ~ are equivalent. 

(ii) Let  G 1 and Gz be equivalent. Then (G1, G~) has bounded balance iff  
their i-combination S has bounded balance. 

Proof. Part  (i) has already been proven in Lemma 1. Now, let k - -  ] i I and 
assume that (GI~ , Ge t) has bounded balance and let w be a Gl-prefix,  say, 
ww' ~- hl~(a) for some n > / 0  and some w' ~ Z*.  When proving that the balance 
is bounded on a set of strings we may neglect finitely many strings, so let n ~ k. 
Let  i z ili 2 ... i k and h z hilhi~ ... hi~ • Let  ua with u ~ 27", a ~ ~ be a prefix of 
h~-k(a) such that  h(u) is a prefix of w, but  w is a proper  prefix of h(ua) (such ua 
exists if w is a proper  prefix, but  if w is the whole string hl~(a) then/~(w) = 0, 
so again we may ignore this), i.e., h(u)x = w for some x ~ 27", and x is a prefix 
of h(a), from which Ix  I ~ e k  and fi(x) ~ B e  7~, i.e., /3(w) ~ fi(h(u)) + B H  k, 
where H = max,,~z ] h~(a), h2(a)/ and B = max~zf i (a) .  The  boundedness of 
fl(w) follows from the fact that  fl(h(u)) ~ II hl(u)l - -  I hz(u)ll = flj(u), where 
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we deno ted  by  [3 s the balance  in (G,J, G~j) which  is bounded ,  and j is chosen so 
tha t  w is a G~-pref ix .  

T h e  converse,  namely ,  that  if (G1,  G2) has b o u n d e d  balance so has each 
(G~,  Gfl) is obvious  and is not  in fact needed  in our  proofs.  I 

DEFINITION 6. Le t  G = (Z, h, a) be a D O L - s y s t e m  and let H C 2J be a 
suba lphabe t ,  and assume that  h e is propagat ing.  F o r  every avb ~ f2 /7*Q we  
define an induced system Gavb -- ( 2  ~ + I7' ~- ~Z, ]z, dvb) as fbllows. 

F o r  a ~ £2, we wr i te  h(a) = xcv, where  c ~ .(2, v ~ / 7 * .  (Note  tha t  such decom-  
pos i t ion  is poss ible  because h a is p ropaga t ing  and is obviously  unique.)  W e  denote  
l(a) ~ c, l '(a) = v. Similar ly ,  wr i t ing h(a) = v'c'y, where  c' c ~ ,  v' E 17", we 
define r(a) --  c', r'(a) --  v'. 

W e  define Z '~ = { g :  there  is n > / 0  and a sequence c o = a , q , . . . , c ~ _ l ,  
cn = c, cj e f2 such tha t  cj = l(c~_l), j = 1, 2,..., n}, where  g is one new symbol  
for each e ~ sg. Similar ly ,  we define 827 s tar t ing wi th  c o - -  b and using r ins tead 
of h aN = {g: there  is m /> 0 and a sequence c o - -  b, q , . . . ,  c,~ = c, cj ~sc2 and 
c~ = r(c~_~) f o r j  = 1, 2,..., m}, and where  g is another  new symbol ,  one for each 
c~ff2. L e t  

i , (d) = l(a) r (a )  for  a ~ ~,  

h(d) = ~'(a) r(a=~ for a ~ ~,  

h(d) = h(d) for d ~ H, 

Final ly ,  H '  is the subset  o f / 7  of symbols  actual ly  used when  the h o m o m o r p h i s m  
J~ is r epea ted ly  appl ied  to v. T h a t  completes  the def ini t ion of G "~b. W h e n  
s tar t ing wi th  Gt  or G~ we will,  as usual,  talk about  h~ Jz~ ~ " ~  and ~a~b 

LEMMA 8. Let  GI , G 2 be two equivalent DOL-systems with a common sub- 
alphabet H.  Assume both k 1 and hi ~ are propagating and there exists a constant k 
suck that for every Gl-prefix of the form xav, where a ~ ~ ,  x c 27", and v ~ H *  
we have 

if  1 v [ > k, then  hl~(xa) = h2~-(xa). ( l o )  

Then for every avb ~DH*.Q,  v I >  k, avb a substring of L(G1) the systems 
G~ ~, G~ ~ are equivalent. 

