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By establishing a proper variational framework and using the critical point theory, we
establish some new existence criteria to guarantee the 2nth-order nonlinear difference
equation containing both many advances and retardations

�n(
r(t − n)�nu(t − n)

) + q(t)u(t) = f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)
,

n ∈ Z(3), t ∈ Z,

has at least one or infinitely many homoclinic orbits, where r, q, f are nonperiodic in t. Our
conditions on the potential are rather relaxed and some existing results in the literature
are improved.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The theory of nonlinear difference equations has been widely used to study discrete models appearing in many fields
such as computer science, economics, neural network, ecology, cybernetics, etc. Since the last decade, there has been much
literature on qualitative properties of difference equations, those studies over many of the branches of difference equations,
such as [1,3] and references therein. In the theory of differential equations, a trajectory which is asymptotic to a constant
state as |s| → ∞ (s denotes the time variable) is called a homoclinic orbit. It is well known that homoclinic orbits play
an important role in analyzing the chaos of dynamical systems (see, for example, [14] and references contained therein).
If a system has the transversely intersected homoclinic orbits, then it must be chaotic. If it has the smoothly connected
homoclinic orbits, then it cannot stand the perturbation, its perturbed system probably produce chaotic phenomenon.

For a,b ∈ Z, define Z(a) = {a,a + 1, . . .}, Z(a,b) = {a,a + 1, . . . ,b} when a � b.
Consider the 2nth-order nonlinear difference equation

�n(r(t − n)�nu(t − n)
) + q(t)u(t) = f

(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)
, n ∈ Z(3), t ∈ Z, (1.1)

where � is the forward difference operator defined by �u(t) = u(t + 1) − u(t), �2u(t) = �(�u(t)). As usual, we say that
a solution u(t) of (1.1) is homoclinic (to 0) if u(t) → 0 as t → ±∞. In addition, if u(t) �≡ 0 then u(t) is called a nontrivial
homoclinic solution.
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We may think of (1.1) as being a discrete analogue of the 2nth-order differential equation[
r(t)x(n)

](n) + q(t)u(t) − f
(
t, x(t + n), . . . , x(t), . . . , x(t − n)

) = 0, t ∈ R. (1.2)

In some recent papers [10–12,17,18,28,29], the authors studied the existence of periodic and homoclinic solutions of
second-order nonlinear difference equation by using the critical point theory. These papers show that the critical point
method is an effective approach to the study of solutions of second-order difference equations. Compared to one-order or
second-order difference equations [2,13], the study of higher-order equations has received considerably less attention (see,
for example, [4,15,35] and references contained therein). But to the best knowledge of the authors, results on existence of
homoclinic solutions of (1.1) have not been found in the literature. Recently, Cai and Yu [7] considered the existence of
periodic solutions of special cases of (1.1):

�n(r(t − n)�nu(t − n)
) = f

(
t, u(t)

)
, n ∈ Z(3), t ∈ Z. (1.3)

In fact, there are some papers which discussed the equations containing both advance and retardation. Guo and Xu in [10]
have given some criteria for the existence of periodic solutions to a class of second-order neutral differential difference
equations as the following type

u′′(s − τ ) − u(s − τ ) + f
(
s, u(s), u(s − τ ), u(s − 2τ )

) = 0, s ∈ R.

Smets and Willem [27] had proved the existence of solitary waves with prescribed speed on infinite lattices of particles
with nearest neighbor interaction for the following forward and backward differential difference equation

c2u′′(s) = V ′(u(s + 1) − u(s)
) − V ′(u(s) − u(s − 1)

)
, s ∈ R.

In some recent papers [16–28], the authors studied the existence of periodic solutions and subharmonic solutions of
some special forms of (1.1) by using the critical point theory. These papers show that the critical point method is an
effective approach to the study of periodic solutions for difference equations. Along this direction, Ma and Guo [17] (with
periodicity assumption) and [18] (without periodicity assumption) applied the critical point theory to prove the existence
of homoclinic solutions of the following equation

�
[

p(t)�u(t − 1)
] − q(t)u(t) + f

(
t, u(t)

) = 0, (1.4)

where t ∈ Z, u ∈ R, p,q : Z → R and f : Z × R → R.
However, to our best knowledge, no similar results are obtained in the literature for (1.1). Since f in (1.1) depends on

u(t + n), . . . , u(t − n), the traditional ways of establishing the functional in [17,18] is inapplicable to our case, there is few
paper discussing this point, see [33].

The main purpose of this paper is to give some sufficient conditions for the existence of homoclinic orbits of (1.1) using
the critical point theory by establishing the corresponding variational structure which is different from [10–12,16–18,28–35],
which seems not to have been considered in the literature.

In the present paper, motivated by the above paper [5,6,8,9,17,18,28,33,35], we will consider the homoclinic orbits of
(1.1) under two assumptions on the nonlinearity f : superlinear and sublinear conditions. In fact, we will establish some
new existence criteria to guarantee that Eq. (1.1) has one homoclinic solution or infinitely many homoclinic solutions under
more relaxed assumptions on F . We generalize some existing results in the literature. However, our method used in this
paper is quite different from [33]. Furthermore, it is worth pointing out that the Euler equation corresponding to the
variational functional in [7] is only applicable to the case when n is even. When n is odd, the Euler equation corresponding
to the variational functional defined in (2.3) is the following equation:

−�n(r(t − n)�nu(t − n)
) + q(t)u(t) = f

(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)
, n ∈ Z(3), t ∈ Z. (1.5)

For the sake of convenience, throughout this paper, we always assume that n is even, of course, we can obtain the similar
results of (1.5), we omit this course.

Our main results are the following theorems.

Theorem 1.1. Assume that q and F satisfy the following assumptions:

(r) For every t ∈ Z, r(t) > 0.
(q) For every t ∈ Z,q(t) > 0, and lim|t|→+∞ q(t) = +∞.

(F1) There exists a function F (t, xn, . . . , x0) which is continuously differentiable in the variable from xn to x0 for every t ∈ Z and satisfy

0∑
i=−n

F ′
2+n+i(t + i, xn+i, . . . , xi) = f (t, xn, xn−1, . . . , x0, x−1, . . . , x−n) (1.6)

and
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∣∣ f (t, xn, xn−1, . . . , x0, x−1, . . . , x−n)
∣∣ = o

((
n∑

i=−n

x2
i

)1/2)
, as

(
n∑

i=−n

x2
i

)1/2

→ 0,

∣∣F (t, xn, . . . , x0)
∣∣ = o

(
n∑

i=0

x2
i

)
, as

n∑
i=0

x2
i → 0

uniformly in t ∈ Z \ J .
(F2) F (t, xn, . . . , x0) = W (t, x0) − H(t, xn, . . . , x0), for every t ∈ Z, W , H are continuously differentiable in x0 and xn, . . . , x0 , re-

spectively. Moreover, there is a bounded set J ⊂ Z such that

H(t, xn, . . . , x0) � 0.

(F3) There is a constant μ > 2 such that

0 < μW (t, x0) � W ′
2(t, x0)x0, ∀(t, x0) ∈ Z × (

R \ {0}).
(F4) H(t,0, . . . ,0) ≡ 0 and there is a constant � ∈ (2,μ) such that

0∑
i=−n

H ′
2+n+i(t, xn, . . . , x0)x−i � �H(t, xn, . . . , x0).

(F5) There exists a constant b such that

H(t, xn, . . . , x0) � bγ �, for t ∈ Z, γ > 1,

where γ = (
∑n

i=0 x2
i )

1/2 .

Then Eq. (1.1) possesses at least one nontrivial homoclinic solution.

Theorem 1.2. Assume that Eq. (1.1) satisfies (r), (q), (F1)–(F5) and the following condition:

(F6) F (t,−xn, . . . ,−x0) = F (t, xn, . . . , x0), ∀(t, xn, . . . , x0) ∈ Z × R
n+1.

Then Eq. (1.1) possesses an unbounded sequence of homoclinic solutions.

Theorem 1.3. Assume that r,q and F satisfy (r), (q), (F1), (F3)–(F5) and the following assumption:

(F2′) F (t, xn, . . . , x0) = W (t, x0) − H(t, xn, . . . , x0), for every t ∈ Z, W , H are continuously differentiable in x0 and xn, . . . , x0 , re-
spectively. And∣∣F (t, xn, . . . , x0)

∣∣ = o
(
γ 2) as γ → 0,

where γ = (
∑n

i=0 x2
i )

1/2 uniformly in t ∈ Z.

Then Eq. (1.1) possesses at least one nontrivial homoclinic solution.

Theorem 1.4. Assume that r,q and F satisfy (r), (q), (F1), (F2′), (F3)–(F6), then Eq. (1.1) possesses an unbounded sequence of
homoclinic solutions.

Theorem 1.5. Assume that r,q and F satisfy (r), (q), (F1), (F2′) and satisfy the following assumptions:

(F7) For any t ∈ Z,

F (t, xn, . . . , x0) � F (t, x0) � 0.

(F8) For any r > 0, there exist a = a(r), b = b(r) > 0 and ν < 2 such that

(
2 + 1

a + b(
∑n

i=0 x2
i )

ν/2

)
F (t, xn, . . . , x0) �

0∑
i=−n

F ′
2+n+i(t, xn, . . . , x0)x−i, ∀t ∈ Z,

(
n∑

i=0

x2
i

)1/2

� r.
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(F9) For any t ∈ Z,

lim
s→+∞

[
s−2 min|x|=1

F (t, sx)
]

= +∞.

