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The Decidability of the Equivalence Problem for DOL-Systems*
K. CuLix II anp I. Frist

Department of Computer Science, Unipersity of Waterloo, Waterloo,
Ontario, Canada N2L 3GI

The language and sequence equivalence problem for DOL-systems is shown
to be decidable. In an algebraic formulation the sequence equivalence problem
for DOL-systems can be stated as follows: Given homomorphisms %, and %, on
a free monoid 2* and a word o from X*, is f;"(¢) = hy"(0) for alln > 0?

InTRODUCTION

The DOL sequence equivalence problem can be stated algebraically as follows.
Given two homomorphisms %, , A, on a free monoid 2* and a word ¢ in Z*,
is hy"(o) = h,"(o) for allm = 07 This paper shows that this problem is decidable.
The problem originated in Lindenmayer systems which are mathematical models
of cellular development. In that context it can be restated as the problem of the
developmental equivalence of two genetic encodings in filamental organisms
developing deterministically without interaction. The Lindenmayer systems
without interaction (OL-systems) were introduced in Lindenmayer (1971) and
the equivalence problem for them was posed shortly afterwards (Problem Book,
1973). Its undecidability for nondeterministic OL-systems has been shown
(e.g., Salomaa, 1973). The same question for deterministic OL-systems (DOL-
systems) was conjectured to be decidable but remained open. Some partial
results were obtained in Paz and Salomaa (1973), Johansen and Meiling (1974),
Ehrenfeucht and Rozenberg (1974), Nielsen (1974), Culik (1975), Valiant (1975),
and Karhumiki (1976). Our full solution is based on the results and methods
shown in Culik (1975). A part of these results, namely, the decidability of the
equivalence problem for smooth DOL-systems, appeared independently and
using different terminology in Valiant (1975).

Now, we explain intuitively the basic ideas of our approach. The technical
terms which are not fully explained in the introduction are enclosed in quotation
marks on first use.
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We start by showing that, without loss of generality, the testing for equivalence
may be restricted to “normal” systems. The essence of this paper is to show that
every pair of equivalent normal systems has “bounded balance.” It has been
shown in Culik (1975) that the equivalence problem is decidable for each family
of DOL-systems in which the equivalence implies bounded balance.

Neglecting many technical details, we will now informally describe the prin-
cipal ideas of the proof that for normal systems the equivalence implies bounded
balance. In Culik (1975) it has already been shown that “‘simple” systems have
bounded balance. A normal system is simple iff it has no “subsystem” in the
sense of general algebra. If a system has a subsystem, then the underlying set
of the subsystem is called 2 “subalphabet.”

For two equivalent systems which are not simple we find a common subalphabet
and show that either all substrings of the language generated by the systems
which are entirely in this subalphabet are “‘short” (such a subalphabet is called
“limited”) or the two systems “‘induced” by this subalphabet are equivalent.
A second pair of normal systems is obtained by “removing” the subsystem (i.e.,
by omitting the symbols from the common subalphabet). As before, these
“remainder’’ systems are equivalent because the original systems are equivalent.
Since both the subsystem and the remainder system are systems over a smaller
alphabet we can use the boundedness as an induction hypothesis. The base of
the induction deals (essentially) with systems over one letter, so the claim is
easy to verify. This allows us to assume that the remainder pair and (in the case
of a subalphabet which 1s not limited) also the induced pair have bounded
balance. As the case of limited subalphabets causes no problem, this allows us
to construct a bound on the balance for the original pair.

Some of the more important technical details which were omitted above are as
follows. In every step of the induction we have to consider the nonpropagating
systems and another singular case separately. Since a propagating system may
have a nonpropagating remainder system, we cannot include the propagating
property in the requirements for normality.

Finally, and independently of the main result, we discuss in Section 6 an
interesting property of pairs of equivalent DOL-systems which is equivalent
to bounded balance. The property requires the existence of a regular set R such
that:

(i) R contains the language generated by either of the systems,

(i) 'The homomorphisms of the two systems are equal on every string in R,

An alternative algorithm for testing equivalence of DOL-systems can be based
on this property. We conjecture that such a regular set exists for every pair of
equivalent DOL-systems, i.e., every pair of equivalent systems has bounded
balance. Note that although we solve the decision problem for all DOL-systems,
the conjecture is shown correct for normal systems only.
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1. NoraTtioN

Given an alphabet 2, 2Z* denotes the free monoid generated by 2, with unit
(empty string) e.

A DOL-system is a 3-tuple G = (Z, k, o) consisting of alphabet =, homomor-
Phism h, and a starting string o € 2*. L(G), the language generated by G, is
defined as {A"(0): n == 0}. G'is said to be reduced, if every symbol from X occurs
in at least one 4"(c), n = 0. To reduce G means to omit from X all symbols
which do not have this property.

For we2* and ae X, #,w denotes the number of occurrences of « in w.
If (4, ,..., a,) is an ordering of X, then (#a - #a,) is called the Parikh vector
of w and is denoted by [w]. The matrix M (m“)1<z<n’1<,<n , where my; =
#. h(a;) is called the growth matrix for G.

If i is a number, |7 | denotes the absolute value of 7; if @ is a string, | @ |
denotes the length of w; later on | 4 | is also used for length of a vector 4 or
maximum characteristic value of a matrix 4.

For w e X*, let min(w) = {a: a occurs in w}.

Given G = (2, b, 0), we say that w is a G-prefix (G-substring, G-suffix)
if w is a prefix (substring, suffix) of 4%(o) for some # > 0.

Two DOL-systems G; = (2, k; , 0;), 1 = 1, 2 are called (sequence) equivalent
if 7y"(o1) = hy"(o,) for all # = 0, 1,... . Two DOL-systems G, , G, are called
Parikh equivalent if [h"(0,)] = [hy"(0,)] for all n = 0, 1,... . The balance (with
respect to Gy, G,) of a string w in 2* is defined as in Culik (1975), B(w) =
| | y(w)] — | ho(w)] |. If there exists ¢ > 0 so that B(x) < ¢ for all G;-prefixes,
then the pair (G, G,) is said to have bounded balance. In this case the smallest
such ¢ is called the balance of the pair (G, , G,).