Pro@ As avb is a G l - su b s t r i n g  , we can wri te  xavby = hlJ(~ ) for some 
x, y ~ 27* and s o m e j  > / 0 .  F r o m  Eq. (10) we have h!(xa) = x'll(a) ll'(a ), h~(xa) = 
x'12(a ) lo'(a), where  /1, l 1' and /2, l 2' are the funct ions  f rom Def in i t ion  6 based 
here  on hi and h 2 . Similar ly ,  k~(xavb)=  x'l~(a)li'(a ) h~(v)r~'(b)r~(b)x[~, for 
some x ,  x i c ~ ,  i = 1, 2. St r ings  h~(xa), h2(xa ) and hl(xavb), hz(xavb ) are 
prefixes of the same s t r ing h[+l(a) h~+l(a), so ll(a ) = 12(a ) e f2; ll'(a ) hl(v ) ra'(b ) 
and l (  (a) hz(v ) r2' (b ) c 17", bu t  they  are equal  as the  next  symbol  r~(b ) --  r2(b ) e D. 

643/35[I-3 
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Tha t  is, ] v I > k implies (through hla(xa) = hza(xa) that hl(av~ ) = hz(av~). As 

h i ,  and thus hx ,  are propagating also [ hl(v)l >~ I vl > k. This  proves that  
G~ ~, G~ ~ are equivalent. | 

LEMMA 9. Let  G = (X ,  h, a )  be a normal DOL-system. Denote H = 

max(I h(a)l: a c X).  Let  17 C X be a subalphabet and voa 1 "" anvn a decomposition 

of  a substring of  hl~(a), where n >/ 1 ; a I ,..., an ~ ~ ;  v o .... , vn ~ 17". Assume that 
h a ispropagating. Assume further that m > / n ,  and ] v o I,I vn I > H %  Then 

ha(ai) = ai for  all i = 1, 2,..., n. 

Pro@ Suppose that for some a ~ {a I ,..., an} , ha(a) 5a a. Let  c o be " the  father 
of degree n of our a" ,  i.e., assume that the following picture is a part  of the 
derivation tree in G 

m - -  n c o 

/ 1 \  
m - - n + l  q 

/ 1 \  
, . .  , . ,  

/ 1 \  
m -  1 Cn_ 1 

1 
m Voa 1 . "  a . . .  a n y  n 

There  are two possibilities: 

(i) There  exists b E sQ, b e mQ(a), and b 4= a. As a e (ma)J(%_j) and G is 
normal, we have {a ,b}Cma(c j )  for all 0 ~ < j ~ n - - 1 .  F rom this we get 

](h~)~(co)l >~ n + 1. 

(ii) ha(a) = a ~ for some r > / 2 .  As before, from the normali ty and from 
a E (ma)~(Co) we get a ~ ma(Co). From this 

](ha)~(Co)l ~ r n ~ n -f- 1 if n ~ 1. 

Thus  in both cases hln(Co) has at least n @ 1 occurrences of  symbols from f2. 
In  other words, either v 0 or vn must  be a substring of hln(Co), but  from this 

] V o i O r ] v , I  ~ H  n. | 

THEOREM 3. 
balance. 

5. THE MAIN THEOREM 

Every pair  of  normal equivalent DOL-systems has bounded 
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P r o @  Let  Gi ~- (2J, h i ,  a) for i - -  1,2. Denote by r the order of G 1 (same 
as G~). The  proof  will be by  induction on r. 

Base of induction, r = 1. Let  Z' c = {a}. For  i = 1, 2 we have: 

(i) For  each b c 2~ , hi(b ) = ca ~.~ for some c c Z' t and o~i, b ~ O. 

(ii) hi(a ) = a ~ for some fii > / 0 .  
(iii) For  each b c 27~, h~(b) = a=,bc for some c c -~. and ~.b >~ 0. 

Since G I and G~ are equivalent, obviously,/~1 = fi2 and the balance of the pair 
(G1, G~) is at most maxi=a,2;b~z~ ~i,b, i.e., the pair (G1, G2) has bounded 
balance. 

We now make the induction hypothesis that the assertion holds for systems 
of order smaller than a fixed r > 1, and consider a pair of systems of order r, 

i.e., iZ'~l = r > / 2 .  

Case L Assume that h~(a) = h~(a) = • for some a E 27~. T h e n / 7  = {a} is 
a common subalphabet.  Let  f2 = 27 - - / 7 .  Since G 1 and G z are equivalent G1 -~ 
and G2 ~ are also equivalent and since I s'-2c I < L Z'~ [ the pair (G1 a, G~ a) has 
bounded balance by  induction hypothesis. Suba lphabe t / 7  is clearly limited and 
therefore the pair (G1, G2) has bounded balance by Lemma 6. 