Then there exists an unbounded sequence of homoclinic solutions for Eq. (1.1).

Theorem 1.6. Assume that r,q and F satisfy (r), (q), (F1) and the following assumption:

(F10) F (t, xn, . . . , x0) � 0 and there exists a constant β > 2 such that

0 < β F (t, xn, . . . , x0) �
n∑

i=0

F ′
i+2(t, xn, . . . , x0)xi,

for all (t, xn, . . . , x0) ∈ Z × R
n+1 \ {(0,0, . . . ,0)}.

Then Eq. (1.1) possesses at least one nontrivial homoclinic solution.

Theorem 1.7. Assume that r,q and F satisfy (r), (q), (F1), (F6) and (F10), then Eq. (1.1) possesses an unbounded sequence of homoclinic
solutions.

When F is subquadratic at infinity, as far as the authors are aware, there is no research about the existence of homoclinic
solutions of (1.1). Motivated by the paper [34], the intention of this paper is that, under the assumption that F is indefinite
sign and subquadratic as |t| → +∞, we will establish some existence criteria to guarantee that Eq. (1.1) has at least one
homoclinic solution by using minimization theorem in critical point theory.

Theorem 1.8. Assume that r,q and F satisfy (r), (q) and the following conditions:

(F11) There exists a functional F (t, xn, . . . , x0) which satisfies (1.6) and there exist two constants 1 < γ1 < γ2 < 2 and two functions
a1,a2 ∈ l2/(2−γ1)(Z, [0,+∞)) such that

∣∣F (t, xn, . . . , x0)
∣∣ � a1(t)

(
n∑

i=0

x2
i

)γ1/2

, ∀(t, xn, . . . , x0) ∈ Z × R
n+1,

(
n∑

i=0

x2
i

)1/2

� 1

and

∣∣F (t, xn, . . . , x0)
∣∣ � a2(t)

(
n∑

i=0

x2
i

)γ2/2

, ∀(t, xn, . . . , x0) ∈ Z × R
n+1,

(
n∑

i=0

x2
i

)1/2

� 1.

(F12) There exist two functions b ∈ l2/(2−γ1)(Z, [0,+∞)) and ϕ ∈ C([0,+∞), [0,+∞)) such that for every (t, xn, xn−1, . . . , x0,

x−1, . . . , x−n) ∈ Z × R
2n+1 ,

∣∣ f (t, xn, xn−1, . . . , x0, x−1, . . . , x−n)
∣∣ � b(t)ϕ

((
n∑

i=−n

x2
i

)1/2)
,

where ϕ(s) = O (sγ1−1) as |s| � c, c is a positive constant.
(F13) There exist t0 ∈ Z and two constants γ3 ∈ (1,2) and η > 0 such that

F (t0, xn, . . . , x0) � η

(
n∑

i=−n

x2
i

)γ3/2

, ∀(t, xn, . . . , x0) ∈ Z × R
n+1,

(
0∑

i=−n

x2
i

)1/2

� 1.

Then Eq. (1.1) possesses at least one nontrivial homoclinic solution.

2. Preliminaries

To apply critical point theory to study the existence of homoclinic solutions of (1.1), we shall state some basic notations
and lemmas, which will be used in the proofs of our main results.
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Let

S = {{
u(t)

}
t∈Z

: u(t) ∈ R, t ∈ Z
}
,

E =
{

u ∈ S:
∑
t∈Z

[
r(t − 1)

(
�nu(t − 1)

)2 + q(t)
(
u(t)

)2]
< +∞

}
,

and for u, v ∈ E , let

〈u, v〉 =
∑
t∈Z

[
r(t − 1)�nu(t − 1)�n v(t − 1) + q(t)u(t)v(t)

]
. (2.1)

Then E is a Hilbert space with the above inner product, and the corresponding norm is

‖u‖ =
{∑

t∈Z

[
r(t − 1)

(
�nu(t − 1)

)2 + q(t)
(
u(t)

)2]}1/2

, u ∈ E. (2.2)

In what follows, l2I and l2 denote the space of functions whose second powers are summable on the interval I and Z

equipped with

‖u‖2
I =

∑
t∈I

∣∣u(t)
∣∣2

, ‖u‖2 =
∑
t∈Z

∣∣u(t)
∣∣2

.

Let

l∞(Z,R) =
{

u ∈ S: sup
t∈Z

∣∣u(t)
∣∣ < +∞

}
.

For any n1,n2 ∈ Z with n1 < n2, we let Z(n1,n2) = [n1,n2] ∩ Z; and for function f : Z → R and a ∈ R, we set

Z
(

f (t) � a
) = {

t ∈ Z: f (t) � a
}
, Z

(
f (t) � a

) = {
t ∈ Z: f (t) � a

}
.

Let I : E → R be defined by

I(u) = 1

2
‖u‖2 −

∑
t∈Z

F
(
t, u(t + n), . . . , u(t)

)
. (2.3)

If (q) and (F1) hold, then I ∈ C1(E,R) and one can easily check that〈
I ′(u), v

〉 = ∑
t∈Z

[
r(t − 1)�nu(n − 1)�n v(n − 1) + q(t)u(t)v(t) − f

(
t, u(t + n), . . . u(t), . . . u(t − n)v(t)

)]
,

∀u, v ∈ E. (2.4)

By using

�nu(t − 1) =
n∑

k=0

(−1)k
(

n

k

)
u(t + n − k − 1),

we can compute the partial derivative as

∂ I(u)

∂u(t)
= �n(r(t − n)�nu(t − n)

) + q(t)u(t) − f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)
. (2.5)

So, the critical points of I in E are the solutions of Eq. (1.1) with u(±∞) = 0.
We will obtain the critical points of I by the Mountain Pass Theorem and the Symmetric Mountain Pass Theorem. Since

the minimax characterization it provides the critical value is important for what follows. Therefore, we state the theorem
precisely.

Lemma 2.1. (See [25].) Let E be a real Banach space and I ∈ C1(E,R) satisfy (PS)-condition. Suppose that I satisfies the following
conditions:

(i) I(0) = 0.
(ii) There exist constants ρ,α > 0 such that I|∂ Bρ(0) � α.

(iii) There exists e ∈ E \ B̄ρ(0) such that I(e) � 0.
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Then I possesses a critical value c � α given by

c = inf
g∈Γ

max
s∈[0,1] I

(
g(s)

)
,

where Bρ(0) is an open ball in E of radius ρ centered at 0, and

Γ = {
g ∈ C

([0,1], E
)
: g(0) = 0, g(1) = e

}
.

Lemma 2.2. (See [25].) Let E be a real Banach space and I ∈ C1(E,R) with I even. Suppose that I satisfies (PS)-condition, (i), (ii) of
Lemma 2.1 and the following condition:

(iii′) For each finite dimensional subspace E ′ ⊂ E, there is r = r(E ′) > 0 such that I(u) � 0 for u ∈ E ′ \ Br(0), where Br(0) is an open
ball in E of radius r centered at 0.

Then I possesses an unbounded sequence of critical values.

Lemma 2.3. (See [19].) Let E be a real Banach space and I ∈ C1(E,R) satisfy the (PS)-condition. If I is bounded from below, then
c = infE I is a critical value of I .

Lemma 2.4. For u ∈ E,

β‖u‖2∞ � β‖u‖2
l2 � ‖u‖2, (2.6)

where β = inft∈Z q(t).

Proof. Since u ∈ E , it follows that lim|t|→∞ |u(t)| = 0. Hence, there exists t∗ ∈ Z such that

‖u‖∞ = ∣∣u(
t∗)∣∣ = max

t∈Z

∣∣u(t)
∣∣.

By (q) and (2.2), we have

‖u‖2 �
∑
t∈Z

q(t)
(
u(t)

)2 � β
∑
t∈Z

∣∣u(t)
∣∣2 � β‖u‖2∞.

The proof is complete. �
Lemma 2.5. Assume that (F3) hold. Then for every (t, x) ∈ Z × R, s−μW (t, sx) is nondecreasing on (0,+∞).

The proof of Lemma 2.5 is routine and so we omit it.

3. Proofs of theorems

Proof of Theorem 1.1. It is clear that I(0) = 0. We first show that I satisfies the (PS)-condition. Assume that {uk}k∈N ⊂ E is
a sequence such that {I(uk)}k∈N is bounded and I ′(uk) → 0 as k → +∞. Then there exists a constant c > 0 such that∣∣I(uk)

∣∣ � c,
∥∥I ′(uk)

∥∥
E∗ � �c for k ∈ N. (3.1)

From (2.2), (2.3), (2.4), (3.1), (F3) and (F4), we obtain

2c + 2c‖uk‖ � 2I(uk) − 2

�

〈
I ′(uk), uk

〉
= � − 2

�
‖uk‖2 − 2

∑
t∈Z

[
W

(
t, uk(t)

) − 1

�
W ′

2

(
t, uk(t)

)
uk(t)

]
+ 2

∑
t∈Z

H
(
t, uk(t + n), . . . , uk(t)

)

− 2

�

∑
t∈Z

0∑
i=−n

H ′
2+n+i

(
t + i, uk(t + n + i), . . . , uk(t + i)

)
uk(t)

= � − 2

�
‖uk‖2 − 2

∑[
W

(
t, uk(t)

) − 1

�
W ′

2

(
t, uk(t)

)
uk(t)

]
+ 2

∑
H

(
t, uk(t + n), . . . , uk(t)

)

n∈Z t∈Z
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− 2

�

∑
t∈Z

0∑
i=−n

H ′
2+n+i

(
t, uk(t + n), . . . , uk(t)

)
uk(t − i)

� � − 2

�
‖uk‖2, k ∈ N.

