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1. INTRODUCTION AND RESULTS 

LET A be the mod 2 Steenrod algebra. In this paper we prove Theorem 1.1, a conjecture of 
Adams, which describes how to detect all non-nilpotent elements in ExtX*(F2, F,). One can 
view this result in two ways: it is a generalization of results of Lin [S] and Wilkerson [13] 
about Ext over certain sub-Hopf algebras of A (and hence is analogous to results of Quillen 
and others on group cohomology); and it is a Steenrod algebra version of Nishida’s theorem 
[lo], a special case of the nilpotence theorem of Devinatz, Hopkins, and Smith Cl]. 

We need one definition in order to state our result: fix a prime p and a cocommutative F, 
Hopf algebra A. An elementary sub-Hopf algebra B of A is a bicommutative sub-Hopf 
algebra with bp = 0 for all b E ZB (ZB is the augmentation ideal). For instance when p = 2, 
then the elementary sub-Hopf algebras are the sub-Hopf algebras which are exterior 
algebras. Let zg: BG A denote the inclusion, so 22 is the restriction map on Ext. 

THEOREM 1.1. Let A be a sub-Hopf algebra of the mod 2 Steenrod algebra; fix 

ZE Extj*(F*, F2 ). Zf I;(Z) = 0 for every elementary sub-Hopf algebra I~: EGA, then z is 
nilpotent. 

Theorem 1.1 was first conjectured by Adams, as reported by Lin in [SJ. 
We view Theorem 1.1 as a first step in proving structure theorems for Steenrod algebra 

modules analogous to those for spectra given in [3] and [4]; for instance, one has the 
following conjecture (analogous to the nilpotence theorem): 

Conjecture 1.2. Let A be a sub-Hopf algebra of the mod 2 Steenrod algebra; let C be 
a bounded below coalgebra over A. Given z E Ext:*(C, F2), if zg*(z) = 0 for every elementary 
sub-Hopf algebra B c A, then z is nilpotent. 

This is the “ring spectrum” version of the conjecture; one can make a similar conjecture 
about Ext:*(M, M) for any finite A-module M. If one could prove this, then one should be 
able to work as in [3] or [4] to determine the thick subcategories of’the category of finite 
A-modules, and hence to prove an appropriate “periodicity” theorem. 

Theorem 1.1 raises other questions; for instance, given A, can we find all of the 
non-nilpotent elements in Ext,**(Fz, F2)? One approach would be to investigate the image 
of 12 for each E. Assume that E is normal; then this image lies in the set of generators for 
Extg*(F2, F,) as an A//E-module (since 1 2 is an edge homomorphism in the spectral 
sequence associated to the extension E -+ A+ A//E); hence, the first step should be 
determining this set of generators. When A is the full Steenrod algebra, this is difficult 
already for the case E = E(2) = (F2[t2, r3, . . .I/($))*, the maximal elementary sub-Hopf 
algebra of A containing Pi. 
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At odd primes, Wilkerson found a finite sub-Hopf algebra of the Steenrod algebra for 
which the odd primary version of Theorem 1.1 fails. A weakened version could still be 
true-perhaps all non-nilpotent elements in Ext:*(F,, F,) are detected by restricting to 
two-stage extensions of elementary sub-Hopf algebras [g]. 

In Section 2 we prove Theorem 1.1, and at the end of that section we discuss some 
reasons that our proof doesn’t work for an arbitrary coalgebra C. There is also an appendix 
in which we give a brief description of Eisen’s calculation of certain localized Ext groups. 

2. PROOF OF THEOREM 1.1 

In this section we prove the main theorem. The proof is analogous to that for the 
nilpotence theorem for spectra, [l, Theorem 31. In particular, we use certain sub-Hopf 
algebras Y(n) of A (cf. the spectra X(n) of [1]) and a downward induction on n to show that 
if an element z E Ext$*(F2, F2) is not detected by restricting to any exterior algebra, then it 
is nilpotent when restricted to Ext Y*&(F2, F,). Since Y(1) = A, this is good enough. To 
perform the induction, we use Lemmas 2.1-2.3 below; note that Lemma 2.2 corresponds 
fairly closely to Step II of Cl], and Lemma 2.3 corresponds to Step III. Furthermore, the 
proofs of these two lemmas follow the general pattern for the proofs of these two steps, 
except that in Lemma 2.3 we use Lemma 2.1, a homological algebra calculation, instead of 
the computation involving the mapping telescope of a certain self-map of the spectrum GI, in 
Step III. 