Case II .  Assume that h~(a) = • for some a e 27~ but  not necessarily h2(a ) = ¢. 

Consider the normal combination of (G1, Gz). Clearly, we have /~ l ( a )=  •, 
h2(a ) = •, so by Case I, (Ga i, G2 i) has bounded balance for i = 1, 2 and so has 
(G1, G2) by Lemma 7. 

Case I I I .  We may now assume that both G~ and G 2 are propagating. By 
L e m m a  5 either the combination of (G 1 , G2) is simple, this implying using 
Theorem 2 and Lemma 7, that (G 1 , G2) has bounded balance, or there is a 
common subalphabet  H.  Denote f2 = 2 7 -  H and f2~ = 27 c - - H .  We may 
assume that H is maximal, i.e., there is no subalphabet  H '  so that 177 C_/7' C_ 2 c . 

We may further assume without loss of generaiity that either (2~ has exactly one 
element or hi r~ and ha ~ are propagating. This  is so for the following reasons. 
I n  view of Lemma 7, in order to prove that the pair (G I , G~) has bounded 
balance we may show this for the normal combination of (G 1 , G~) instead. Note 
also that  every common subalphabet  with respect to G 1 , G 2 is also a common 
subalphabet  with respect to each combination of (G  1 , G2) , i.e., with respect to 
each pair of systems from the combination. Suppose now that the assumption 
above is not  valid, i.e., for some a in X?~ either hl(a ) = • or h~(a) = • and 
~e - -  {a} =/= N. Then  for the homomorphisms/~1,  h2 from the normal combina- 
t ion of (G1, G2) (or (G2 ,  G1) ) we have/~,a(a) -----/~za(a) = •. There fo re , /7  u {a} 
is also a common subalphabet  with respect to the combination of (G1 , Gz). 
I t  might  not be a maximal one but  can be enlarged to such. I f  this new sub- 
alphabet  does not satisfy our assumption we repeat the above construction. 
After  a finite number  of steps we get a maximal subalphabet,  which meets 
the assumption. 
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Since G 1 and G 2 are equivalent, G1 s? and G2 ~ are also equivalent, and, since 
they are of order smaller than r and normal, the pair (G1 ~, G2 ~) has bounded 
balance by the induction hypothesis. For the rest of the proof we will use the 
following notation. The balance of (G1 e, G2 ~) is denoted by c and H = 

maxi=l.~ (maxo~ I hi(a)3. 
Now, as a part of Class I I I  we formulate and prove the following. 

CLAIM 2. Suppose that for every Gl-prefix of the form way, where w ~ Z*, 
a Ef2, a n d v e H * w i t h  i v [  > H  c 

#~(wa) = O. ( i l )  

Then  the pair (G 1 , G2) has bounded balance. 

Pro@ Let Q = H  e and let S = { w ~ 2 / - / * - Q : Q  < [wL ~<HQ}. Now, 
consider the pairs of induced systems (cf. Definition 6) (GIG Ge *°) for each 
w ~ S. By Eq. (11) and Lemma 8 the systems G1 w and G2 ~ are equivalent for 
each w E S. Clearly, Gi w is normal for each w ~ S and i = 1, 2. 

Hence, by the induction hypothesis the pair (G1 w, G2 ~) has bounded balance 
for every w ~ S. Let the balance of (G1 ~, G~ ~) be cw, and let err = max~Es c~, 
which is well defined since S is finite. 

We now proceed in the proof of Claim 2 by considering all Gl-prefixes , and 
show that their balances are bounded. Every Gl-prefix x can be written uniquely 
in the form x = aavaaa_lva_l "'" alv 1 for some d >/ 1, and ai a £2, vi ~ H*  for 
i = 1, 2 , . ,  d. We will consider four cases. In  the first three we assume that x 
is a prefix of hit(or) for some t ~> c. 

Case A. Let d < ~ c  and ]vi]  <.Q f o r i =  1,2,. . . ,d, I n t h i s  case we have 

3(x) ~ dQ + dH <~ c(Q + H).  