It follows that there exists a constant A > 0 such that

‖uk‖ � A for k ∈ N. (3.2)

So passing to a subsequence if necessary, it can be assumed that uk ⇀ u0 in E . For any given number ε > 0, by (F1), we
can choose ζ > 0 such that∣∣ f

(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)∣∣ � εξ for t ∈ Z \ J ,
(
u(t + n), . . . , u(t), . . . , u(t − n)

) ∈ R
2n+1, (3.3)

where ξ = (
∑n

i=−n(u(t + i))2)1/2 � ζ .
Since q(t) → ∞, we can also choose an integer Π > max{|k|: k ∈ J } such that

q(t) � (2n + 1)A2

ζ 2
, |t| � Π. (3.4)

By (3.2) and (3.4), we have

∣∣uk(t)
∣∣2 = 1

q(t)
q(t)

(
uk(t)

)2 � ζ 2

(2n + 1)A2
‖uk‖2 � ζ 2

2n + 1
for |t| � Π, k ∈ N. (3.5)

Since uk ⇀ u0 in E , it is easy to verify that uk(t) converges to u0(t) pointwise for all t ∈ Z, that is

lim
k→∞

uk(t) = u0(t), ∀t ∈ Z. (3.6)

Hence, we have by (3.5) and (3.6)

∣∣u0(t)
∣∣2 � ζ 2

2n + 1
for |t| � Π. (3.7)

It follows from (3.6) and the continuity of f (t, u(t + 1), . . . , u(t), . . . , u(t − n)) on u(t + 1), . . . , u(t), . . . , u(t − n) that there
exists k0 ∈ N such that

Π∑
t=−Π

∣∣ f
(
t, uk(t + n), . . . , uk(t), . . . , uk(t − n)

) − f
(
t, u0(t + n), . . . , u0(t), . . . , u0(t − n)

)∣∣ < ε for k � k0. (3.8)

On the other hand, it follows from (F1), (2.6), (3.2), (3.3), (3.5) and (3.7) that∑
|t|>Π

∣∣ f
(
t, uk(t + n), . . . , uk(t), . . . , uk(t − n)

) − f
(
t, u0(t + n), . . . , u0(t), . . . , u0(t − n)

)∣∣∣∣uk(t) − u0(t)
∣∣

�
∑

|t|>Π

(∣∣ f
(
t, uk(t + 1), . . . , uk(t), . . . , uk(t − n)

)∣∣ + ∣∣ f
(
t, u0(t + 1), . . . , u0(t), . . . , u0(t − n)

)∣∣)(∣∣uk(t)
∣∣ + ∣∣u0(t)

∣∣)

� ε
∑

|t|>Π

[(
n∑

i=−n

(
uk(t + i)

)2

)1/2

+
(

n∑
i=−n

(
u0(t + i)

)2

)1/2](∣∣uk(t)
∣∣ + ∣∣u0(t)

∣∣)

� (2n + 1)ε
∑
t∈Z

(∣∣uk(t)
∣∣ + ∣∣u0(t)

∣∣)(∣∣uk(t)
∣∣ + ∣∣u0(t)

∣∣)
� (4n + 2)ε

∑
t∈Z

(∣∣uk(t)
∣∣2 + ∣∣u0(t)

∣∣2)

� (4n + 2)ε

β

(
A2 + ‖u0‖2). (3.9)

Since ε is arbitrary, combining (3.8) with (3.9) we get∑
t∈Z

∣∣ f
(
t, uk(t + n), . . . , uk(t), . . . , uk(t − n)

) − f
(
t, u0(t + n), . . . , u0(t), . . . , u0(t − n)

)∣∣,
∣∣uk(t) − u0(t)

∣∣ → 0 as k → ∞. (3.10)
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It follows from (2.2) and (2.4) that〈
I ′(uk) − I ′(u0), uk − u0

〉 = ‖uk − u0‖2 −
∑
t∈Z

(
f
(
t, uk(t + 1), . . . , uk(t), . . . , uk(t − n)

)
− f

(
t, u0(t + 1), . . . , u0(t), . . . , u0(t − n)

)
, uk(t) − u0(t)

)
. (3.11)

Since 〈I ′(uk)− I ′(u0), uk − u0〉 → 0, it follows from (3.10) and (3.11) that uk → u0 in E . Hence, I satisfies the (PS)-condition.
We now show that there exist constants ρ,α > 0 such that I satisfies the assumption (ii) of Lemma 2.1 with these

constants. By (F1), there exists η ∈ (0,1) such that

∣∣F
(
t, u(t + n), . . . , u(t)

)∣∣ � β

8(n + 1)

n∑
i=0

(
u(t + i)

)2
for t ∈ Z \ J ,

(
n∑

i=0

(
u(t + i)

)2

)1/2

� η. (3.12)

Set

M = sup
{

W (t, u)
∣∣ t ∈ J , u ∈ R, |u| = 1

}
, (3.13)

and

δ = min
{(

β/(8M + 1)
)(μ−2)

, η
}
.

If ‖u‖ = √
βδ := ρ , then by Lemma 2.4, |u(t)| � δ � η < 1 for t ∈ Z. By (q), (3.13) and Lemma 2.4, we have

∑
t∈ J

W
(
t, u(t)

)
�

∑
t∈ J ,u(t) �=0

W

(
t,

u(t)

|u(t)|
)∣∣u(t)

∣∣μ
� M

∑
t∈ J

∣∣u(t)
∣∣μ

� Mδμ−2
∑
t∈ J

(
u(t)

)2

� Mδμ−2

β

∑
t∈ J

q(t)
(
u(t)

)2

� 1

8

∑
t∈ J

q(t)
(
u(t)

)2
. (3.14)

Set α = βδ2/4. Hence, from (2.1), (3.12), (3.14), (q), (F1) and (F2), we have

I(u) = 1

2
‖u‖2 −

∑
t∈Z

F
(
t, u(t + n), . . . , u(t)

)

= 1

2
‖u‖2 −

∑
t∈Z\ J

F
(
t, u(t + n), . . . , u(t)

) −
∑
t∈ J

F
(
t, u(t + n), . . . , u(t)

)

� 1

2
‖u‖2 − β

8(n + 1)

∑
t∈Z\ J

n∑
i=0

(
u(t + i)

)2 −
∑
t∈ J

W
(
t, u(t)

) +
∑
t∈ J

H
(
t, u(t + n), . . . , u(t)

)

� 1

2
‖u‖2 − β

8

∑
t∈Z

(
u(t)

)2 − 1

8

∑
t∈ J

q(t)
(
u(t)

)2

� 1

2
‖u‖2 − 1

8

∑
t∈Z

q(t)
(
u(t)

)2 − 1

8

∑
t∈ J

q(t)
(
u(t)

)2

� 1

2
‖u‖2 − 1

8
‖u‖2 − 1

8
‖u‖2

= 1

4
‖u‖2

= α. (3.15)

(3.15) shows that ‖u‖ = ρ implies that I(u) � α, i.e., I satisfies assumption (ii) of Lemma 2.1.
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Finally, it remains to show that I satisfies assumption (iii) of Lemma 2.1. Take ω ∈ E such that

∣∣ω(t)
∣∣ =

{
1, for |t| � 1,

0, for |t| � 2,
(3.16)

and |ω(t)| � 1 for |t| ∈ (1,2).
For any u ∈ E , it follows from (2.4) and (F5) that

2∑
t=−2

H
(
t, u(t + n), . . . , u(t)

) =
∑

{t∈Z(−2,2), (
∑n

i=0(u(t+i))2)1/2>1}
H

(
t, u(t + n), . . . , u(t)

)

+
∑

{t∈Z(−2,2) (
∑n

i=0(u(t+i))2)1/2�1}
H

(
t, u(t + n), . . . , u(t)

)

� b
∑

{t∈Z(−2,2), (
∑n

i=0(u(t+i))2)1/2>1}

(
n∑

i=0

(
u(t + i)

)2

) �
2

+
∑

{t∈Z(−2,2), (
∑n

i=0(u(t+i))2)1/2�1}

∣∣H
(
t, u(t + n), . . . , u(t)

)∣∣
� (n + 1)

�
2 +1b

∑
t∈Z

∣∣u(t)
∣∣� +

∑
{t∈Z(−2,2), (

∑n
i=0(u(t+i))2)1/2�1}

∣∣H
(
t, u(t + n), . . . , u(t)

)∣∣
� (n + 1)

�
2 +1β

�
2 b‖u‖� +

∑
{t∈Z(−2,2), (

∑n
i=0(u(t+i))2)1/2�1}

∣∣H
(
t, u(t + n), . . . , u(t)

)∣∣
= M0‖u‖� + M1, (3.17)

where

M0 = (n + 1)
�
2 +1β

�
2 b, M1 =

∑
{t∈Z(−2,2), (

∑n
i=0(u(t+i))2)1/2�1}

∣∣H
(
t, u(t + n), . . . , u(t)

)∣∣.
For σ > 1, by Lemma 2.3(i) and (3.16), we have

1∑
t=−1

W
(
t,σω(t)

)
� σμ

1∑
t=−1

W
(
t,ω(t)

) = mσμ, (3.18)

where m = ∑1
t=−1 W (t,ω(t)) > 0. By (2.1), (3.16), (3.17) and (3.18), we have for σ > 1,

I(σω) = 1

2
‖σω‖2 +

∑
t∈Z

[
H

(
t,σω(t + n), . . . , σω(t)

) − W
(
t,σω(t)

)]

� σ 2

2
‖ω‖2 +

2∑
t=−2

H
(
t,σω(t + n), . . . , σω(t)

) −
1∑

t=−1

W
(
t,σω(t)

)

� σ 2

2
‖ω‖2 + M0σ

�‖ω‖� + M1 − mσμ. (3.19)

Since μ > � � 2 and m > 0, (3.19) implies that there exists σ0 > 1 such that ‖σ0ω‖ > ρ and I(σ0ω) < 0. Set e = σ0ω(t).
Then e ∈ E , ‖e‖ = ‖σ0ω‖ > ρ and I(e) = I(σ0ω) < 0. By Lemma 2.1, I possesses a critical value d � α given by

d = inf
g∈Γ

max
s∈[0,1] I

(
g(s)

)
, (3.20)

where

Γ = {
g ∈ C

([0,1], E
)
: g(0) = 0, g(1) = e

}
.