We prove the theorem in the case where A is the mod 2 Steenrod algebra; the proof 
easily generalizes to any sub-Hopf algebra. We fix some notation: A is dual to 

A, = FzC51,52,53, . . .I; we dualize with respect to the monomial basis in A,, and set 
P: = (&?)*. The maximal exterior sub-Hopf algebras of A are E(n) = E[P:: t 2 n, 
0 < s I n - 11, for n 2 1 (see [S], for example). For n 2 1 let Y(n) be the sub-Hopf algebra 

dual to FZC5,, &,+ 1, . . .] (so we have A = Y(1) 1 Y(2) 53 Y(3) 2 . . .). 

Let z e Ext2*(F2, F2); we will also use z to denote the restriction I$,&) E Ext$(*,,(F,, F2). 
Assume that z is “not detected” by any exterior algebra E c A (i.e., the restriction z;(z) = 0 
for all E). We will show that z~Ext $$,,(F,, F2) is nilpotent by downward induction on n. 

First, since ExtSy’,&(F,, F,) = 0 if (2” - 1)s > t, then for n $. 0, z restricts to 0 over Y(n); 
this starts the induction. The inductive step is somewhat more involved. 

By replacing z by a suitable power if necessary, we may assume that z restricts to zero in 
Extt$+ i,(F,, F2). We want to show that z is nilpotent when restricted to Exttf*,,(F2, F,). 

Note that Y(n)// Y(n + 1) z E[P,“: s 2 01. Define a module Gk over this exterior algebra 
by Gk = E[Pi: k - 1 2 s 2 01; let G,, = F,. Note also that for each s, P,” is indecomposable 
in Y(n), so that the polynomial generators of Ext,*&,,Y(n+ ,,(F,, F,) = F,[h,,: s 2 0] map 
nontrivially to Extf;C,,(F,, F,). We also use h,, to denote their images in ExtF$,(F,, F2). We 
will show the following: 

LEMMA 2.1. For each s, there exist integers i and j so that hzizj = 0. 

LEMMA 2.2. For some k > 0, there is an integer N so that zN @I lGk = 0 in Extt&(G,, Gk). 

LEMMA 2.3. Zf for some k > 0 we have z @ lGk = 0, then there is an integer N’ so that 

zN’ 0 1Fr-1 = 0 in Extt&(G,_ Ir Gk_ 1). 

Lemmas 2.2 and 2.3 give us a downward induction on m to show that z @ lGm is 
nilpotent in Extti’,,(G,, G,); since G0 = Fz, this is good enough. Lemma 2.1 is used to prove 
2.3. 
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Proof of Lemma 2.1. This is in two parts: ifs L n, then h,, is nilpotent in Exttir,,(Fz, F,) 
(see [5), [9]). Otherwise, z restricts to zero in Ext$,*,,(F,, FZ); so z goes to zero in 
/I”<’ Ext$,,(Fz, F,). But by Eisen’s calculation (see [2], or Theorem A.1 in the appendix), 
&‘Extf,*,,(F,, F,) embeds in hn;1Ext$&,,(F2, F,), so z is zero in h,‘Exty*iC,,(Fz, F2). Hence 
in Ext@,,(F,, F,) we have I$,z = 0 for some i. Let z have filtration m, and choose i so that 
2’ > 2”- ‘m. We have Steenrod operations acting on Extt(*,,(F2, F2); index them as May 
does the P”‘s in [7, 11,8(c)-(d) J, so that Sqk raises filtration by k. Then applying 

sq 
2S-1m~q2s-zm ... c+2msqm 

to h$z = 0 gives h~~z2” = 0 for all s 5 n - 1. El 

Proof of Lemma 2.2. Fix a finite module M. We will show by induction on the dimension 
of M that for k % 0 and for any c1 E Ext$&(Gk, M), some power of z @ lGk annihilates a. We 
will apply this to M = Gk and a = l,,. 