For two sets 4, B, A U B denotes their union. If 4, B are disjoint, we stress
this by writing 4 + B for the union. Finally, we will often write a instead of {a}
for a one-element set.

2. Tae NORMAL SYSTEMS

Let G = (2| k, o) be a DOL-system. We define the function m: 2(2) — 2#(2),
where (X)) is the set of all subsets of X' by putting

m({a}) = min(k(a)) for acZ,
m(A U B) = m(A) U m(B).

It is easy to see that mf(a) = min(#%(a)) for all ¢ == 1. We will write m(a) for
m({a}) and use m, , m, , my, , etc. to denote sumlar functions based on 4, , 4, ,

hihy , etc.
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DrriniTioN [. A DOL-system G = (2, h, o) is called an l-system if
X =2+ 2, + %, is a decomposition of 2 into three nonempty disjoint sets
such that A{a) e 2\ X * forae 2, aye X * forae X, , ha)e 2 *2 foraec 2, ,
and ¢ € 2,2 %X, . We call 2, the core of 2, 2, is called the left side, and 2, the
right side of 2. The number of symbols in the core 2, of 2 is called the order
of G.

DrriniTioN 2. A DOL-system G = (2, £, o) 13 called normal if

G 1s an Ir-system, (1)
G is reduced, 2)
if a e m(b) for some j > 0, then a € m(b) holds for every g, b X,. {3)

The following lemma, which is used to prove that we may consider normal
systems only, is given in somewhat more general form as needed for Lemma 7.
Let G; = (2, b ,0), i = 1, 2, be two DOL-systems. Given n > 1 let i =
(¢ .-, 1) be a sequence of length # of integers 7 ,..., 7, € {1, 2}. We denote £V —
h,;l -+ h; ,acomposition of homomorphisms Ay , £, , i.e., 19(x) :hil(-" hzn(x) =)

Lemma 1. Let G, = (X h,0), i=12, n21, iy = (g ,iy) 1p =
(J1 - Jn) be given. Denote o; = h)(c) and let iy = 1, j, = 2. Under these
assumptions Gy , Gy are equivalent iff

Gl =0, 0), G = (5%, ) “
are equivalent for every j = 0, 1,...,n — 1 and at the same time

() = hy/() &)
also for every j = 0, 1,..,n — 1.

Proof. 1If Gy, G, are equivalent then Eq. (5) holds for every j and thus
hiv(o) = h'"2)(o) for all possible sequences i , i, . This means that Eq. (4) holds
for all possible pairs.

Conversely, for each [ > 0, 2,)o) = (b, by Yohy™(o) = (BW)eh™(o),
ho'(o) = (oh; -~ by Yohy™(0) = (Bi2)kh(c), where [ =Fkn-+m and 0 <
m < n. Since Gy’ and G,/ are equivalent and by Eq. (5) h(c) = h™(c) we have
(o) = h'(o), i.e., Gy, G, are equivalent. |

Note. It is sometimes more convenient to write G/ = (Z, v, k(o)) and

instead Eqs. (4) and (5) require that G}/, G,/ be equivalent forj = 0, 1,...,n — 1.

LemMa 2. Let G = (Z, h, o). Then theve is k > 1 such that in all the systems
G' = (2, h* 1(0)),j =0, 1,..., k — 1, Eq. (3) holds for all a, b c 3.
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Proof. As the validity of Eq. (3) does not depend on j we may consider any
single j. For every a € X' consider the sets m(a), m?(a),... where m is based on the
original & of G. All the sets m/(a) are subsets of 2, so we can find 7(a) > 0,
d(a) > 0 such that m™@(aq) = m"®+#9(g). From this mi(a) = m'(a) for all j,
! = r(a) for which j = [ (mod(d(a)). Consider the least common multiple
d = l.em.(d(a): ae X)) and let 7 be such that 7 > 7(e) for all e X and r = 0
(mod d).

Obviously m™(@) = m"(a) for all ae X and allj = 1, 2,... . It is thus sufficient
to take & = 7. ]

THeoReM 1. The testing whether or not a pair Gy, Gy is equivalent may be
restricted to normal systems.

Proof. Given any pair G, = (2, h;, 0;), 7 = 1, 2 of DOL-systems we can
effectively construct a finite set S of pairs of normal DOL-systems such that
G, , G, are equivalent iff each pair in S is a pair of equivalent systems.

By Lemma 2 we can find %, , &, for which A1, A%: meet Eq. (3). The systems
constructed for £ = l.c.m.(k, , ky) meet Eq. (3) and G, , G, are equivalent, by
Lemma 1, iff all GJ%, G, thus constructed are equivalent. Next, we reduce each
G/. Clearly G)7 and G, are equivalent iff the corresponding reduced systems
are. ‘equivalent.

Finally, if G/ is not yet an Ir-system we may create the sides “artificially.”
Let I, # be two distinct symbols ¢ Z. Put 2 = {I} + 2 -+ {#} and #'(a) = h(a)
for a € X, while #'(l) = [, /'(r) = r in each G{/. The new G} is normal and again
G, , G, are equivalent iff all G/, G/ are equivalent. [ ]

Note that systems obtained using the construction above meet Eq. (3) even
for a, b € X. We will, however, need the more general case subsequently.

The following definitions and facts from linear algebra are needed. A vector
% = (%, ¥p) and a matrix M = (m;)1<i<p1<i<p Will mean a vector and a
matrix over real numbers. |x| = 25;1 | x;| is the length of x, | M| =
25;1 maX,<;<, | M | is the norm of M. | M | will denote max; <, | 7; |, Where 7,
are the (generally complex) characteristic numbers. A vector x and a matrix M
are called positive (non-negative) and denoted by x > 0, M > 0 (x == 0,M == 0)
if 2, >0, my; >0 (x; =0, my = 0) for all 1 < 4, j < p. Finally, {x, y) will
denote the scalar product ¥ , #,y; , while (x, ) will denote the direct sum
of x and y.

Tt is easy to establish the following facts.

ProposiTioN 1. Let M be a matrix and g = | M |, the absolute value of the
largest characteristic value. Then for every vector x | xM™| < g | x| for all
sufficiently lavge n and every q, > q.