Hence, there exists u∗ ∈ E such that

I
(
u∗) = d, and I ′

(
u∗) = 0. (3.21)
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Then function u∗ is a desired classical solution of Eq. (1.1). Since d > 0, u∗ is a nontrivial homoclinic solution. The proof is
complete. �
Proof of Theorem 1.2. The main idea of the proof is the same as in [28]. (F6) implies that I is even. In view of the proof
of Theorem 1.1, we see that I ∈ C1(X,R), and I satisfies (PS)-condition and assumptions (i) and (ii) of Lemma 2.2. To apply
Lemma 2.2, it suffices to prove that I satisfies (iii′) of Lemma 2.2.

Now, we prove (iii). Let E ′ be a finite dimensional subspace of E . Since all norms of a finite dimensional normed space
are equivalent, so there is a constant c > 0 such that

‖u‖ � c‖u‖∞ for u ∈ E ′. (3.22)

Assume that dim E ′ = m and u1, u2, . . . , um are the basis of E ′ such that

〈ui, u j〉 =
{

c2, i = j,
0, i �= j,

i, j = 1,2, . . . ,m. (3.23)

Since ui ∈ E , we can choose an integer Π1 > max{|k|: k ∈ J } such that

∣∣ui(t)
∣∣ <

η

m
, |t| > Π1, i = 1,2, . . . ,m. (3.24)

Set Θ = {u ∈ E ′: ‖u‖ = c}. Then for u ∈ Θ , there exist λi ∈ R, i = 1,2, . . . ,m such that

u(t) =
m∑

i=1

λiui(t) for t ∈ Z, (3.25)

it follows that

c2 = ‖u‖2 = 〈u, u〉 =
m∑

i=1

λ2
i 〈ui, ui〉 = c2

m∑
i=1

λ2
i ,

which implies that |λi| � 1 for i = 1,2, . . . ,m. Hence, for u ∈ Θ , let |u(t0)| = ‖u‖∞ , then by (3.22) and (3.25) we have

1 � ‖u‖∞ = ∣∣u(t0)
∣∣ �

m∑
i=1

|λi |
∣∣ui(t0)

∣∣ �
m∑

i=1

∣∣ui(t0)
∣∣, u ∈ Θ. (3.26)

This shows that there exists i0 ∈ {1,2, . . . ,m} such that |ui0(t0)| � 1/m, which, together with (3.24), implies that |n0| � Π1.
Set

τ = min
{

W (t, v): |t| � Π1, |v| = 1
}
. (3.27)

Since W (t, v) > 0 for all t ∈ Z and v ∈ R \ {0}, and W (t, v) is continuous in v , so τ > 0. It follows from (3.26), (3.27) and
Lemma 2.5 that

Π1∑
t=−Π1

W
(
t, u(t)

)
� W

(
t0, u(t0)

)
� W

(
t0,

u(t0)

|u(t0)|
)∣∣u(t0)

∣∣μ �
[

min|x|=1
W (t0, x)

]∣∣u(t0)
∣∣μ � τ for u ∈ Θ. (3.28)

For any u ∈ E , it follows from (2.2) and (F5) that

Π1∑
t=−Π1

H
(
t, u(t + n), . . . , u(t)

) =
∑

{t∈Z(−Π1,Π1), (
∑n

i=0(u(t+i))2)1/2>1}
H

(
t, u(t + n), . . . , u(t)

)

+
∑

{t∈Z(−Π1,Π1), (
∑n

i=0(u(t+i))2)1/2}�1

H
(
t, u(t + n), . . . , u(t)

)

� b
∑

{t∈Z(−Π1,Π1), (
∑n

i=0(u(t+i))2)1/2>1}

(
n∑

i=0

u(t + i)2

) �
2

+
Π1∑

max
(
∑n

i=0(u(t+i))2)1/2�1

∣∣H
(
t, u(t + n), . . . , u(t)

)∣∣

t=−Π1
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� (n + 1)
�
2 +1b

∑
t∈Z

∣∣u(t)
∣∣� +

Π1∑
t=−Π1

max
(
∑n

i=0(u(t+i))2)1/2�1

∣∣H
(
t, u(t + n), . . . , u(t)

)∣∣

� (n + 1)
�
2 +1β− �

2 b‖u‖� +
Π1∑

t=−Π1

max
(
∑n

i=0(u(t+i))2)1/2�1

∣∣H
(
t, u(t + n), . . . , u(t)

)∣∣
= M0‖u‖� + M1, (3.29)

where

M0 = (n + 1)
�
2 +1β− �

2 b, M1 =
Π1∑

t=−Π1

max
(
∑n

i=0(u(t+i))2)1/2�1

∣∣H
(
t, u(t + n), . . . , u(t)

)∣∣.
From (3.14), (3.24), (3.25), (3.28), (3.29) and Lemma 2.5, we have for u ∈ Θ and σ > 1,

I(σu) = σ 2

2
‖u‖2 −

∑
t∈Z

F
(
t,σu(t + n), . . . , σu(t)

)

= σ 2

2
‖u‖2 −

∑
|t|>Π1

F
(
t,σu(t + n), . . . , σu(t)

) −
∑

|t|�Π1

F
(
t,σu(t + n), . . . , σu(t)

)

� σ 2

2
‖u‖2 +

∑
|t|>Π1

n∑
i=0

βσ 2

8(n + 1)

(
u(t + i)

)2 −
∑

|t|�Π1

F
(
t,σu(t + n), . . . , σu(t)

)

� σ 2

2
‖u‖2 + σ 2

8
‖u‖2 −

∑
|t|�Π1

F
(
t,σu(t + n), . . . , σu(t)

)

= σ 2

2
‖u‖2 + σ 2

8
‖u‖2 −

∑
|t|�Π1

W
(
n,σu(n)

) +
∑

|t|�Π1

H
(
t,σu(t + n), . . . , σu(t)

)

� σ 2

2
‖u‖2 + σ 2

8
‖u‖2 + σ�

(
M0‖u‖� + M1

) − τσμ

= (cσ)2

2
+ c2σ 2

8
+ M0(cσ)� + M1σ

� − τσμ. (3.30)

Since μ > � > 2, we deduce that there is σ0 = σ0(c, M1, M2, τ ) = σ0(E ′) > 1 such that

I(σu) < 0 for u ∈ Θ and σ � σ0.

That is

I(u) < 0 for u ∈ E ′ and ‖u‖ � cσ0.

This shows that (iii) of Lemma 2.2 holds. By Lemma 2.2, I possesses an unbounded sequence {dk}k∈N of critical values with
dk = I(uk), where uk is such that I ′(uk) = 0 for k = 1,2, . . . . If {‖uk‖}k∈N is bounded, then there exists B > 0 such that

‖uk‖ � B for k ∈ N. (3.31)

By a similar fashion for the proof of (3.4) and (3.7), for the given η in (3.12), there exists Π2 > max{|k|: k ∈ J } such that

∣∣uk(t)
∣∣ � η for |t| � Π2, k ∈ N. (3.32)

Thus, from (2.1), (2.3), (3.12), (3.31) and (3.32), we have

1

2
‖uk‖2 = dk +

∑
t∈Z

F
(
t, uk(t + n), . . . , uk(t)

)

= dk +
∑

F
(
t, uk(t + n), . . . , uk(t)

) +
Π2∑

F
(
t, uk(t + n), . . . , uk(t)

)

|t|>Π2 t=−Π2
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� dk − β

8(n + 1)

∑
|t|>Π2

n∑
i=0

(
uk(t + i)

)2 −
Π2∑

n=−Π2

H
(
t, uk(t + n), . . . , uk(t)

)

� dk − 1

8
‖uk‖2 −

Π2∑
n=−Π2

max
|uk |�B/

√
β

∣∣H
(
t, uk(t + n), . . . , uk(t)

)∣∣. (3.33)

It follows that

dk � 5

8
‖uk‖2 +

Π2∑
t=−Π2

max
|uk|�B/

√
β

∣∣H
(
t, uk(t + n), . . . , uk(t)

)∣∣ < +∞.