We start with M = F,. We have a normal algebra extension 

Y(n + 1) 3 Y(n) -+ Y(n)// Y(n + 1). (1) 

Let D = Y(n)//Y(n + 1); as noted above, D 2 E[P,“: s 2 01. Note that for any k, Gk has 
a D-resolution 

G~+D@F~zh,,,s2kl, 

where lhnsj has bidegree (1,2”(2” - 1)). Let c = 2” - 1. Then for any bounded above 
D-module N, Ext$*(Gk, N) has a vanishing line of slope 2k~. 

We use a Cartan-Eilenberg spectral sequence associated to the extension (1): 

E2 Z Ext$‘*(Gk, Ext&&(F2, F2)) ==- EXt;f,P'*(Gk, F,). 

Extt,*,+ lj(F2, F,) h as a vanishing line of slope 2c - 1, so the Ez -term has a vanishing plane: 

E2p*q*r = 0 if r < 2kcp + (2c - 1)q. Of course, we have another such spectral sequence which 
computes Extf&(F2, F,), and the action of Ext;f*,,(F,, F,) on EXtfit,,(&, F,) manifests 
itself as a pairing of the two spectral sequences. We are interested in the z-action, so we want 
to find the permanent cycle z” in the Fz-spectral sequence that corresponds t0.z. So assume 
that Z^&R.qO.rO . Can p. = O? No, because z -0 under the restriction 
Extt&(F2, :,, -+ Ext** r(,,+ ,,(F,, F,), and this map is the edge homomorphism in the spectral 
sequence. Hence p. > 0. This is enough: now we choose k large enough so that 2’~ > po; 
then multiplication by a high enough power of 2” in E2 for Gk lands above the vanishing 
plane, and hence is zero. So for each aEExtF(*,)(Gk, F,), some power of z kills a. 

Assume this is true for all a E EXt~(*,,(& N), as long as dim N < m. Let M be any module 
of dimension m. By including a top-dimensional class into M, we get a short exact sequence 
of Y(n)-modules (up to suspension) 

0-+F2z Mz N-+0, 

with dim N = m - 1. Applying Ext&$,(G,, - ) gives a long exact sequence 

. * ’ + Exty*&(Gk, F2) 2 Extf&(G,, M) 2 Ext&f,,(Gk, N) + . . . . 

Given any aEExt?&(Gt, M), we can find i so that t,b,(?a) = 0, by induction. Then 
zia E:im ‘p*, say rp,(& = zia. But we can find j so that zjp = 0, so 0 = cp.+(zjp) = z’+ja. q 

Proof of Lemma 2.3. For each k there is a short exact sequence 

0-+~2kEGk_1-+Glr~Gk_,+0 
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(where, as above, c = 2” - l), which gives y E Ext:$“(Gr _ r, Gk_ 1). One can check that this 
element is the image of hnk under the map 

-@3 lc.., 

ExGiC,,Fz 7 F+--+ ExG:,,Gz - 1, Gt - I 1; 

i.e., y = hnk @I lc,_ 1. For brevity, let Ext(M) denote ExtF(*,,(M, F2). The short exact se- 
quence above gives a long exact sequence in Ext: 

h,, @ 1 
. . . + Ext(Gk_ r)- Ext(Gt-l)+ Ext(G,)-+ . . . . 

We may assume (by taking powers) that z 0 lcr = 0; we have a commutative diagram 

. . . -+ Ext(GI,-I)- Ext(Gli-l) + Ext(G,) -+ . . . 
/ 

. * * + Ext(Gk_r)---+ Ext(Gk_r) --+ Ext(GL) -+ . . . 

Since z @ lc*: Ext(G,) + Ext(G,) is $%f we have a factorization 

z@ lGr_, = (II,~@ 1)oZ: Ext(GP_r)-* Ext(Gk_r). 