Case B. Let d > c  and ]vi i  <~Q for i ~  1 , 2 , . . . , c +  1. Without loss of 
generality we may assume that hl(x ) is a prefix of ha(x), i.e., h2(x ) -= hl(x)z for 
some z E 2*.  Since/~(x) ~< c, z contains at most c occurrences of symbols from 
£2; at the same time G 2 is propagating and therefore z is a suffix of h2(v~+la,v , "" 
air1) (see Fig. 1), thus fi(x) ~ ] z I < e l  v,+~aov, "" alvt [ <~ (c + 1)(Q + 1)H. 

Case C. Let there exist an m such that 1 ~ m  ~ < m i n ( d , c + l )  and 
t:v,,, / > Q; assume that m is the smallest such index, i.e., 1% I ~< Q for 1 ~< 
i 

h I (x) z 
/ '~ , . . A  

I V- - - ' ~  
! i , l  t >, 

h2(Vc+lacV c, . .a lV I )  
/ 

V '  

h2(x) 

FIGURE I 
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j < m. By Eq. (1 1) we have flO(aav a "" v~+la,~ ) - -  O, this implies that hi(aava "" 

v,,~+la.,, ) = zu i  for some z E 27"f2 and ui ~ H *  where u¢ is a suffix of hi(a,~), for 
i = 1, 2. Therefore  fi(aava "'" v, ,+xa~) <~ H .  Also fi(%~) ~ f l ' (a~v , , )  4- 2 H  <~ 
cn + 2/ / ,  where/3' is the balance with respect to the pair (G~ ~', G f ' )  for a suitable 
w ~ S. Such a w exists since every G~-substring y such that y ~ OH* and ! y ] /> 
O q - 1  is a Glw-prefix for some w c S. Finally, fi(a~_~%~_~ "" a~vl)<~ 

(m - -  1) H(Q q- 1) ~ c(O q- 1)g .  Since ]3(x) ~ fi(aave "" %n+lam) @ fi(%n) -]- 
fi(a,~_~v,,_~ .. .  a~v~), f i(x) is bounded for all Gt-prefixes belonging to Case C. 

Case D. There  are only finitely many Gl-prefixes not considered in the previous 
cases, thus we may conclude that  the balance is bounded on all Gl-prefixes | 

We have completed the proof of Claim 2 and will continue with Case I I I  
of the proof of Theorem 3. We will consider four subcases. 

Subcase I I IA .  Let  22~ ~ 17 L; {a}, i.e., £2~, = 27c - - / 7  = (a}, and hlO(a) 

h2O(a) = a. Let  p >/ I be the smallest integer such that if ~ = bud, then 
hlP(bud) = bvd, for some v in 2 " .  Then  for all n >~ 0 the first (last) symbol of 
hl~(a) and of h~+~(a) are the same. 

Consider a n y ' p a i r  of /r-systems from the i -combinat ion of ((71,  G2) , Say 
( G i  "~, G2 "~) where Gfl ~ = (22,/~i, a,,) for i = t, 2. We proceed to show that 
((71 '~, G2 ~') has bounded balance. Let  ~,,, = bud for some b, d e  ~2, clearly 
l/~'~(%,) ~ bFI*d for all n >~ 0. 

Denote by l i , r i the number  of occurrences of a in/~i(b) and/l i(d) ,  respectively 
(i = 1, 2). As l i + r i is the number  by which the number  of occurrences of a is 
increased when/~i is applied to any string bwd with w ~ 22~*, we have l 1 ~- r 1 = 
12 q- r , .  Wi thout  loss of generality we may assume that l 1 >/ l 2 . 

I f  /1 ~ 12, then also r I = r 2 and clearly fi~(x) = 0 for every Gl~"-prefix. 
Therefore,  by Claim 2 the pair t¢G1 "~, G f  ~) has bounded balance. Since this is 
true for every pair from the p-combinat ion  of (G~, G~) the pair (G1, G2) has 
also bounded balance by Lemma 7. 