This contradicts to the fact that {dk}k∈N is unbounded, and so {‖uk‖}k∈N is unbounded. The proof is complete. �
Proof of Theorems 1.3 and 1.4. In the proof of Theorem 1.1, the condition that H(t, u(t + n), . . . , u(t)) � 0 for (t, u(t + n),

. . . , u(t)) ∈ J ×R
n+1, γ = (

∑n
i=0 u2(t + i))1/2 � 1 in (F1) is only used in the proofs of assumption (ii) of Lemma 2.1. Therefore,

we only prove assumption (ii) of Lemma 2.1 still hold using (F2′) instead of (F2). By (F2′), it follows that

∣∣F
(
t, u(t + n), . . . , u(t)

)∣∣ � β

4(n + 1)

n∑
i=0

u2(t + i) for t ∈ Z,

(
n∑

i=0

u2(t + i)

)1/2

� η. (3.34)

If ‖u‖ = √
βη := ρ , then by Lemma 2.4, |u(t)| � η for t ∈ Z. Set α = βη2/4. Hence, from (2.2), (2.3), (3.34) and Lemma 2.4,

we have

I(u) = 1

2
‖u‖2 −

∑
t∈Z

F
(
t, u(t + n), . . . , u(t)

)
� 1

2
‖u‖2 − β

4

∑
t∈Z

u2(t) � 1

2
‖u‖2 − 1

4
‖u‖2 = 1

4
‖u‖2 = α. (3.35)

(3.35) shows that ‖u‖ = ρ implies that I(u) � α, i.e., assumption (ii) of Lemma 2.2 holds. The proof of Theorems 1.3 and 1.4
is completed. �
Proof of Theorem 1.5. We first show that I satisfies condition (C). Assume that {uk}k∈N ⊂ E is a (C) sequence of I , that is,
{I(uk)}k∈N is bounded and (1 + ‖uk‖)‖I ′(uk)‖ → 0 as k → +∞. Then it follows from (2.1) and (2.2) that

C1 � 2I(uk) − 〈
I ′(uk), uk

〉
=

∑
t∈Z

[
0∑

i=−n

F ′
2+n+i

(
t, uk(t + n), . . . , uk(t)

)
uk(t − i) − 2F

(
t, uk(t + n), . . . , uk(t)

)]
. (3.36)

It follows from (F8) that there exists η ∈ (0,1) such that (3.34) holds. By (F8), we have

0∑
i=−n

F ′
2+n+i

(
t, u(t + n), . . . , u(t)

)
u(t − i) > 2F

(
t, uk(t + n), . . . , u(t)

)
� 0

for
(
t, u(t + n), . . . , u(t)

) ∈ Z × R
n+1, k ∈ N, (3.37)

and for t ∈ Z,
∑n

i=0 u2(t + i) � η2, we have

F
(
t, uk(t + n), . . . , uk(t)

)
�

[
a + b

(
n∑

i=0

u2(t + i)

)ν/2]

×
[

0∑
i=−n

F ′
2+n+i

(
t, uk(t + n), . . . , uk(t)

)
uk(t − i) − 2F

(
t, uk(t + n), . . . , uk(t)

)]
. (3.38)

It follows from Lemma 2.4, (2.1), (2.3), (3.34), (3.36), (3.37) and (3.38) that

1

2
‖uk‖2 = I(uk) +

∑
t∈Z

F
(
t, uk(t + n), . . . , u(t)

)
= I(uk) +

∑
t∈Z((

∑n u2(t+i))1/2�η)

F
(
t, uk(t + n), . . . , u(t)

)

i=0



P. Chen, X. Tang / J. Math. Anal. Appl. 381 (2011) 485–505 497
+
∑

t∈Z((
∑n

i=0 u2(t+i))1/2>η)

F
(
t, uk(t + n), . . . , u(t)

)

� I(uk) + β

4(n + 1)

∑
t∈Z((

∑n
i=0 u2(t+i))1/2�η)

n∑
i=0

u2(t + i)

+
∑

t∈Z((
∑n

i=0 u2(t+i))1/2>η)

[
a + b

(
n∑

i=0

u2(t + i)

)ν/2]

×
[

0∑
i=−n

F ′
2+n+i

(
t, uk(t + n), . . . , uk(t)

)
uk(t − i) − 2F

(
t, uk(t + n), . . . , uk(t)

)]

� C2 + 1

4
‖uk‖2 +

∑
t∈Z

[
a + b

(
n∑

i=0

u2(t + i)

)ν/2]

×
[

0∑
i=−n

F ′
2+n+i

(
t, uk(t + n), . . . , uk(t)

)
uk(t − i) − 2F

(
t, uk(t + n), . . . , uk(t)

)]

� C2 + 1

4
‖uk‖2 + (

a + b(n + 1)‖uk‖ν∞
)

×
[

0∑
i=−n

F ′
2+n+i

(
t, uk(t + n), . . . , uk(t)

)
uk(t − i) − 2F

(
t, uk(t + n), . . . , uk(t)

)]

� C2 + 1

4
‖uk‖2 + C1

(
a + b(n + 1)‖uk‖ν∞

)
� C2 + 1

4
‖uk‖2 + C1

{
a + β−ν/2b(n + 1)‖uk‖ν

}
, k ∈ N. (3.39)

Since ν < 2, it follows from (3.39) that {‖uk‖}k∈N is bounded. Similar to the proof of Theorem 1.1, we can prove that {uk}
has a convergent subsequence in E . Hence, I satisfies condition (C).

It is obvious that I is even and I(0) = 0 and so assumption (i) of Lemma 2.1 holds. The proof of assumption (ii) of
Lemma 2.1 is the same as in the proof of Theorem 1.2.

Now, we prove assumption (iii) of Lemma 2.2. Let E ′ be a finite dimensional subspace of E . Since all norms of a finite
dimensional normed space are equivalent, so there is a constant c > 0 such that (3.22) holds. Assume that dim E ′ = m and
u1, u2, . . . , um is the basis of E ′ such that (3.23) holds. Let η,Π1 and Θ be the same as in the proof of Theorem 1.2. Then
(3.24), (3.25) and (3.26) hold. For the Π1 given in the proof of Theorem 1.2, by (F7), there exists σ0 = σ0(c,Π1) > 1 such
that

s−2 min|u|=1
F
(
t, su(t)

)
� c2 for s � σ0, t ∈ Z(−Π1,Π1). (3.40)

For u ∈ Θ , it follows from (3.24) and (3.26) that there exists t0 = t0(u) ∈ Z(−Π1,Π1) such that

1 �
∣∣u(t0)

∣∣ = ‖u‖∞. (3.41)

It follows from (2.3), (3.37), (3.40) and (3.41) that

I(σu) = σ 2

2
‖u‖2 −

∑
t∈Z

F
(
t,σu(t + n), . . . , σu(t)

)

� σ 2

2
‖u‖2 − F

(
t0,σu(t0 + n), . . . , σu(t0)

)
� σ 2

2
‖u‖2 − min|x|=1

F
(
t0,σ

∣∣u(t0)
∣∣x)

� (cσ)2

2
− (cσ)2

∣∣u(t0)
∣∣2

� (cσ)2

2
− (cσ)2

= − (cσ)2

, u ∈ Θ, σ � σ0. (3.42)

2
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We deduce that there is σ0 = σ0(c,Π1) = σ0(E ′) > 1 such that

I(σu) < 0 for u ∈ Θ and σ � σ0.

That is

I(u) < 0 for u ∈ E ′ and ‖u‖ � cσ0.

This shows that condition (iii) of Lemma 2.2 holds. By Lemma 2.2, I possesses an unbounded sequence {dk}k∈N of critical
values with dk = I(uk), where uk is such that I ′(uk) = 0 for k = 1,2, . . . . From (2.3) and (3.37), we have

1

2
‖uk‖2 = dk +

∑
t∈Z

F
(
t, uk(t + n), . . . , u(t)

)
� dk, k ∈ N.

Since {dk}k∈N is unbounded, it follows that {‖uk‖}k∈N is unbounded. The proof is complete. �
Proof of Theorem 1.6 and 1.7. By a fashion similar to the proofs of Theorem 1.1, Theorem 1.2 and the process in [33], we
can prove Theorem 1.6 and Theorem 1.7, respectively. The detailed proofs are omitted. �
Proof of Theorem 1.8. Our proof will be divided into five steps.

Step 1: We first verify that the functional I : E → R defined by

I(u) = 1

2
‖u‖2 −

∑
t∈Z

F
(
t, u(t + n), . . . , u(t)

)
, ∀u ∈ E (3.43)

is well defined and of class C1(E,R) and (2.4) holds. Furthermore, the critical points of I in E are solutions of (1.1) with
u(±∞) = 0.

