and mineralized nodules, and the highest levels of mRNA expression of osteogenesis-
ating functions of these two miRNAs and led to the de-repression of their shared
as a miRNA sponge for miR-141 and miR-22, both of which were negative regulators
in vivo

Discussion and Conclusion: Our data has demonstrated that SENF treatment at 1.5 h per day has the strongest osteogenic activity than other duration times in the rat primary osteoblasts. The in vivo studies provided further supports that SENF treatment at 1.5 h per day increased the BMD of growing rats to the greatest extent compared to other durations within 3 h. Our study suggests that the osteogenic effects of SENFs are duration-dependent and 1.5 h per day is the optimal duration for improving peak bone mass and may be used for the prevention and treatment of osteoporosis.

http://dx.doi.org/10.1016/j.jot.2016.06.073

147 H19 PROMOTES OSTEOCENE DIFFERENTIATION BY FUNCTIONING AS A COMPETING ENDOGENOUS RNA

Jin-fang Zhang a,b, Yuxin Sun a,b, Liangliang Xu a,b, Gang Li a,b
aShenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
bSTEM Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China

Objective: Long non-coding RNAs (IncRNAs), extensively transcribed from the mammalian genome, have gained widespread attention in recent years. They serve as important and powerful regulators of various biological activities and play critical roles in a variety of disease progression including differentiation. More and more emerging evidence has demonstrated that some IncRNAs play important regulatory roles in osteoblast differentiation of MSCs, suggesting a potential therapeutic strategy for bone formation. The IncRNA H19, one of the most well-known imprinted genes, is located on human chromosome 11 and it is transcribed only from the maternally inherited allele. Recent researches have highlighted H19 as an active modulator in embryonic placental growth and skeletal muscle differentiation. However, unfortunately, the role of H19 in osteoblast differentiation is largely unknown and its function remains to be characterised.

Methods: Cultures of bone marrow-derived MSCs were established from a healthy donor. The gene encoding human H19 was amplified and cloned into a pBABE retrovirus vector. The H19 overexpression stable MSCs were generated using retrovirus-mediated gene delivery method as previously described. Osteogenic differentiation was induced according to the published protocols and examined by using ALP activity assay, Alizarin Red Staining, and marker genes expression.

Furthermore, the in vivo effect of H19 on osteogenesis was evaluated by ectopic bone formation carried out in nude mice. Our data has demonstrated that the candidate miRNAs targeting were screened out and the direct interaction between H19 and miRNA was identified using a luciferase activity assay.

Results: In the present study, IncRNA H19 was found to be upregulated during osteogenesis in human mesenchymal stem cells. Stable expression of H19 significantly accelerated in vivo and in vitro osteoblast differentiation. Meanwhile, by using bioinformatic investigations and RNA immunoprecipitation assays combined with luciferase reporter assays, we successfully demonstrated that H19 functioned as a miRNA sponge for miR-141 and miR-22, both of which are negative regulators of osteogenesis. Further investigations revealed that H19 antagonized the endogeneous functions of these two miRNAs and led to the de-repression of their shared target gene β-catenin, which eventually activated the Wnt/β-catenin pathway and hence potentiated osteogenesis. In addition, we also identified a novel regulatory feedback loop between H19 and its encoded miR-675-5p. miR-675-5p was found to directly target H19 and counteracted osteoblast differentiation.

Conclusion: Taken together, these findings indicate that the IncRNA H19 modulates the Wnt/β-catenin pathway by acting as a competing endogenous RNA, which may help to develop a novel therapeutic strategy for promoting fracture healing and bone regeneration.

http://dx.doi.org/10.1016/j.jot.2016.06.074

148 Smad7 PARtially KNOCKOUT MOUSE: A NEW ANIMAL MODEL OF OSTEOARTHRITIS

Sien Lin a,b,c, Wayne Yuk Wai Lee a,b, Jinfang Zhang a,b, Liao Cui d, Gang Li a,b,c
aThe Chinese University of Hong Kong-Astronaut Centre of China (CUHK-ACC)
Space Medicine Centre on Health Maintenance of Musculoskeletal System, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong 518063, China
bDepartment of Orthopaedics and Traumatology, The Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
cDepartment of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China