I t  remains to consider the case/1 > l~. For  each n > / 0  we can write/~fl~(a) = 
b,(~)..o.(~l . . .  av(~)d, where ~!~)~ H *  for j ~ 1,..., s~ The  number  of occur- 
rences of a in h ~ ( b )  is n/~, thus b v ~ ) a  "" av~ha  is a prefix of h~'(b) for each 
n ' > / n .  Therefore  v } ~ ' ) ~  v~ n) for all n, n' and j = 1, 2,..., min(n, n ' ) l ~ .  
Symmetrical ly we get v~'~;); = v (~) • for j = 1,2,... ,  rain(n, n')  r 2 

• n 8 n - - ~  

Le tq  > (l~ + r~ + So)/(l ~ - -  12). Consider anyv) ~) fo rn  > q. I f j  ~ (n - -  1)/,1, 
then 

i f j  >~ s , , _ l - - ( n  - -  1)r2, then 

Since 

= v ) n - ' ;  (12) 

(n) z 7) ( n - l )  
V.i s n - 1 - ' ]  " 

-% = So + n(h + ri) we havesn_l  - -  

(13) 

( n - -  1 ) , ' 2 - - ( n - -  ~)11 = 
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So -k (n - -  1)(/1 + rl) - -  (n - -  1) r2 - -  (n - -  1)/1 = s o - -  (n ~ 1)(r 2 - -  r l ) =  
s0:-- (n - -  1)(/1 - -  12) < s o - -  (I 1 + r 1 + So) < 0. The  inequality, follows f r o m  
the choice of q and n above. Hence, a l l j  ~ 1, 2,..., sn are considered in ei ther  
Eq. (12) or (13). Since this is so for all n > q we conclude by induction that, 
for each n > q, all the substrings of h~(a)  occurring between two consecutive 
a ' s  have already occurred in/~la(a). Therefore,  there is only a finite number  of  
dist inct  substrings from H, t h u s / 7  is limited: and the pair (G1% G2 ~) has bounded 
balance by Lemma 6. Since this is true for each pair in the  i -combinat ion of 
(G1 ,  G~) the pair ( G I ,  G2) also has bounded balance by Lemma 7. This  con- 
cludes Subcase I I IA .  

Subcase I I IB.  Let  £2 e = {a} and h ~ ( a )  = h2~(a) = E. Since here the symbol 
a can occur only in hi(b) for b c Z~ • X~ ,  we can write the string h~n(a) for each 
n ~ 1 in the form lulalu 2 "" u~akwb~vm "'" blvlr  where l ~ X~, r c X~, aj ~ £2e, 
u ~ / 7 * ,  ] uj ] < H,  f o r j  = 1,..., k , b ~ 2  e , v j ~ H * ,  [v j [  < H,  f o r j ~  1, 2 , . . . , m  

and w ~ H*. 
Since G 1 and G2 are equivalent we have hl~(1 ') = la~ "" a~ = h2~(l ') where l '  

is the first symbol in h~-l(cr). Since f i~(uia 1 ".. u h a h ) =  O, we have 
~S~(lUlal "'" uhah) = [ lal "'" ah [ - -  ! lal "" at~[ = 0. As w is the only maximal 
(i,e., with neighbors from £2) substring over H which can be longer than H e 
we can apply Claim 2 and conclude that the pair (G1, G~) has bounded balance. 

Subcase I I IC .  Let  f2~ = {a}, hie(a)  = E and h2a(a) =/= e. We consider the 
combination of (G 1 , G~). For  the homomorphisms ]71 , ]~2 from the combination 
we have/~l(a) = g2(a) = e, which is the Subcase I I IB.  Finally, the pair (G1, G2) 
has bounded balance by Lemma 7. Similarly for hl9(a) ~ e and h2n(a) = e. 

Subcase I I I D .  Let  hi n and h2 ~ be propagating and either £2 e contains more 
than one symbol, or if f2 e = {a}, then hiSS(a) =/= a. 

We show that the assumption of Claim 2 is satisfied. Let  way  be a Gl-prefix, 
where w ~ X * ,  a ~£2 e and v ~ / 7 "  with I v I > He- Denote f ie(wa) by p and 
assume that p > 0, i.e., one of the strings h~(wa) and h~(wa) is a proper  prefix of  
t h e  other, say he(wa) = h~(wa)z, where z contains p occurrences of symbols 
f rom f2~. We may write (see Fig. 2) 

hz(wav) = h l (wa ) zh.~(v) = hl(wa)  uob ~ "" b~u v (14) 

where b~, bz ,..., b .  ~ ~2 e and u 0 , ul ,..., uv 6 H*.  Note that h2(v) is a suffix of uv 
and since G2 is propagating we have [ u ,  [ > H e. 