For any u ∈ E , there exists an integer Π > 0 such that |u(t)| < 1 for |t| > Π . It follows from (F11) and Hölder inequality
that

∑
|t|>Π

∣∣F
(
t, u(t + n), . . . , u(t)

)∣∣ �
∑

|t|>Π

a1(t)

( ∑
|t|>Π

n∑
i=0

(
u(t + i)

)2

)γ1/2

� (n + 1)γ1/2
( ∑

|t|>Π

∣∣a1(t)
∣∣2/(2−γ1)

)(2−γ1)/2(∑
t∈Z

(
u(t)

)2
)γ1/2

� β−γ1(n + 1)γ1/2‖a1‖(2−γ1)/2‖u‖γ1 , (3.44)

and so I defined by (2.3) is well defined on E . By (F12), there exists M1 > 0 such that

ϕ
(|x|) � M1|x|γ1−1, ∀x ∈ R, |x| � 1. (3.45)

For any u, v ∈ E , there exists an integer Π1 > 0 such that |u(t + i)| + |v(t + i)| < 1 for |t| > Π1, i = 0, . . .n. Then for any
sequence {θt}t∈Z ⊂ R with |θt | < 1 for t ∈ Z and any number h ∈ (0,1), by (F12), (3.45) and Lemma 2.4, we have

∑
t∈Z

∣∣∣∣∣
n∑

i=0

F ′
2+n−i

(
t, u(t + n) + θthv(t + n), . . . , u(t + i) + θt v(t + i), . . . , u(t) + θthv(t)

)
v(t + i)

∣∣∣∣∣
=

∑
|t|�Π1

∣∣∣∣∣
n∑

i=0

F ′
2+n−i

(
t, u(t + n) + θthv(t + n), . . . , u(t + i) + θt v(t + i), . . . , u(t) + θthv(t)

)
v(t + i)

∣∣∣∣∣
+

∑
|t|>Π1

∣∣∣∣∣
n∑

i=0

F ′
2+n−i

(
t, u(t + n) + θthv(t + n), . . . , u(t + i) + θt v(t + i), . . . , u(t) + θthv(t)

)
v(t + i)

∣∣∣∣∣
�

∑
|t|�Π1

∣∣∣∣∣
n∑

i=0

F ′
2+n−i

(
t, u(t + n) + θthv(t + n), . . . , u(t + i) + θt v(t + i), . . . , u(t) + θthv(t)

)∣∣∣∣∣∣∣v(t + i)
∣∣

+
∑ ∣∣∣∣∣

n∑
F ′

2+n−i

(
t, u(t + n) + θthv(t + n), . . . , u(t + i) + θt v(t + i), . . . , u(t) + θthv(t)

)∣∣∣∣∣∣∣v(t + i)
∣∣
|t|>Π1 i=0
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�
∑

|t|�Π1

max
|x(t+i)|�‖u(t+i)‖∞+‖v(t+i)‖∞

∣∣∣∣∣
n∑

i=0

F ′
2+n−i

(
t, x(t + n), . . . , x(t + i), . . . , x(t)

)∣∣∣∣∣∣∣v(t + i)
∣∣

+ M1

∑
|t|>Π1

b(t)

(
n∑

i=−n

(
u2(t + i) + v2(t + i)

))(γ1−1)/2∣∣v(t + i)
∣∣

�
∑

|t|�Π1

max
|x|�‖u‖∞+‖v‖∞

∣∣ f
(
t, x(t + n), . . . , x(t), . . . , x(t − n)

)∣∣∣∣v(t + i)
∣∣

+ M1

∑
|t|>Π1

b(t)

(
n∑

i=−n

(
u(t + i)

)γ1−1 + (
v(t + i)

)γ1−1

)∣∣v(t + i)
∣∣

�
∑

|t|�Π1

max
|x|�‖u‖∞+‖v‖∞

∣∣ f
(
t, x(t + n), . . . , x(t), . . . , x(t − n)

)∣∣∣∣v(t + i)
∣∣

+ M1

( ∑
|t|>Π1

∣∣b(t)
∣∣2

n∑
i=−n

(
u(t + i)

)2(γ1−1)
)1/2( ∑

|t|>Π1

(
v(t + i)

)2
)1/2

+ M1

( ∑
|t|>Π1

∣∣b(t)
∣∣2(

v(t + i)
)2(γ1−1)

)1/2
( ∑

|t|>Π1

n∑
i=−n

v
(
(t + i)

)2

)1/2

�
∑

|t|�Π1

max
|x|�‖u‖∞+‖v‖∞

∣∣ f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)∣∣∣∣v(t + i)
∣∣

+ M1β
−1/2

( ∑
|n|>Π1

∣∣b(t)
∣∣2/(2−γ1)

)(2−γ1)/2
( ∑

|t|>Π1

n∑
i=−n

(
u(t + i)

)2
)(γ1−1)/2

‖v‖

+ M1β
−1/2

( ∑
|n|>Π1

∣∣b(t)
∣∣2/(2−γ1)

)(2−γ1)/2
( ∑

|t|>Π1

n∑
i=−n

(
v(t + i)

)2

)(γ1−1)/2

‖v‖

�
∑

|t|�Π1

max
|x|�‖u‖∞+‖v‖∞

∣∣ f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)∣∣∣∣v(t + i)
∣∣

+ M1(2n + 1)(γ1−1)/2β−γ1/2‖b‖2/(2−γ1)

(‖u‖γ1−1 + ‖v‖γ1−1)‖v‖
< +∞. (3.46)

Then by (2.3) and (3.46), we have

〈
I ′(u), v

〉 = lim
h→0+

I(u + hv) − I(u)

h

= lim
h→0+

1

h

{
‖u + hv‖2 − ‖u‖2

2

−
∑
t∈Z

[
F
(
t, u(t + n) + hv(t + n), . . . , u(t) + hv(t)

) − F
(
t, u(t + n), . . . , u(t)

)]}

= lim
h→0+

[
〈u, v〉 + h‖v‖2

2

−
∑
t∈Z

n∑
i=0

F ′
2+n−i

(
t, u(t + n) + θthv(t + n), . . . , u(t + i) + θt v(t + i), . . . , u(t) + θthv(t)

)
v(t + i)

]

= 〈u, v〉 −
∑
t∈Z

f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)
v(t)

=
∑[

r(t − 1)�nu(t − 1)�n v(t − 1) + q(t)u(t)v(t) − f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)
v(t)

]
.

t∈Z
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This shows that (2.4) holds. Then 〈I ′(u), v〉 = 0 for all v ∈ E if and only if

�n(r(t − n)�nu(t − n)
) + q(t)u(t)

= f
(
t, u(t + n), u(t + n − 1), . . . , u(t), u(t − 1), . . . , u(t − n)

)
, t ∈ Z.

So, the critical points of I in E are the solutions of Eq. (1.1) with u(±∞) = 0.
Step 2: Let’s prove now that I ′ is continuous. Let uk → u in E . For any ε ∈ (0,

√
β), we can choose an integer Πε > 0

such that{ ∑
|t|>Πε

[
r(t − 1)

(
�nuk(t)

)2 + q(t)
(
uk(t)

)2]}1/2

< ε, k ∈ N, (3.47)

and { ∑
|t|>Πε

[
r(t − 1)

(
�nu(t)

)2 + q(t)
(
u(t)

)2]}1/2

< ε. (3.48)

For any v ∈ E , from Lemma 2.4, (2.4), (3.45), (3.47), (3.48), (F12) and Hölder inequality, we have∣∣〈I ′(uk) − I ′(u), v
〉∣∣

�
∣∣∣∣∣
∑
t∈Z

[
r(t − 1)

(
�nuk(t − n) − �nu(t − n)

)
�n v(t − n) + q(t)

(
uk(t) − u(t)

)
v(t)

]∣∣∣∣∣
+

∑
t∈Z

∣∣( f
(
t, uk(t + n), . . . , uk(t), . . . , uk(t − n)

) − f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

))
v(t)

∣∣
= ∣∣〈uk − u, v〉∣∣ +

∑
t∈Z

∣∣ f
(
t, uk(t + n), . . . , uk(t), . . . , uk(t − n)

) − f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)∣∣∣∣v(t)
∣∣

� ‖uk − u‖‖v‖ +
∑

|t|�Πε

∣∣ f
(
t, uk(t + n), . . . , uk(t), . . . , uk(t − n)

) − f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)∣∣∣∣v(t)
∣∣

+
∑

|t|>Πε

(∣∣ f
(
t, uk(t + n), . . . , uk(t), . . . , uk(t − n)

)∣∣ + ∣∣ f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)∣∣)∣∣v(t)
∣∣

� o(1) + M1

∑
|t|>Πε

b(t)

((
n∑

i=−n

(
uk(t + i)

)2

)(γ1−1)/2

+
(

n∑
i=−n

(
u(t + i)

)2

)(γ1−1)/2)∣∣v(t)
∣∣

� o(1) + M1β
−1/2

( ∑
|t|>Π1

∣∣b(t)
∣∣2/(2−γ1)

)(2−γ1)/2
( ∑

|t|>Π1

n∑
i=−n

(
uk(t + i)

)2

)(γ1−1)/2

‖v‖

+ M1β
−1/2

( ∑
|n|>Π1

∣∣b(t)
∣∣2/(2−γ1)

)(2−γ1)/2
( ∑

|t|>Π1

n∑
i=−n

(
u(t + i)

)2

)(γ1−1)/2

‖v‖

� o(1) + 2(2n + 1)(γ1−1)/2M1β
−γ1/2‖b‖2/(2−γ1)‖v‖εγ1−1, for sufficiently large k,

which, since ε is arbitrary, implies the continuity of I ′ . The proof is complete.
Step 3: In view of Lemma 2.3, I ∈ C1(E,R). In what follows, we first show that I is bounded from below. By Lemma 2.4,

(F11), (2.3) and Hölder inequality, we have

I(u) = 1

2
‖u‖2 −

∑
n∈Z

F
(
t, u(t + n), . . . , u(t)

)

= 1

2
‖u‖2 −

∑
Z((

∑n
i=0(u(t+i))2)1/2�1)

F
(
t, u(t + n), . . . , u(t)

) −
∑

Z((
∑n

i=0(u(t+i))2)1/2>1)

F
(
t, u(t + n), . . . , u(t)

)

� 1

2
‖u‖2 −

∑
Z((

∑n
(u(t+i))2)1/2�1)

a1(t)

(
n∑

i=0

(
u(t + i)