Objective: Animal models of osteoarthritis (OA) are of considerable importance in elucidating the underlying mechanisms of joint damage and providing proof of concept in the development of pharmacological and biological agents that may modify structural damage in the OA joint. Currently, there is still a lack of an appropriate small animal model of OA which represents the underlying mechanisms. Since transforming growth factor-beta1/Smad (TGF-β/Smad) signaling pathway has been identified as a key pathway in osteoarthritis (OA) initiation and progression, we then hypothesis that animal models of OA could be established by the interruption of TGF-β/Smad signalling. This study aims to investigate the role of Smad7, one of the TGF-β/Smad signalling pathway inhibitors, in the initiation and progression of OA, then further to evaluate whether Smad7 partial knockout mouse is a good animal model of OA.

Methods: The genetically engineered Smad7−/− (KO) and wild type (WT) mice (n = 15) at the age of 6, 12, or 24 months were terminated for histological analysis. The anterior cruciate ligament transection (ACLTT) or sham operation were performed in both the 6-month old Smad7 KO (n = 16) and WT (n = 16) mice. Histology, immunochemistry (IHC), and micro-computed tomography (CT) analysis were performed to determine the pathological changes in the articular cartilage and subchondral bone after 6 weeks. The knee joints were harvested and subject to histology and IHC examinations.

Results: Histological staining showed that there was no significant difference in the articular cartilage between Smad7 KO and WT mice at 6, 12 or 24 months old. However, cartilage hypertrophic markers (MMP13 and Col X) were significantly upregulated in the intact Smad7 KO mice at 6-months, indicating Smad7 is essential for cartilage homeostasis. In the ACLTT surgery model, six weeks after surgery, typical OA phenotype characterised by cartilage destruction, osteophyte formation, and synovium inflammation were all found in the Smad7 KO mice, where only mild degenerative changes were seen in the wild type control mice. Results of Micro-CT showed total bone volume and bone mineral density of subchondral bone were significantly increased in the Smad7 KO mice comparing to the wild type mice after ACLTT, indicating a bone hardening in the subchondral bone area. Results of IHC also showed osteogenic marker Osterix was significantly upregulated in the Smad7 KO mice after ACLTT, suggesting enhanced bone formation.

Conclusion: Smad7 plays an important role in cartilage homeostasis. Lack of Smad7 may contribute to OA initiation. Smad7 KO mice are susceptible to OA progression under mechanical instability conditions. Smad7 KO mice may be used as an animal model of osteoarthritis to further study the underlying mechanisms.

http://dx.doi.org/10.1016/j.jot.2016.06.075

152 TRANSLATIONAL POTENTIAL OF GINSENOside Rb1 IN MANAGING PROGRESSION OF OSTEOARTHRITIS

Chen Yuanfeng a,b, LinSien a,b, Sun Yuxin a,b, Pan Xiaohua a, Xiao Libin a, Zou Liyi a, Ho Ki Wai a, Li Gang a,b,c
aDepartment of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
bThe CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
cDepartment of Orthopaedics and Traumatology, Bao-An District People’s Hospital, Shenzhen, PR China

Background: Osteoarthritis (OA) is the most common degenerative joint disorder. Inflammatory cytokines play an important role in OA progression. Previous studies have demonstrated that ginsenoside Rb1 would prevent inflammation and apoptosis in chondrocytes. However, we did not find any animal study that reported the effect of Rb1 on attenuation of the severity of osteoarthritis.

Objective: In this study, we used a rat anterior cruciate ligament transection plus mediastinal meniscus resection (ACLTT+MNX) model of OA and cell model to investigate whether administration of ginsenoside Rb1 may attenuate the progression of arthritis.

Methods: In the in vivo study, the 16-week-old male Sprague-Dawley rats were divided into three groups: Group 1: sham control group; Group 2: Rb1-treated