ProposiTioN 2. Let M = (¢ 2) be a decomposition of a matrix M where A
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and C are square matrices and O a zero matrix. Assume that C has a single charac-
teristic vector i with vespect o the maximal characteristic value v = | C | which is
real and positive. We will call such a vector the maximal characteristic vector.
Let 7 be the chavacteristic vector of CT with respect to v. Denote by u = (0, i)
and v = (0, ) the characteristic vectors of M and M7 respectively. Assume | A | <r
and @ > 0, & > 0. From this {u, v) = (&, T) > 0, thus we may normalize them
so that {u,v> = 1. Finally, let x = (1, g) be any vector also decomposed corre-
spondingly to M. Now if z 2 0, 2 5= 0 then there exist constants a, b and 7, such
that ¢ > 0, ry, < v and

LeM® — ar'u | << bry® for all sufficiently large n. ©6)

Proof. YLet x, @, T, u, v be as described. Writing x = {», vDu 4+ %, we get
{wy,vy = 0. Denote g = {(x,v)> = (g, 7y > 0. We have xM" = ar*u +
wo M Let W = {w | {w, v> = 0}. By induction w,M* € W, thus W is a subspace
invariant with respect to M. Obviously, # ¢ W. The characteristic value 7 is
simple, so all characteristic values of M on Ware < 7. Letr, <7 be any number
larger than absolute values of all characteristic values of M on W. From Propo-
sition 1 above we get Eq. (6) immediately. ]

Prorostrion 3. Let M, u, x be as in Proposition 2. Consider the space X =
[, 20, xM?2,...}, the space generated by the vectors {xM*| 7 = 0}. It is closed
(as any subspace in a finite-dimensional vector space) and there is a sequence of
vectors from X, namely, the sequence (1/r) xM* which converges to u. Consequently,
the maximal characteristic vector lies in every space X generated by {xM?} starting
withx = (y, ) wherez = 0, 2 % 0.

The following definitions and facts about non-negative matrices can be found
in Gantmacher (1960). ‘

A matrix M > 0 is called drreducible if M cannot be written in the form M =
& &), with 4, C square submatrices, 0 a zero matrix, even after any permutation
of rows and the same permutation of columns. If all M?, [ = 1, 2,..., are irre-

ducible, we call M primitive.

ProrositioN 4. If M is irveducible, but some power M? is reducible, then M¢ is
Jfully reducible, i.e., it can be written (after a suitable permutation of vows and
colummnsy as M = (0 .

Matrix M is primitive iff some power d of M is positive: M¢ > 0. Such a d,
if it exists divides the order m of M, i.e., in particular d < m.

A primitive matrix has a positive characterlsnc value 7 which is simple, and
r > | 7; | for all other characteristic values 7; of M. The characteristic vector
belonging to 7 is positive.

Finally, if M = (m,;) is irreducible, then for the maximum characteristic
value ¥ we have 7 > minyccp Sp 1 i -
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3. Tue Ir-SiMPLE SYSTEMS

DeriNiTioN 3. Let G =<(2,+ 2, + 2, ,h o> be an k-system. Homo-
morphism % is called lr-simple if for every a, b€ X, and every k > O there is
J > 0 such that aem*(b). Equivalently, calling % lr-trreducible if for every
a, be 2, there is j > 0 such that a € m(b), & is lr-simple iff 4* is lr-irreducible
forall £ > 1. We call G Ir-simple if % is lr-simple.

If G is Ir-simple and normal, then from a € m* () we get a € m(b). Putting
a = b we get a € m(a), which implies in turn that a € m*(b) for all 7 >> 1. Thus
if G is normal, G is Ir-simple iff m(b) = Z, for all b € 2, . However, the following
lemma is needed for systems not necessarily normal.

Lemva 3. Let G, = (2, h;, 0), 1 = 1, 2 be two DOL-sysiems, G, Ir-simple,
the order m of G, at least two. If G, , G, are Parikh equivalent then for every ¢ > 0
there is ny > O such that for every we 2%, w ¢ (X, + X )*

By(w) < ¢ | b"(@)|  for allm = n,. 0

Proof. Let M, be the growth matrix of G, . If 2 is suitable ordered we can

write
L 0 4,
M, = (O I, Az),

0 0 N

where I, , I, are matrices of the order | 2, |, | 2, |, respectively, with exactly one
1 in each row and all other elements zero. A; , A, are rectangular matrices in
general, and 0 denotes zero-matrices of appropriate orders. If the order of G is
m, then N is m X m matrix which is primitive, in particular irreducible. Being
primitive, N¢ is positive, for some d <{ m. The elements of N, and so of N? =
(n{9) are integers. Thus minyc;c,, Y1y 7% > m. By Proposition 4, for the
maximal characteristic value # = | N?¢|, we have #' = m > 1. Denoting
v = | N|,wehaver =9 ie.,7r > 1.

Let u be the characteristic vector of M, with respect to 7. Since all the charac-
teristic values of matrices I, , I, are in absolute value smaller than or equal to one,
the assumptions of Proposition 2 are met for 4 = (* ,2), B=(3, C=N
Let & be the Parikh vector of o. From Proposition 3 we getu € [5, 6M, , 6 M43,...]=
[6,6M, , 6M,2,...] = M, the first equality following from the Parikh equivalence
of G; and G, . For every vector x € M we have xM, = xM, , thus, in particular,
w(M; — M,) = 0. Let x be now the Parikh vector of . As w ¢ (27 + 2,)%,
the conditions on x in Proposition 2 are met and Eq. (6) holds. That is, for suitable
a,b > 0, vy we have | xM,” — ar™u | < bry". From this | xM"(M; — M,)] <
b|| My — M, | ry". From Eq. (6) we further get | xM" | = | ar™ |u | —bry" | =
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(a  u|j2) ", again for sufficiently large 7. These two inequalities combined give

My — My [ 7\
Bl (@) < | xM(M, — My)| < g’—']—‘gﬁﬁi (o) ey,

Asr, < 7, Eq. (7) can be met if z is large enough. ]

Levua 4. Under the assumptions of Lemma 3

for every ¢ > O there is K > 0 such that for every Gy-prefix w, | w' > K
we have Blw) < ejw|. (8)

Proof. Using Lemma 3, given ¢/2, we find ny . Let w be any Gy-prefix, i.e.
h*(¢) = wx for suitable n, x. Assume {w| > 1, if #n > ny, then denote
u = hy7"(o). Let u = uyau, , where a € X be such that A7o(u,) is a prefix of w
but w is a proper prefix of Afo(uya), ie., w = Ajo(u)) x,, hi(ua) = wx,,
Ay, %, € 2%, Now

Blaw) < AU (m)) + Blxr) < 5| Hi%ur)| + B x| < 5w |+ BH™,

where B = max,s {f(a)}, and H = max,.y | (a)]. To prove Eq. (8) it is
sufficient to take H™Bf|w| < ¢/2, ie., to take K > H" max(2BJe, 1). The
second case in max-function guarantees that n > #n, . |

TueorEM 2. Let G; = (X, h;, o) for 1 = 1,2 be two lr-systems and let
G, be lr-simple. Let G, and G, be sequence equivalent and let the order of G, be at
least two. Then the pair (G, , G,) has bounded balance.