)2

)γ1/2

−
∑

Z(
∑n

(u(t+i))2>1)

a2(t)

(
n∑

i=0

(
u(t + i)

)2

)γ2/2
i=0 i=0
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� 1

2
‖u‖2 −

( ∑
Z((

∑n
i=0(u(t+i))2)1/2�1)

∣∣a1(t)
∣∣2/(2−γ1)

)(2−γ1)/2
( ∑

Z(
∑n

i=0(u(t+i))2�1)

n∑
i=0

(
u(t + i)

)2

)γ1/2

−
( ∑

Z((
∑n

i=0(u(t+i))2)1/2>1)

∣∣a2(t)
∣∣2/(2−γ1)

)(2−γ1)/2
( ∑

Z((
∑n

i=0(u(t+i))2)1/2>1)

(
n∑

i=0

(
u(t + i)

)2

)γ2/γ1)γ1/2

� 1

2
‖u‖2 − (n + 1)γ1/2β−γ1/2

( ∑
Z((

∑n
i=0(u(t+i))2)1/2�1)

∣∣a1(t)
∣∣2/(2−γ1)

)(2−γ1)/2

‖u‖γ1

− [
2(n + 1)

]γ2/2
β−γ1/2‖u‖γ2−γ1∞

( ∑
Z((

∑n
i=0(u(t+i))2)1/2>1)

∣∣a2(t)
∣∣2/(2−γ1)

)(2−γ1)/2

‖u‖γ1

� 1

2
‖u‖2 − (n + 1)γ1/2β−γ1/2

( ∑
Z((

∑n
i=0(u(t+i))2)1/2�1)

∣∣a1(t)
∣∣2/(2−γ1)

)(2−γ1)/2

‖u‖γ1

− [
2(n + 1)

]γ2/2
β−γ2/2

( ∑
Z((

∑n
i=0(u(t+i))2)1/2>1)

∣∣a2(t)
∣∣2/(2−γ1)

)(2−γ1)/2

‖u‖γ2

� 1

2
‖u‖2 − (n + 1)γ1/2β−γ1/2‖a1‖2/(2−γ1)‖u‖γ1 − [

2(n + 1)
]γ2/2

β−γ2/2‖a2‖2/(2−γ1)‖u‖γ2 . (3.49)

Since 1 < γ1 < γ2 < 2, (3.49) implies that I(u) → +∞ as ‖u‖ → +∞. Consequently, I is bounded from below.
Step 4: We prove that I satisfies the (PS)-condition. Assume that {uk}k∈N ⊂ E is a sequence such that {I(uk)}k∈N is

bounded and I ′(uk) → 0 as k → +∞. Then by Lemma 2.4 and (3.49), there exists a constant A > 0 such that

‖uk‖∞ � β− 1
2 ‖uk‖ � A, k ∈ N. (3.50)

So passing to a subsequence if necessary, it can be assumed that uk ⇀ u0 in E . It is easy to verify that uk(t) converses to
u0(t) pointwise for all n ∈ Z, that is

lim
k→∞

uk(t) = u0(t), ∀k ∈ Z. (3.51)

Hence, we have by (3.50) and (3.51)

‖u0‖∞ � A. (3.52)

By (F12), there exists M2 > 0 such that

ϕ
(|x|) � M2|x|γ1−1, ∀x ∈ R, |x| � A. (3.53)

For any given number ε > 0, by (F12), we can choose an integer Π > 0 such that( ∑
|t|>Π

(
b(t)

)2/(2−γ1)
)(2−γ1)/2

< ε. (3.54)

It follows from (3.52) and the continuity of f (t, u(t + n), . . . , u(t), . . . , u(t − n)) on u that there exists k0 ∈ N such that

Π∑
t=−Π

∣∣ f
(
t, uk(t + n), . . . , uk(t), . . . , uk(t − n)

) − f
(
t, u0(t + n), . . . , u0(t), . . . , u0(t − n)

)∣∣∣∣uk(t) − u0(t)
∣∣ < ε

for k � k0. (3.55)

On the other hand, it follows from (3.50), (3.52), (3.53), (3.54) and (F12) that∑
|t|>Π

∣∣ f
(
t, uk(t + n), . . . , uk(t), . . . , uk(t − n)

) − f
(
t, u0(t + n), . . . , u0(t), . . . , u0(t − n)

)∣∣∣∣uk(t) − u0(t)
∣∣

�
∑

b(t)

[
ϕ

(
n∑

u2
k (t + i)

)
+ ϕ

(
n∑

u2
0(t + i)

)](∣∣uk(t)
∣∣ + ∣∣u0(t)

∣∣)

|t|>Π i=−n i=−n
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� M2

∑
|t|>Π

b(t)

((
n∑

i=−n

u2
k (t + i)

) γ1−1
2

+
(

n∑
i=−n

u2
0(t + i)

) γ1−1
2

)(∣∣uk(t)
∣∣ + ∣∣u0(t)

∣∣)

� 2M2

∑
|t|>Π

b(t)

((
n∑

i=−n

u2
k (t + i)

) γ1
2

+
(

n∑
i=−n

u2
0(t + i)

) γ1
2

)

� 2M2

( ∑
|t|>Π

(
b(t)

)2/(2−γ1)
)(2−γ1)/2

(∑
t∈Z

n∑
i=−n

u2
k (t + i) +

∑
t∈Z

n∑
i=−n

u2
0(t + i)

) γ1
2

� 2(2n + 1)
γ1
2 M2β

−γ1/2
( ∑

|t|>Π

(
b(t)

)2/(2−γ1)
)(2−γ1)/2[‖uk‖γ1 + ‖u0‖γ1

]

� 2(2n + 1)
γ1
2 M2β

−γ1/2[βγ1/2 Aγ1 + ‖u0‖γ1
]
ε, k ∈ N. (3.56)

Since ε is arbitrary, combining (3.55) with (3.56) we get∑
t∈Z

(
f
(
t, uk(t + n), . . . , uk(t), . . . , uk(t − n)

) − f
(
t, u0(t + n), . . . , u0(t), . . . , u0(t − n)

)
, uk(t) − u0(t)

) → 0

as k → ∞.

It follows from (2.4) that〈
I ′(uk) − I ′(u0), uk − u0

〉 = ‖uk − u0‖2 −
∑
t∈Z

(
f
(
t, uk(t + n), . . . , uk(t), . . . uk(t − n)

)
− f

(
t, u0(t + n)

)
, . . . , u0(t), . . . , u0(t − n)

)(
uk(t) − u0(t)

)
.

Since 〈I ′(uk) − I ′(u0), uk − u0〉 → 0, it follows from (3.9) and (3.10) that uk → u0 in E . Hence, I satisfies (PS)-condition.
By Lemma 2.3, c = infE I(u) is a critical value of I , that is there exists a critical point u∗ ∈ E such that I(u∗) = c.
Step 5: Finally, we show that u∗ �= 0. Let u0(t0) = 1 and u0(t) = 0 for t �= t0. Then by (F11), (F13) and (2.3), we have

I(su0) = s2

2
‖u0‖2 −

∑
t∈Z

F
(
t, su0(t + n), . . . , su0(t)

)

= s2

2
‖u0‖2 − F

(
t0, su0(t0 + n), . . . , su0(t0)

)
� s2

2
‖u0‖2 − ηsγ3

∣∣u0(t)
∣∣γ3

, 0 < s < 1. (3.57)

Since 1 < γ3 < 2, it follows from (3.57) that I(su0) < 0 for s > 0 small enough. Hence I(u∗) = c < 0, therefore u∗ is nontrivial
critical point of I , and so u∗ = u∗(n) is a nontrivial homoclinic solution of (1.1). The proof is complete. �
4. Examples

In this section, we give some examples to illustrate our results.

Example 4.1. In Eq. (1.1), let r(t) > 0, q(t) → +∞ as |t| → +∞ and

F
(
t, u(t + n), . . . , u(t)

) =
[∣∣u(t)

∣∣4+|t| −
(

n∑
i=0

u2(t + i)

)(5+3|t|)/2(4+|t|)]
.

Let μ = 4, � = 3, J = {−3,−2,−1,0,1,2,3} and

W
(
t, u(t)

) = ∣∣u(t)
∣∣4+|t|

, H
(
t, u(t + n), . . . , u(t)

) =
(

n∑
i=0

u2(t + i)

)(5+3|t|)/2(4+|t|)
.

Then it is easy to verify that all conditions of Theorem 1.2 are satisfied. By Theorem 1.2, Eq. (1.1) has an unbounded sequence
of homoclinic solutions.
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Example 4.2. In Eq. (1.1), let r(t) > 0, q(t) → +∞ as |t| → +∞ and

F
(
t, u(t + n), . . . , u(t)

) =
(

m∑
k=1

ak
∣∣u(t)

∣∣μk −
p∑

j=1

b j

(
n∑

i=0

u2(t + i)

)� j/2)
,

where μ1 > μ2 > · · · > μm > �1 > �2 > · · · > �k > 2, ak,b j > 0, k = 1,2, . . . ,m; j = 1,2, . . . , p. Let μ = μm , � = �1, and

W
(
t, u(t)

) =
m∑

k=1

ak
∣∣u(t)

∣∣μk , H
(
t, u(t + n), . . . , u(t)

) =
p∑

j=1

b j

(
n∑

i=0

u2(t + i)

)� j/2

.

Then it is easy to verify that all conditions of Theorem 1.4 are satisfied. By Theorem 1.4, system (1.1) has an unbounded
sequence of homoclinic solutions.