Now, we will show that 

[u~l ~ < H  e, for j = 0 , . . . , p - -  11 (15) 

I f E q .  (15) does not hold, there is s, 0 ~< s ~< p - -  1, such that i u, i > He and, 
by Lemma 9, hiS~(b~) = b~ for a l l j  = s + 1 .... , p and i = 1, 2, This  is in contra-  
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h2(wa) h2(v) 

FIGURE 2 

diction with the assumption t h a t / 7  is a maximal subalphabet as we can add any 
one of the bj ( j  = s -}- 1,...,p) t o / 7  to obtain a larger subalphabet. Note that 
since Y2 c does not consist of a single symbol a such that hl~-(a) = h2n(a) = a 
the enlargement of H is properly contained in Zc,  and therefore it is in fact a 
subalphabet. Hence Eq. (15) is established. 

However, using Eq. (14) we see that hl(v ) is a prefix of u 0 and since G 1 is 
propagating we have l u01 >/ [ h~(v)] >~ Iv ]  > H% which is in contradiction 
to Eq. (15). Thus  the assumption p > 0 is false, and we have fi~-(wa) = 0. 
Finally, we conclude using Claim 2 that the pair (G 1 , G2) has bounded balance 
also in this last subcase. That  completes the proof of Theorem 3. | 

COROLLARY 1. The sequence equivalence problem for DOL-system is decidable. 

Proof. Theorem 3 shows that the family of normal systems is smooth in 
the terminology of Culik (1975); therefore, the sequence equivalence problem 
is decidable for this family by Theorem 2.1 from Culik (1975). Thus,  by 
Theorem 1, the problem is decidable for all DOL-systems. | 

COROLLARY 2. Given two DOL-systems Gz,  G2, it is decidable whether 
L(G) = L(G). 

Proof. By Corollary 1 and Nielsen (1974). il 

6. REGULAR ENVELOPES 

We have shown that every pair of equivalent normal DOL-systems has 
bounded balance. This bounded balance was then used to construct a decision 
algorithm to test the equivalence. There is another property which is equivalent 
to bounded balance and which is quite interesting, but as the following facts are 
not needed for the main result we will state them without a proof. 

DEFINITION 7. Let G, = (27, h i , a), i - -  1, 2 be two DOL-systems. We say 
that a set R is a true envelope for the pair (G1, G2) if 
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(i) L(Ga) C R and L(G=) C R, 

(ii) hl(x ) = hu(x) for all x c R. 

Obviously, if a pair (G 1 , G~) has a true envelope then G a , G 2 are equivalent. 

THEOREM 4. Let Gi --  (Z, hi ,  ~), i = 1, 2 be two equivalent DOL-systems. 
Then the pair (G~ , G2) has bounded balance iff there exists a regular set R which 
is a true envelope of (Ga , Gz). 

The proof is independent of Theorem 3 and the main idea is in the fact that 
the bound on the balance is also a bound on the number of states of an automaton 
which compares prefixes of L(Ga) and L(G2). In  more details, if x is an G~ prefix 
then either 

o r  

ha(x) = h2(x)z (16) 

h2(x ) = h~(x)z (17) 

for some z ~ 27*. The  relations (16) and (17) enable us to introduce a congruence 
relation x =~ x' if (16) or (17) holds with the same z. I f  the congruence is finite, 
we have a finite automaton, but this also gives the bound on the balance as the 
maximum length of z. | 

The existence of a regular true envelope also gives an alternative, but essentially 
the same construction for the algorithm which decides a possible equivalence. 

THEOREM 5. 

envelope, then 
decidable. 

I f  every pair of equivalent DOL-systems has a regular true 
the sequence equivalence problem .for DOL-systems is recursively 

Proof. Let R1, R 2 ,..., Rk ,... be any effective enumeration of regular sets 
(more precisely their representatives, say finite automata), which of course exists. 
For each k = 1,2 ..... check whether Rk is a true envelope of (G1, G2). Condition 
(i) is equivalent to L(G1) c3 P, = 0, R is again regular, and for a DOL-system 
and a regular set we can effectively find EOL-system G'  so that L(G') = 
L(G1) n R. Finally, emptiness problem is decidable for EOL-systems. Condition 
(ii) can clearly be checked since it is enough to check it for finitely many strings, 
e.g., only for simple paths and loops of a finite automaton representing R. From 
our assumption we know that if G 1 , G.2 are equivalent then there exists a true 
envelope for (G1, G2) and we will find this true envelope in our enumeration, 
therefore our procedure will always halt in that case and gives a semi-decision 
procedure for equivalence. Since a semi-decision procedure for nonequivalence 
obviously exists we have completed the proof. | 
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