Proof. This result is shown in Culik (1975, Theorem 3.2) for pairs of
equivalent simple DOL-systems. However, in the proof of this result only the
following properties are essential:

(a) £,*(a) 1s exponentially growing for each a in X, except possibly for sym-
bols which occur only as a first or last symbol in any A,"(¢) for n == 0.
{(b) Equation (8) holds.

In our case for each @ in X, , h;"(a) grows because G| is lr-simple and of order
at least two, therefore (a) is satisfied. By Lemma 4, (b) is satisfied. Therefore,
the proof of Theorem 3.2 from Culik (1975) also proves our Theorem 2. The
only modification required is that when comparing formulas (2) and (3) we may
not say that without restriction of generality | /,(#")] = %y(«')| since the assump-
tions of the theorem are not symmetric with respect to G; and G, here. However,
the proof for the case | ky(u')| <C| Ay(u")} is fully analogical since only the equival-
ence of G} and G, is used and this is a symmetric property.
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4. SUBALPHABETS AND INDUCED  SYSTEMS

Given a DOL-system G = (2, h,0), a set II, § £ I C %, is called a
subalphabet if h(a) e IT* for each aeIl. Denote 2 = X — II. If G is an k-
system we will also use £, for X, — II. For every z € 2* we denote by 2% the
string 2 with all symbols from 77 omitted, thus 2?2 ¢ 2* We define G2 as
{8, k2, o2y where h%(x) = (h(x))? for x € 2. If for a sequence s = s, , 5y ,...
we write s° = 5,9, 5,9,..., then obviously

((G)? = (G, ©)

where 5(G) is the sequence generated by G. Given two DOL-~systems G, , G, , [1
is called their common subalphabet if I7 is a subalphabet of G, fori = 1, 2. From
Eq. (9) we get immediately that if G, , G, are equivalent and have a common
subalphabet I7 then G,?, G,% are equivalent. It is also obvious that if G is
normal, so is G%.

Lemma 5. Let G, = (X, h; ,0), i = 1,2 be two normal propagating equiv-
alent DOL-systems. Then G, and G, have a common subalphabet I1, or the com-
posite homomorphism hihy is lr-simple.

Proof. First, we will show that if there is no common subalphabet then
Mk, is Ir-irreducible. For a, b € Z, we say that a immediately derives b, written
a = b, if bemy(a) U my(a). (See Section 2 for theidefinition of m, , m, .} Also,
we say that a derives b using my or my if bem(a) or b€ my(a), respectively.
Let =* be the reflexive and transitive closure of binary relation =. Finally,
for aeZ,, let #ifa) ={becZ,;:a =*0b}. Obviously, mJ#(a)) C #i(a) for
i = 1, 2; so either #(a) = Z, or #ia) is a common subalphabet of G, and G, .
This means that if there is no common subalphabet, then ¢ =* b for any two
a,belX,.

Let 4, be the subset of 2, of symbols which occur in 2,”(c) for infinitely many
n > 0,7 = 1, 2. Since G, and G, are equivalent, 4, = 4, . Assume that 4, C %, .
Since G| is propagating 4; 5 ¢ and thus clearly 4, is a common subalphabet of
G, and G, . Therefore, if G; and G, have no common subalphabet 4, = 4, = 2.

Consider arbitrary a,be 2, . Since G, is propagating, there exists ¢ € X,
such that ¢ € m,(a). There exists d € X, such that b € m,(d), otherwise, i.e., if G,
produces b from a “‘side” only there obviously exists a common subalphabet. If
there is no common subalphabet, then ¢ =* 4. This means that a can derive b
using s in the first and m, in the last step of the derivation. From condition (3)
of normality it follows that, if x = * y for x, y € 2, using only m, (m,) in all steps,
then x = v using m, (m,). Therefore, a derives b using m; and m, alternately
starting with m,; and ending with m, . Thus we have shown that for every
a, be X, there exist n > 0 and ¢ ,..., ¢, € X, so that ¢; € my(a); ;.1 € B1y5(c5)
forj = 1,2,....,n — 1; and b € myy(c,). We used the fact that the function m, as
defined at the beginning of Section 2 is the composition of m; and m, .
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Thus we have shown that Ak, is fr-irreducible and we proceed to show that
hih, is Ir-simple. A system is lr-simple iff its growth matrix restricted to 2, is
primitive. From results in Gantmacher (1960) it follows that, if the growth
matrix is not primitive, then there exist ¢ > 1 and a partition & of 2, with ¢
classes such that for every a, be 2, , if a € miy(b), then a and b belong to the
same class of 2.

Cramv 1. Leta,be X, . If b = a then a and b belong to the same class of 2.

Proof. Suppose that a € m(b). Since G; and G, are propagating there exists
¢ € my(a), and similarly there exists d € my(c). Therefore d € my,(a) and, since
G, is normal ¢ € m,(b) (condition (3)), also d € my,(b). This means that my,(a) M
myy(b) 7 0 and thus, since G and G, are propagating, also miy(a) N m,(b) == 0.
Therefore, a and b are in the same class of 2, namely, in the class including
mi(d).

Similarly, suppose a € my(b). Since 4; = 4, = X, there exist ¢, d€ X, such
that b e myc) and ¢ € my(d). Therefore, b € myy(d) and using condition (3) of
normality for G, we have a € m,(c) and thus also a € my,(d). Therefore, again a
and b are in the same class of Z. B

Having proven the claim, let 4, & be again any two elements of 2, . We know
that @ =* b. From the claim and the definition of =* through =, it follows
that ¢ and b belong to the same class of 2. Since this holds for arbitrary @, b in
2, , partition & has a single class, i.e., ¢ = 1, which shows that A4, is #-simple.

