the older method. Potential for drug accumulation was more readily apparent in the simulated data using the new formulas. The spreadsheets used for the two methods appeared practically identical.

Conclusion: Consideration should be given to using these AUC formulas and adjusted targets unless all infusions are given strictly over 30 min.

doi:10.1016/j.ijid.2008.05.1080

66.035

Activity of Tigecycline against Clinical Pathogens Collected in Indonesia (2006)

J.D. Turnidge J.M. Bell, D. Subekti, R.N. Jones, I. Yusuf, L. Kusumawati, M.J. Dowzicky

1 Women’s and Children’s Hospital, Adelaide, Australia
2 ALERTAsia Foundation, Jakarta, Indonesia
3 JMI Laboratories, North Liberty, IA, USA
4 HASANADIN Hospital, Makassar, Indonesia
5 Haji Adam Malik Hosp, Medan, Indonesia
6 Wyeth Pharmaceuticals, Collegeville, PA, USA

Background: There are no published information on tigecycline potency and spectrum from isolates from Indonesia. As a component of the SENTRY Antimicrobial Surveillance Program (Asia-Pacific Region), we evaluated the activity of tigecycline tested against recent (2006) isolates from Indonesia by reference MIC methods.

Methods: Non-duplicate strains were consecutively collected from three medical centres in Indonesia. All isolates were tested against tigecycline using validated commercial broth microdilution panels (TREK Diagnostics), with concurrent acceptable quality control and CLSI interpretations (M100-S18) for comparison agents. Tigecycline breakpoints published by the United States - Food and Drug Administration were applied for each indicated species or genus, and the proposed/provisional Acinetobacter spp. breakpoint (≤2 mg/L) per Jones et al. (2007) was applied.

Results: A total of 383 (307 Gram-negative and 76 Gram-positive) isolates were evaluated. Tigecycline was highly active against the top 10 most frequently isolated non-pseudomonal pathogens which comprised 82% of all strains. The highest tigecycline MIC₉₀ results (2 mg/L) were recorded for non-indicated species, Proteus-Providencia. P. aeruginosa was also not significantly inhibited by tigecycline (MIC₉₀ >8 mg/L; data not shown).

Conclusions: Tigecycline demonstrated excellent activity against all the commonly isolated pathogens from Indonesia, including those being multidrug-resistant to other antimicrobial classes. Tigecycline shows promise for therapy of indicated, antimicrobial-resistant species in this nation and indeed, the entire Asia-Pacific region.

doi:10.1016/j.ijid.2008.05.1081

66.036

Tigecycline Activity Against Isolates from Medical Centers Located in China, Hong Kong and Taiwan (2006): A SENTRY Antimicrobial Surveillance Program Report

M. Chen, J.M. Bell, J.D. Turnidge, R.N. Jones, M.J. Dowzicky

1 Peking Union Medical College Hospital, Beijing, China
2 Women’s and Children’s Hospital, Adelaide, Australia
3 JMI Laboratories, North Liberty, IA, USA
4 Wyeth Pharmaceuticals, Collegeville, PA, USA

Background: Tigecycline is a glycylcycline class agent recently introduced into clinical practice worldwide as an alternative therapy for various evolving multidrug-resistant (MDR) bacterial infections. China, Hong Kong (HK) and Taiwan medical centers (14) were monitored in 2006 by the SENTRY Program for tigecycline spectrum/susceptibility and compared to more than 25 agents.

Methods: CLSI methods were used for testing 2,595 isolates with US-FDA (tigecycline product package insert) and CLSI (M100-S18) breakpoints applied. Resistance phenotypes were screened per CLSI M100-S18 and genotypic-resistances by sequencing when required. Tigecycline was not active against P. aeruginosa (MIC₉₀ >4 µg/ml), data not shown.

Results: Among 2,595 strains processed, the most frequently tested pathogens and resistance patterns were: S. aureus (545, 40% MRSA) > E. coli (366, 52% ESBL) > K. pneumoniae (265, 33% ESBL) > E. faecalis (218, linezolid resistance detected) > A. baumannii (211, 29% carbapenem-resistant) > S. pneumoniae (175, 27/80% penicillin/macroline-resistant) > E. faecium (169, 2.4% VanA-type glycopeptide resistance). Fluoroquinolone resistance was very high among E. coli (64%), K. pneumoniae (21%) and A. baumannii (62%). MRSA rates varied by nation: Hong Kong and China (38%) and Taiwan (69%), but oxacillin resistance did not effect tigecycline activity. Metallo-β-lactamases were noted in Enterobacteriaceae (+1%). Tetracycline resistance was frequent (30–86%) in Gram-positive and -negative organisms; but no tigecycline-resistant or non-susceptible strains were detected among indicated species except for enterococci (2.3%).

Conclusions: Tigecycline retained high activity and treatment potential against MDR pathogens tested from China, Hong Kong and Taiwan. Continued monitoring of the tigecycline class agents in these nations appears prudent as the glycylcyclines become widely used.

doi:10.1016/j.ijid.2008.05.1082

66.037

Antimicrobial Activity of Tigecycline Tested against Contemporary Bacterial Isolates Collected in Australia (2006)

J.M. Bell, J.D. Turnidge, R.N. Jones, M.J. Dowzicky

1 Women’s and Children’s Hospital, Adelaide, Australia
2 JMI Laboratories, North Liberty, IA, USA
3 Wyeth Pharmaceuticals, Collegeville, PA, USA

Background: Tigecycline has been marketed in Australia for over one year. As part of the SENTRY Antimicrobial Surveillance Program (Asia-Pacific Region), we evaluated the