A simple diagram chase then shows that (z @ lc*_ I)j = (hi, 0 1) 0 Z’ for all j. Thus for any i, 

(z @ l)i+j = (h$‘z’ @I 1) o 9; by choosing i and j large enough, we have (by Lemma 2.1) 
hf:jzi = 0. Hence zi+j @ lGk_, = 0, as desired. q 

This completes the proof of Theorem 1.1. U 

Remark 2.4. There are (at least) two obstacles to applying the method in this section to 
study non-nilpotence in ExtX*(C, F2), for C a bounded below coalgebra: the first is that we 
don’t have a calculation like Eisen’s for the appropriate localized Ext groups. In the proof of 
Theorem A.l, we can still embed the E2-term of the Y(n) spectral sequence in the E,-term 
for E(n), but in this case there is no reason for either spectral sequence to collapse. The 
second problem is that if C is not co-commutative, then we don’t have Steenrod operations 
acting on Ext+$,(C, F,), so knowing that some power of hn,, kills z doesn’t necessarily tell us 
anything about h,, acting on z’. 

So in this sense, Conjecture 1.2, the algebraic nilpotence conjecture, is harder than the 
original geometric version of [l]. This goes against the usual idea that typical algebraic 
results are easier than the corresponding results in homotopy theory. 
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APPENDIX 

EISEN’S CALCULATION 

In his thesis, Eisen proves the following result (with notation as above): 

THEOREM A. 1. 

Since his work has never been published, we outline a proof. 
For any Y(n)-module M, there is a spectral sequence, called the Margolis Adams spectral sequence 

(see [12] or [ll]), which computes h,’ Ex@,(M, F,). This spectral sequence is constructed as 
follows: note that (Pz)* = 0, so we can define the Pt-homology of any Y(n)-module M. We have 

Ext!;‘,,(Y(n)lY(n)P:, M) 

g @ F2 [h.olPSi @ H-j(M, P,O) for p > 0, (2) 
i+j=q 

Ext;$(Y(n)/Y(n)P,O, M)+H-q(M, P.“). 

(See [6, 19.2, 19.33.) So we can form a resolution 

. ..-+Q2-+Q1-+Q.,-M+0, 

where each Qi is a direct sum of (suspensions of) copies of Y(n)/Y(n)Pt and Y(n), so that this sequence 
is exact and is exact in Pf-homology. Applying Ext&(-, F2) to this gives a spectral sequence with 

El = Ex%,(Q,, Fz)r 

converging to Extf&(M, F2). Now invert hno--this is a permanent cycle in the spectral sequence with 
M = F2, so we still get a spectral sequence. This localized spectral sequence is the Margolis Adams 
spectral sequence. 

A simple computation using (2) and the properties of the Pt-homology of the resolution shows 
that 

~52 = ExtP,%,$f(M, P,“), Fz) @ FJh,f’], 

where Y(n).” = (H,( Y(n)/Y(n)Pt, P,“))op IS the algebra of operations for Pz-homology. We can 
compute this-see [6, 19.261: 

Y(n): z E[Pf: s and t as in A.1). 

A vanishing line argument shows that inverting h.0 presents no convergence problems. Let 
M = FZ; then we have a spectral sequence with 

E2 z Fz [h,o, h,G’, htp: s and t as in A.11 

TOP 32:4-F 
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converging to 

Go’ ExtV,,(F~, Fz). 

We claim that this spectral sequence collapses. To show this, we embed it in another Margolis Adams 
spectral sequence, this time over E(n) instead of Y(n). For this one we have 

E(n): = (H,(E(n)/E(n)P.O, P.“)yp 

= E(n)/E(n)P:, 

so 

E2 g F2 [&I, hrs: t 2 n, n > s 2 01. 

Again, there are no convergence problems. Also, since E(n) is an exterior algebra, we can compute 
h,%‘Ext@,,(F,, F,) and see that the spectral sequence for M = F2 collapses. Lastly, we observe that 
the map E(n) + Y(n) induces an embedding of the E2 -term for the Y(n)-spectral sequence into that for 
the E(n)-spectral sequence, and hence the Y(n) spectral sequence collapses as well. 0 

Remark A.2. There are a number of ways of performing this calculation, all based on finding 
a spectral sequence converging to Ext&( M, F,) and inverting h,o. Usually, the Ext calculations are 
straightforward and imply that the localized spectral sequence collapses; the main issue is to show that 
the localized spectral sequence converges to the right thing, namely h,&’ ExtB&(M, F2). 