DerINITION 4. Given G = (X, &, o). A subalphabet IT C X is called limited
if there is a constant % such that for every substring u € IT* of L(G) we have

i u| << k. Note that I1 is limited with respect to every DOL-system equivalent
to G.

Lemma 6. Let Gy, G, be two equivalent systems, with a common subalphabet IT.
If I 1s limited and if the pair (G2, G4®) has a bounded balance, then the pair (G, ,
Gy) has bounded balance.

Proof. Let the balance of (G2, G,?) be ¢ and let & be such that | u | < k for
all G-substrings  from I7*. Then the balance of the pair (G, , Gz) is clearly
smaller or equal to (¢ + 1) & + .

DermviTioN 5. Let Gy, G, be a pair of DOL-systems, G, = (Z, &, , o).
Given i =47, 4, with # = 1 and ¢ ..., i, €{1,2}, the set S = {Gy/, G,
0 < j < n} of pairs of DOL-systems is called i-combination of (G, , G,) where
Gi = (2, hy,0),fori = 1,25 =0,...,n, /1, = Ik by ok hy = hoh; h;
hi , o,9=0 and o,; = h, -k (o) for 1 =1, 2 andjwl , M. Fmallv
we reduce each system G, if necessary.
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Instead of 1-combination we will say just combination. If i = (21)* for the
minimal &2 > 0 such that each G,/ is normal we call the i-combination the
normal combination of (G, G,). We show that for normal systems G, , G, such
k always exists. We find & according the proof of Lemma 2 for G = (Z, Ak, , o).
So, we have mf (a) = mki(a) for all aeX and s — 1,2,.... Therefore also
my(myy(a)) = m(mii(a)) fori = 1,2ands = 1,2,....

Now, to show that the homomorphisms of the normal combination satisfy
condition (3) of normality we note that

Ry, b P, "
mymy? - myimn(a) = m'y (a)

for each a€ X, n > | and arbitrary &, ,..., &y, > 1; since, because of normality

of G; and G,, the repetitions of the same homomorphisms are irrelevant.

Specifically,

[mym3)*(@) = mii(a) = miy(a) = mymsy(a)
and

[mlmQI] (a) = mlmks(a) = mlmZI(a)

for each a € Z'and s > 1, which shows that the systems of a normal combination
satisfy condition (3) of normality.

Note. The normal combinations have been introduced in the revised version
of this paper to close a gap pointed out to the authors by K. Ruchonen.

We will say that the set S has bounded blance if each pair (G,7, G,f) € S has
bounded balance.

Levva 7. Let (G, , G,) be a pair of DOL-systems. Let S be their i-combination
for some i {1, 2}*+. Then

() G, G, are equivalent iff for all (G, Gf)€ S, G, Gy are equivalent.

(i) Let Gy and G, be equivalent. Then (Gy, Gy) has bounded balance iff
their i-combination S has bounded balance.

Proof. Part (i) has already been proven in Lemma 1. Now, let £ = |i| and
assume that (G, G,') has bounded balance and let @ be a Gy-prefix, say,
ww' = hy"(c) for some n > 0 and some @’ € 2*. When proving that the balance
is bounded on a set of strings we may neglect finitely many strings, so let z = k.
Leti =14y, - iand b = K h h . Let ua with u € 2*, a € X be a prefix of
A 7*(c) such that A(x) is a preﬁx of w, “but w is proper prefix of A{ua) (such ua
exists if  is a proper prefix, but if = is the whole string ,"(c) then B(w) = 0,
s0 again we may ignore this), i.e., A(%)x = w for some ¥ € Z*, and x is a prefix
of A(a), from which | x| <X H* and B(x) << BH*, i.e., B(w) < B(h(w)) + BHF,
where H = max,.y | #;(a), hy(a)] and B = max,.5 f(a). The boundedness of
B(w) follows from the fact that B(A(u)) = | | Ay(u)l — | As(w)| | = Bj(u), where
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we denoted by ; the balance in (G, G5’} which is bounded, and j is chosen so
that @ is a G, /-prefix.

The converse, namely, that if (G;, G,) has bounded balance so has each
(GY%, G57) is obvious and is not in fact needed in our proofs. ]

DerFiNITION 6. Let G = (2, /1, 6) be a DOL-system and let {1 C % be a
subalphabet, and assume that %% is propagating. For every avb e QIT*Q we
define an induced system G = (Xo - IT' 1 X h, avh) as follows.

For a € Q, we write h(a) = xcv, where ¢ € 2, v € I[T*. (Note that such decom-
position is possible because A7 is propagating and is obviously unique.) We denote
l(a) = ¢, I'(a) = v. Similarly, writing #(a) = v'c’y, where ¢’ € 2, v’ € IT*, we
definer(a) = ', r'(a) = 7.

We define 2% = {¢: there is n > 0 and a sequence ¢y = 4, ¢; ,.ery €y,
¢y, = ¢, ¢; € 82 such that ¢; = [(¢; 4), 7 = 1, 2,..., n}, where ¢ is one new symbol
for each ¢ € 2. Similarly, we define 2 starting with ¢; = b and using  instead
of [: 22 = {¢: there is m > 0 and a sequence ¢, = b, ¢;,..., ¢,, = ¢, ¢; €2 and
¢; = 1(c;4) forj = 1, 2,..., m}, and where ¢ is another new symbol, one for each
cef2. Let

a) =1a)l'(a) for ae®,
Wa) = v'(a) rTaZ) for ael,
W(d) = h(d) for dell,

Finally, 11" is the subset of /T of symbols actually used when the homomorphism
h is repeatedly applied to v. That completes the definition of G%*. When
starting with G, or G, we will, as usual, talk about %, , /1, , G***, and G5,

Levma 8. Let Gy, G, be two equivalent DOL-sysiems with a common sub-
alphabet I1. Assume both hy and h® are propagating and there exists a constant k&
such that for every Gi-prefix of the form xav, where ae Q, x ¢ X*, and v e IT*
we have

if | 0] > k, then ly?(xa) = hy%(xa). (10)

Then for every avbeQII*Q, v| >k, avb a substring of L(G,) the systems
G, G5™ are equivalent.