Example 4.3. In Eq. (1.1), let

F
(
t, u(t + n), . . . , u(t)

) = q(t)
n∑

i=0

u2(t + i) ln

[
1 +

(
n∑

i=0

u2(t + i)

)1/2]
,

where q : Z → (0,∞) such that q(t) → +∞ as |t| → +∞. Since

0∑
i=−n

F ′
2+n+i

(
t, u(t + n), . . . , u(t)

)
u(t − i)

= q(t)

[
2

n∑
i=0

u2(t + i) ln

[
1 +

(
n∑

i=0

u2(t + i)

)1/2]
+ (

∑n
i=0 u2(t + i))3/2

1 + (
∑n

i=0 u2(t + i))1/2

]

�
(

2 + 1

1 + (
∑n

i=0 u2(t + i))1/2

)
F
(
t, u(t + n), . . . , u(t)

)
� 0, ∀(

t, u(t + n), . . . , u(t)
) ∈ Z × R

n+1.

This shows that (F8) holds with a = b = ν = 1. In addition, for any t ∈ Z,

s−2 min|u|=1
F (t, su) = s−2 min|u|=1

[
q(t)|su|2 ln

(
1 + |su|)] = q(t) ln(1 + s) → +∞, s → +∞.

This shows that (F9) also holds. It is easy to verify that assumptions (q), (F1) and (F7) of Theorem 1.5 are satisfied. By
Theorem 1.5, Eq. (1.1) has an unbounded sequence of homoclinic solutions.

Example 4.4. In Eq. (1.1), let r(t) > 0, q(t) → +∞ as |t| → +∞ and

F
(
t, u(t + n), . . . , u(t)

) = (
1 + 2 sin2 t

)( n∑
i=0

u2(t + i)

) β
2

.

By a fashion similar to the computation in [33], it is easy to verify that all conditions of Theorem 1.6 are satisfied. By
Theorem 1.6, Eq. (1.1) has an unbounded sequence of homoclinic solutions.

Example 4.5. In Eq. (1.1), let r(t) > 0, q : Z → (0,∞) such that q(t) → +∞ as |t| → +∞ and

F
(
t, u(t + n), . . . , u(t)

) = cos t

1 + ∑n
i=0 |t + i|

(
n∑

i=0

u2(t + i)

)2/3

+ sin t

1 + ∑n
i=0 |t + i|

(
n∑

i=0

u2(t + i)

)3/4

.

Then

f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)
= 4

∑n
i=0 cos(t − i)

3(1 + ∑n
i=0 |t − i|)

(
n∑

u2(t + i)

)−1/3

u(t) + 3
∑n

i=0 sin(t − i)

2(1 + ∑n
i=0 |t − i|)

(
n∑

u2(t + i)

)−1/4

u(t),

i=−n i=−n
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∣∣F
(
t, u(t + n), . . . , u(t)

)∣∣ � 2(
∑n

i=0 u2(t + i))2/3

1 + |t| , ∀(
t, u(t + n), . . . , u(t)

) ∈ Z × R
n+1,

n∑
i=0

u2(t + i) � 1,

∣∣F
(
t, u(t + n), . . . , u(t)

)∣∣ � 2(
∑n

i=0 u2(t + i))3/4

1 + |t| , ∀(
t, u(t + n), . . . , u(t)

) ∈ Z × R
n+1,

n∑
i=0

u2(t + i) > 1

and for every t ∈ Z, (u(t + n), . . . , u(t), . . . , u(t − n)) ∈ R
2n+1, we have

∣∣ f
(
t, u(t + n), . . . , u(t), . . . , u(t − n)

)∣∣ �
8(n + 1)(

∑n
i=−n u2(t + i))1/6 + 9(n + 1)(

∑n
i=−n u2(t + i))1/4

6(1 + |t|) .

We can choose t0 such that

cos t0 > 0, sin t0 > 0.

Let

η = cos t0

1 + ∑n
i=0 |t0 + i| + sin t0

1 + ∑n
i=0 |t0 + i| .

Then

F
(
t0, u(t + n), . . . , u(t)

)
� η

(
n∑

i=0

u2(t + i)

)3/4

, ∀(
u(t + n), . . . , u(t)

) ∈ R
n+1,

(
n∑

i=0

u2(t + i)

)1/2

� 1.

These show that all conditions of Theorem 1.8 are satisfied, where

1 <
4

3
= γ1 < γ2 = γ3 = 3

2
< 2, a1(t) = a2(t) = b(t) = 2

1 + |t| , ϕ(s) = 8(n + 1)s1/3 + 9(n + 1)s1/2

12
.

By Theorem 1.8, Eq. (1.1) has at least a nontrivial homoclinic solution.

References

[1] R.P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications, second edition, Marcel Dekker, Inc., 2000.
[2] R.P. Agarwal, J. Popenda, Periodic solution of first order linear difference equations, Math. Comput. Modelling 22 (1) (1995) 11–19.
[3] R.P. Agarwal, K. Perera, D. O’Regan, Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Adv. Difference

Equ. 2005 (2) (2005) 93–99.
[4] C.D. Ahlbrandt, A.C. Peterson, The (n,n)-disconjugacy of a 2nth-order linear difference equation, Comput. Math. Appl. 28 (1994) 1–9.
[5] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (4) (1973) 349–381.
[6] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity,

Nonlinear Anal. 7 (1983) 241–273.
[7] X.C. Cai, J.S. Yu, Existence of periodic solutions for a 2nth-order nonlinear difference equation, J. Math. Anal. Appl. 329 (2007) 870–878.
[8] P. Chen, X.H. Tang, Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation, Appl.

Math. Comput. 217 (2011) 4408–4415.
[9] P. Chen, X.H. Tang, Existence of homoclinic solutions for a class of nonlinear difference equations, Adv. Difference Equ. 2010 (2010), doi:10.1155/

2010/47037, Article ID 470375.
[10] Z.M. Guo, Y.T. Xu, Existence of periodic solutions to a class of second-order neutral differential difference equations, Acta Anal. Funct. Appl. 5 (2003)

13–19.
[11] Z.M. Guo, J.S. Yu, The existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A 46 (2003)

506–513.
[12] Z.M. Guo, J.S. Yu, Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems, Nonlinear Anal. 55 (2003) 969–983.
[13] Z.M. Guo, J.S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. Lond. Math. Soc. 68 (2003)

419–430.
[14] M. Izydorek, J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems, J. Differential Equations 219 (2) (2005) 375–389.
[15] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer, Dordrecht, 1993.
[16] H.H. Liang, P.X. Weng, Existence and multiple solutions for a second order difference boundary value problem via critical point theory, J. Math. Anal.

Appl. 326 (2007) 511–520.
[17] M. Ma, Z.M. Guo, Homoclinic orbits and subharmonics for nonlinear second order difference equations, Nonlinear Anal. 67 (2007) 1737–1745.
[18] M. Ma, Z.M. Guo, Homoclinic orbits for second order self-adjoint difference equations, J. Math. Anal. Appl. 323 (1) (2006) 513–521.
[19] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
[20] W. Omana, M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations 5 (5) (1992) 1115–1120.
[21] Z.Q. Ou, C.L. Tang, Existence of homoclinic orbits for the second order Hamiltonian systems, J. Math. Anal. Appl. 291 (1) (2004) 203–213.
[22] T. Peil, A. Peterson, Asymptotic behavior of solutions of a two-term difference equation, Rocky Mountain J. Math. 24 (1994) 233–251.
[23] P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 114 (1–2) (1990) 33–38.
[24] P.H. Rabinowitz, K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z. 206 (3) (1991) 473–499.
[25] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications in Differential Equations, CBMS Reg. Conf. Ser., vol. 65, Amer. Math. Soc.,

Providence, 1986.
[26] J. Rodriguez, D.L. Etheridge, Periodic solutions of nonlinear second order difference equations, Adv. Difference Equ. 2005 (2005) 173–192.

http://dx.doi.org/10.1155/2010/47037
http://dx.doi.org/10.1155/2010/47037


P. Chen, X. Tang / J. Math. Anal. Appl. 381 (2011) 485–505 505
[27] D. Smets, M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal. 149 (1997) 266–275.
[28] X.H. Tang, X.Y. Lin, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems, J. Math. Anal. Appl. 373 (2011) 59–72.
[29] X.H. Tang, X.Y. Lin, Homoclinic solutions for a class of second-order discrete Hamiltonian systems, J. Difference Equ. Appl. 11 (2010) 1257–1273.
[30] Y.F. Xue, C.L. Tang, Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system, Nonlinear Anal. 67 (2007) 2072–2080.
[31] J.S. Yu, Z.M. Guo, X. Zou, Positive periodic solutions of second order self-adjoint difference equations, J. Lond. Math. Soc. (2) 71 (2005) 146–160.
[32] J.S. Yu, Y.H. Long, Z.M. Guo, Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation, J. Dynam. Differential

Equations 16 (2004) 575–586.
[33] J.S. Yu, H.P. Shi, Z.M. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation, J. Math. Anal. Appl. 352 (2009)

799–806.
[34] Z. Zhang, R. Yuan, Homoclinic solutions for some second order non-autonomous systems, Nonlinear Anal. 71 (2009) 5790–5798.
[35] Z. Zhou, J.S. Yu, Z.M. Guo, Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 1013–1022.


	Existence of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations
	Introduction
	Preliminaries
	Proofs of theorems
	Examples
	References