Proof. As avb is a Gi-substring, we can write wavby = h(c) for some
x,y € Z*and somej = 0. From Eq. (10) we have iy(xa) = x'[,(a) I,'(a), hy(xa) =
¥'ly(a) L' (a), where I, , [," and I, , I, are the functions from Definition 6 based
here on Ay and h,. Similarly, k(xavb) = x'l(a)l/(a) h{z) v/ (b) r{b) x, for
some &', x; € X*, { = 1,2. Strings h(xa), hy(xa) and hy(xavb), hy(xavb) are
prefixes of the same string k" (o) = h™(0), so li(a) = l(a) € 2; 1 (a) Iy (@) r,'(b)
and [y'(a) hy(2) 7,/ (b) € IT*, but they are equal as the next symbol () = ry(b) € Q.

643/35(1-3
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Thatis, | v | > kimplies (through =,%(xa) = hy°(xa) that hy(@vb) = hy(avb). As
hy, and thus /b, , are propagating also | k()] = | v | > k. This proves that
G2%, G are equivalent. i

Levma 9. Let G = (2, h,0) be a normal DOL-system. Denote H —
max(| k(a)|: a€ ). Let I1 C X be a subalphabet and vy, *** a,v,, a decomposition
of a substring of hy™(c), where n = 1; ay ,..., a, € 2; vy ..., v, € IT*. Assume that
h? is propagating. Assume further that m > n, and | v, |,| v, | > H". Then

h(a;) = a; forall:=1,2,...,n

Proof. Suppose that for some a € {4, ,..., a,}, i°(a) #* a. Let ¢, be “the father
of degree n of our &”, i.e., assume that the following picture is a part of the
derivation tree in G

m—n co
/N
m—n-+1 ¢

m Voldy =" @ " AUy

There are two possibilities:

(i) There exists b e 82, b e m?(a), and b 5= a. As a € (m?)/(c,_;) and G is
normal, we have {a, 8} C m®(c;) for all 0 <j <<n— 1. From this we get
(A2 (co)l = n + 1.

(ii) #R(a) = a" for some 7 = 2. As before, from the normality and from
a € (m*)"(c,) we get a € m®(cy). From this

(B e) = =n+1 ifn>1

Thus in both cases A,7(cy) has at least # -+ 1 occurrences of symbols from £.
In other words, either v, or v, must be a substring of %,"(¢,), but from this
loglorjo, | <H" 1

5. Tee MaIN THEOREM

TueOREM 3. Every pair of normal equivalent DOL-systems has bounded
balance.
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Proof.  Let G; == (Z, k; , o) for ¢ = 1, 2. Denote by r the order of G, (same
as G,). The proof will be by induction on .
Base of induction, 7 = 1. Let 2, = {a}. Fori = 1, 2 we have:

(i) Foreachbe Xy, h(b) = ca>+ for some ce Zyand o, = 0.
(il hga) = af for some B; = 0.
(iii) Foreachbel,, hy(b) = a*rcforsomece X, and o; , = 0.
Since G, and G, are equivalent, obviously, 8; = B, and the balance of the pair
(G4, Gy) is at most max; ;3 s:pex, %0 > i.e., the pair (G, G,) has bounded
balance.
We now make the induction hypothesis that the assertion holds for systems
of order smaller than a fixed » > [, and consider a pair of systems of order 7,
e, |2, =% = 2.

Case I. Assume that ,(a) = hya) = € for some ac X, . Then IT = {a} is
a common subalphabet. Let 2 = 2 — II. Since Gj and G, are equivalent G;%
and G,® are also equivalent and since |2, | < | 2, | the pair (G, G,%) has
bounded balance by induction hypothesis. Subalphabet I7 is clearly limited and
therefore the pair (G, , G,) has bounded balance by Lemma 6.

Case II.  Assume that /;(a) = e for some a € 2, but not necessarily ,(a) = e.

Consider the normal combination of (G, G,). Clearly, we have Z(a) = ¢,

hy(a) = ¢, so by Case I, (Gy%, G,?) has bounded balance for = 1, 2 and so has
(G, G,) by Lemma 7.

Case 1II. 'We may now assume that both G, and G, are propagating. By
Lemma 5 either the combination of (G;, G,) is simple, this implying using
Theorem 2 and Lemma 7, that (G;, G,) has bounded balance, or there is a
common subalphabet II. Denote £ =X — II and @, = 2, — II. We may
assume that /7 is maximal, 1.e., there is no subalphabet 7T’ so that T C IT' C X, .
We may further assume without loss of generality that either 2, has exactly one
element or /% and A,? are propagating. This is so for the following reasons.
In view of Lemma 7, in order to prove that the pair (Gy, G,) has bounded
balance we may show this for the normal combination of (G, , G,) instead. Note
also that every common subalphabet with respect to G, , G, is also a common
subalphabet with respect to each combination of (Gy , G,), i.e., with respect to
each pair of systems from the combination. Suppose now that the assumption
above is not valid, i.e., for some @ in £, either #(a) = ¢ or hy(a) = ¢ and
R, — {a} = . Then for the homomorphisms %, , %, from the normal combina-
tion of (G, , G,) (or (G, , Gy)) we have h%(a) = h,%(a) = «. Therefore, IT U {a}
is also a common subalphabet with respect to the combination of (G, , Gy).
It might not be a maximal one but can be enlarged to such. If this new sub-
alphabet does not satisfy our assumption we repeat the above construction.
After a finite number of steps we get a maximal subalphabet, which meets
the assumption.
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Since Gy and G, are equivalent, G;* and G,® are also equivalent, and, since
they are of order smaller than # and normal, the pair (G,%, G,%) has bounded
balance by the induction hypothesis. For the rest of the proof we will use the
following notation. The balance of (G,?, G,%) is denoted by ¢ and H =
max,_; o (MaXeey | 2;()))-

Now, as a part of Class III we formulate and prove the following.

Cramm 2. Suppose that for every Gi-prefix of the form wav, where we X*,
acf, and vell* with (v | > H®

B<(wa) = 0. (11)
Then the pair (G; , G) has bounded balance.

Proof. Let Q = H® and let S ={welIl*2:0 < |w| < HQ}. Now,
consider the pairs of induced systems (cf. Definition 6) (G,¥, G,¥) for each
we S. By Eq. (11) and Lemma 8 the systems G,* and G,* are equivalent for
each w € S. Clearly, G,* is normal for eachwe Sand7 =1, 2.

Hence, by the induction hypothesis the pair (G}*, G,*) has bounded balance
for every w & S. Let the balance of (Gy¥, Gy¥) be ¢, , and let ¢;; = max,.5 ¢, ,
which is well defined since S is finite.

We now proceed in the proof of Claim 2 by considering all G,-prefixes, and
show that their balances are bounded. Every G,-prefix x can be written uniquely
in the form ¥ = a0, 494 - a0, for some d > 1, and a; € Q, v; € IT* for
i =1, 2,...,d. We will consider four cases. In the first three we assume that x
is a prefix of 1,%(c) for some ¢ == c.

Case A. Letd <cand |9;| <Q fori=1,2,..,d. In this case we have
B(x) < dO + dH < o(Q + H).

Case B. Letd >cand |v,| <Q for i = 1, 2,...,, ¢ + 1. Without loss of
generality we may assume that /() is a prefix of Ay(x), i.e., hy(x) = hy(x)z for
some z € X*. Since 2(¥) < ¢, z contains at most ¢ occurrences of symbols from
2; at the same time G, is propagating and therefore 2 is a suffix of hy(v,,,a,0,
pilvl) (see Fig. 1), thus (x) = | 2 | < H| 9,180, - &, | < (¢ -+ 1)(O + DH.

. Case C. Let there exist an m such that 1 < m < min{d, ¢ + 1) and
{9, | > Q; assume that m is the smallest such index, i.e., [v;| <Q for 1 <

hl(x) z
7 b VT e N
3 ' + -
b - - +
hz(vc+1acvc...a]v1)

hy(x)

FiGUre 1
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j < m. By Eq. (11) we have f%a v, -+ Ume1ay,) = 0, this implies that k(a0 -+
Up1@m) = =u; for some z € 2*Q and u, € IT* where u; is a suffix of (a,,), for
i = 1, 2. Therefore B(a0q " Vpmiaam) < H. Also B(v,,) < B(amvm) + 2H <
¢y -+ 2H, where ' is the balance with respect to the pair (G1*, G,¥) for a suitable
w € .S. Such a w exists since every Gy-substring y such thaty e QI7* and |y | =
O-+1 is a Gy-prefix for some we S. Finally, S(@n q¥ny = @7y) <
(m— DH@Q+ 1) < (O + DH. Since B(x) < Blagvg ** Upmiram) + B@w) +
B(@19m_q " @;7y), B(x) is bounded for all G;-prefixes belonging to Case C.

Case D. There are only finitely many G;-prefixes not considered in the previous
cases, thus we may conclude that the balance is bounded on all G;-prefixes I

We have completed the proof of Claim 2 and will continue with Case IT1
of the proof of Theorem 3. We will consider four subcases.

Subcase TIIA. Let X, = [T U {a}, ie, £, =2, — II = {a}, and 7%(a) =
hy?(a) = a. Let p = 1 be the smallest integer such that if o = bud, then
P(bud) = bed, for some v in 2*. Then for all n > 0 the first (last) symbol of
h;"(o) and of h7*?(c) are the same.

Consider any" pair of Ir-systems from the i-combination of (G, G,), say
(Gy?, Gy™) where Gy = (X, h; , 0,,) for i = 1, 2. We proceed to show that
(G, G,™) has bounded balance. Let o, = bud for some b, de Q, clearly
h"(o,) € bIT*d for all n = 0.

Denote by I; , 7, the number of occurrences of a in /,(b) and /,(d), respectively
(¢ = 1, 2). As [; + 7, is the number by which the number of occurrences of a is
increased when 111 is applied to any string bwd with w € 2%, we have [} + r; =
I, + 7y . Without loss of generality we may assume that ;; = [, .

If , =1, then also r; = r, and clearly B%(x) = 0 for every G;"-prefix.
Therefore, by Claim 2 the pair (Gy™, Gy*) has bounded balance. Since this is
true for every pair from the p-combination of (Gy, G,) the pair (G;, G,) has
also bounded balance by Lemma 7.

It remains to consider the case ; > I, . For each # > 0 we can write £,%(c) =
bo{™avi™ - av‘s:’d, where (" € IT* for j = 1,...,s, . The number of occut-
rences of a in ky"(b) is nl, , thus bvj"a -~ av,; a is a prefix of hy'(b) for each
#' = n. Therefore 9" = ¢! for all #, #' and j =1, 2,..., min(n, n') }; .
Symmetrically we get 2", = o{"); for j = 1, 2,..., min(n, n') 7, .

Letg > (4, + 7, + so)/(l — Iy). "Consider any v(”’ f01 n>qlfj < (n— 1),

then

ifj =5, ;—(n— 1)r,, then
’v;") = 71(:__11_)7 . (13)

Since s, = s; + nw{l; + ) wehaves,;, — (n — Dr, — (n — D], =
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s+ —Dh+rn)—@—Drn—@n—-0L=s—0~)rn—mn)=
s— (m— D, — L) < sy — (I, + 7, + o) << 0. The inequality. follows from
the choice of ¢ and # above. Hence, all § = 1, 2,..., 5, are considered in_either
Eq. (12) or (13). Since this is so for all # > ¢ we conclude by induction that,
for each n > ¢, all the substrings of 4,"(¢) occurring between two consecutive
a’s have already occurred in £,%(c). Therefore, there is only 2 finite number of
distinct substrings from I, thus I7 is limited and the pair (G;™, G,™) has bounded
balance by Lemma 6. Since this is true for each pair in the i-combination of
(G, y Gy) the pair (G;, G,) also has bounded balance by Lemma 7. This con-
cludes Subcase ITIA. ' '

.. .Subcase I1IB. Let Q, = {a} and #,%(a) = h,"(a) = e. Since here the symbol
a can occur only in ky(b) for be X, U X, , we can write the string k(o) for each
n 2= 1 in the form lu,au, - uya,wh,,0,, - byoyr where le X, re X, , a,eQ,,
well*, |u;| < H,forj = 1,..,kb;eQ,,v;ell* |v;| < H/forjel,2,. ,m
and w e IT*. .

Since G, and G, are equivalent we have i,/%(l') = la; -+ a3, = h,2(l') where [’
is the first symbol in A7 o). Since B2wa; - upay) = 0, we have
B(luay - upay) = |lay - ay | — | lay -+~ a, | = 0. As w is the only maximal
(i.e., with neighbors from ) substring over /I which can be longer than H®
we can apply Claim 2 and conclude that the pair (G;, G,) has bounded balance.

Subcase IIIC. Let Q, = {a}, *(a) = ¢ and hy*(a) # . We consider the
combination of (G, , Gy). For the homomorphisms %, , &, from the combination
we have (@) = %,(a) = ¢, which is the Subcase ITIB. Finally, the pair (G, , Gy)
has bounded balance by Lemma 7. Similarly for 2,%(a) # € and h,%(a) = «.

- Subcase TIID. Let by® and hy? be propagating and either £, contains more
than one symbol, or if £, = {4}, then #,%(a) +# a.

We show that the assumption of Claim 2 is satisfied. Let wav be a G- preﬁx
where we X2*, ae 2, and v ell* with | v | > H° Denote B%wa) by p and
assume that p > 0, i.e., one of the strings k,(wa) and h,(wa) is a proper prefix of
the other, say hy{wa) = ky(wa)z, where z contains p occurrences of symbols
from 2, . We may write (see Fig. 2)

hy(wav) = h(wa) zhy(v) = hy(wa) ughy - byu, (14)

where b, , b, ,..., b, € 2, and uq , 4y ..., u, € IT*. Note that k,(v) is a suffix of u,,
and since G, is propagating we have | u, | > H°.
Now, we will show that

fu, | << H, for 7 =0,.,p— 1. (15)

vaEq. (15) does not hold, there is 5, 0 << s << p — 1, such that | x| > H° and,
by Lemma 9, ,%(b;) = b;forallj = s + I,..,pandi = 1, 2, Thls is in contra-
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z
A i
h1(wa) r h](v)
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; : 4 L N . .
e (S
up b] Uy bZ" bp up
i A4 V
hz(wa) hZ(V)
Ficure 2

diction with the assumption that I7 is a maximal subalphabet as we can add any
one of the b; (f = s + 1,..., p) to II to obtain a larger subalphabet. Note that
since £2, does not consist of a single symbol a such that £,%(a) = h,%(a) = a
the enlargement of I7 is properly contained in X, , and therefore it is in fact a
subalphabet. Hence Eq. (15) is established.

However, using Eq. (14) we see that /#,(v) is a prefix of u, and since Gy is
propagating we have |u,| = | Iy(v)| = | v| > H° which is in contradiction
to Eq. (15). Thus the assumption p > 0 is false, and we have B?(wa) = 0.
Finally, we conclude using Claim 2 that the pair (G; , G,) has bounded balance
also in this last subcase. That completes the proof of Theorem 3. ]

CorOLLARY 1. The sequence equivalence problem for DOL-system is decidable.

Proof. Theorem 3 shows that the family of normal systems is smooth in
the terminology of Culik (1975); therefore, the sequence equivalence problem
is decidable for this family by Theorem 2.1 from Culik (1975). Thus, by
Theorem 1, the problem is decidable for all DOL-systems. |

CoroLLARY 2. Given two DOL-sysiems Gy, G,, it is decidable whether
L(Gy) = L(Gy).

Proof. By Corollary 1 and Nielsen (1974). |

6. REGULAR ENVELOPES

We have shown that every pair of equivalent normal DOL-systems has
bounded balance. This bounded balance was then used to construct a decision
algorithm to test the equivalence. There is another property which is equivalent
to bounded balance and which is quite interesting, but as the following facts are
not needed for the main result we will state them without a proof,

Derinerion 7. Let G; = (2, b, 0), i = 1, 2 be two DOL-systems. We say
that a set R is a frue envelope for the pair (G, G,) if



38 CULIK AND FRIS

(1) L(Gy)C Rand L(G,) C R,
(i) Ay(x) = hy(x) for all ke R.

Obviously, if a pair (G; , G,) has a true envelope then G, , G, are equivalent.

TuroreM 4. Let G, = (2, h;, 0), i = 1,2 be two equivalent DOL-systems.
Then the pair (G, , G,) has bounded balance iff there exists a regular set R which
15 a true envelope of (G, , Gs).

The proof is independent of Theorem 3 and the main idea is in the fact that
the bound on the balance is also 2 bound on the number of states of an automaton
which compares prefixes of L(G;) and L(G,). In more details, if x is an G, prefix
then either

hy(x) = hyfx)2 (16)
or

ho(x) = hy(x)z (7

for some z € 2*. The relations (16) and (17) enable us to introduce a congruence
relation x = «’ if (16) or (17) holds with the same z. If the congruence is finite,
we have a finite automaton, but this also gives the bound on the balance as the
maximum length of 2. |

The existence of a regular true envelope also gives an alternative, but essentially
the same construction for the algorithm which decides a2 possible equivalence.

TuEOREM 5. If every pair of equivalent DOL-systems has a vegular true
envelope, then the sequence equivalence problem for DOL-systems is recursively

decidable.

Proof. Let Ry, R,,..., Ry ,... be any effective enumeration of regular sets
(more precisely their representatives, say finite automata), which of course exists.
For each & = 1, 2,..., check whether R, is a true envelope of (G , G;). Condition
(i) is equivalent to L(G;) N R = 0, R is again regular, and for a DOL-system
and a regular set we can effectively find EOL-system G’ so that L(G") =
L(G,) N R. Finally, emptiness problem is decidable for EOL-systems. Condition
(ii) can clearly be checked since it is enough to check it for finitely many strings,
e.g., only for simple paths and loops of a finite automaton representing R. From
our assumption we know that if G, , G, are equivalent then there exists a true
envelope for (G, , G) and we will find this true envelope in our enumeration,
therefore our procedure will always halt in that case and gives a semi-decision
procedure for equivalence. Since a semi-decision procedure for nonequivalence
obviously exists we have completed the proof. |
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