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Abstract 

We investigate the coloring properties of mixed interval hypergraphs having two families of 
subsets: the edges and the co-edges. In every edge at least two vertices have different colors. The 
notion of a co-edge was introduced recently in Voloshin (1993. 1995): in every such a subset 
at least two vertices have the same color. The upper (lower) chromatic number is defined as a 
maximum (minimum) number of colors for which there exists a coloring of a mixed hypergraph 
using all the colors. 

We find that for colorable mixed interval hypergraph H the lower chromatic number x(H) $ 2, 

the upper chromatic number ,7(H) = 1x1 -s(N), where s(H) is introduced as the so-called sicvc 
number. A characterization of uncolorability of a mixed interval hypergraph is found. namely: 
such a hypergraph is uncolorable if and only if it contains an obviously uncolorable edge. 

The co-stability number xr/(H) is the maximum cardinality of a subset of vertices which 
contains no co-edge. A mixed hypergraph H is called co-perfect if i((H’) = x./(/f’) for e\rcry 
subhypergraph H’. Such minimal non-co-perfect hypergraphs as monostars and cycloids Cu, ~~I 
have been found in Voloshin (1995). A new class of non-co-perfect mixed hypergraphs called 
covered co-bi-stars is found in this paper. It is shown that mixed interval hypergraphs are co- 
perfect if and only if they do not contain co-monostars and covered co-bi-stars as subhypergraphs. 

Linear time algorithms for computing lower and upper chromatic numbers and respective 
colorings for this class of hypergraphs are suggested. 

1. Basic notions 

The following problem was described in [4]: 

“Let X = {XI ,x2 , . ,xn} be a set of sources of power supply such that the action 

time of any source is one quantum of time and all sources acting for any given quantum 

of time switch on and switch off synchronously. 

Consider the following general constraints on their common work: 

(1) let .d = {.41,A2 ,..., Ak}, A; 2 X, i = 1,. . ,k, k 3 1, be a family of subsets of 

X such that at least two sources from every A, act for the same quantum of time: 
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(2) let & = {E,, El,. . , E,}, E, CX, j = 1,. . ,m, m 3 1, be a family of subsets of 

X such that at least two sources from every lZj act for different quanta of time. 

Call the set X with such constraints a system and denote it by H = (X, S U 8). 

Suppose that system H is active (“working “,“alive”) during any quantum of time if at 

least one source is active for this time. 

We consider the following problem: how can we schedule the system H in such CL 

way thut the time of working (which may be understood also as the lifetime of the 

whole system) is longest (shortest)“? 

As it was shown in [4] this problem contains the coloring problem in partial case 

and leads to the notion of the upper chromatic number of a hypergraph. In this paper 

we give a complete and effective solution of the problem provided that there exists a 

linear ordering of the set X such that the given subsets induce intervals in this ordering. 

Throughout this paper we use the terminology of [4]. The notions not explained here 

were taken from [ 11. Let X = {xi ,x2,. . .,x,}, n 2 1, be a finite set, S = {Sl, S& . , Sp}, 

p 2 1, be a family of subsets of X. The couple H = (X, S) is called a hypergraph 

with the vertex set X and a family of subsets S if Up=, Sj LX (cf. [l]). For any subset 

Y C X we call the hypergraph H/Y = (Y, S’) the subhypergraph of a hypergraph H if 

S’ consists of those subsets of S that are completely contained in Y. 

In this paper we consider the hypergraphs H = (X, S), JX( = n such that S = ~2 U 8, 

where & and & are two subfamilies of S. If d # 0 and d # 8, then arrange that 

Jd = {AI,...A), I = {l,...,k}, 67 = {E, ,...,E,}, J = {l,...,m}. 

We call every Ej, j E J, an edge, and every Aj, iE I, a co-edge. In special cases 

if d= 0 then H = (X,8) = H8 will be called simply a hypergraph, if b= 0, then 

H = (X, &‘) = H,d will be called co-hypergruph. In general case, if ~2 # 0 and/or 

8 # 0 then H = (X, d U S) will be called a mixed hypergraph. Let us have t 2 1 

colors. 

A strict coloring of a mixed hypergraph H = (X,dUU) with t colors is a mapping 

c : X --) { 1,2,. . . , t} such that the following four conditions hold: 

(1) any co-edge Ai, IAil 3 2, i EZ, has at least two vertices of the same color; 

(2) any edge Z?i, [E/I 3 2, jE J, has at least two vertices colored differently; 

(3) the number of used colors is exactly t; 

(4) all the vertices are colored. 

So, strict colorings exist only for such t, that 1 < t < n. Two strict colorings are 

called different if there exist such two vertices that have the same color for one coloring 

and different colors for the other. The maximum (minimum) t for which there exists 

a strict coloring of a mixed hypergraph H with t colors is called the upper (lower) 

chromatic number of H and is denoted by X(H)(x(H)). 

In the problem above, if we denote the sources by vertices of a hypergraph and 

the given constraints by edges and co-edges, then in any hypergraph coloring every 

monochromatic subset of vertices represents a set of sources that may be switched on 

synchronously. Therefore, the initial scheduling problem is equivalent to the problem 
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of finding the lower and upper chromatic numbers and corresponding colorings of a 

mixed hypergraph. 

Let r,(H) be the number of strict colorings of a mixed hypergraph H with t 3 1 

colors. For each such hypergraph we associate the vector R(H) = (TI,Y~. . r;,)t R” 

and call it the chromatic spectrum of H. Hence R(H) = (0.. . .O. r,, . .I.?, 0,. .O). 

We will need the following three rules from the splitting-contraction method devel- 

oped in [3, 41: 

(1) if jE,l = I, then R(H) = R(H -E;); if ]E,J 22 and if E,cEj, then R(H) = 

R( H -- E,), i,.j E J (during); 

(2) if lil,l = I, th en R(H) = R(H -A,); if ]A,1 22 and if Ai&A,, then R(H) = 

R( H -- A, ). i,j E I (co-ckurinq); 

(3) if A, = {xp,x,}, f or some qE I and .q,x/ EX. such that A, # E, for any .Y E.J. 

then R(H) = R(Hl) where HI = (Xl,&’ U A’), XI = (X\{.q.x/}) U {I.}, ~3 is a new 

vertex; ifq, EE,, orx,EE;, ,~EJ, then Ej = (E,\{.q..x~})U{y}, otherwise E: = E,,; if 

XL CZA,, or x,EA,. iE1, then A,’ = (Ai\{ x~,x,})U {J,}, otherwise Al = Ai (c.ontr.action). 

If for a mixed hypergraph H there exists at least one strict coloring, then it is called 

colorable. Otherwise H is called uncolorable. For uncolorable mixed hypergraph wc 

suppose that x(H ) = f(H) = 0. 

Note, that if .d = 0, then i(H) = M and we have usual colorings of a hypergraph. 

If B q = (i). then x(H) = 1. 

For each II 3 2 one may easily construct some uncolorable hypergraph with .r/ # 

fl and A # Q?, for which x(H) = j(H) = 0, and this is possible only for mixed 

hypergraphs. 

A set T iX is called a bi-transversal of a hypergraph H = (X,8) if IT n Eil 3 2 

for every ,~GJ. The minimum cardinality of a bi-transversal is denoted by rz(H). If 

d = 8 or 6’ contains at least one element of cardinality 1, then we put 12(H) = 0. 

Bi-transversal of a co-hypergraph H,, is called ho-hi-t~r~nscprsal. By r(H ) we denote 

the transversal hypergraph number [I]. 

A mixed hypergraph H = (X, .d ii A), .d # 01, is called a co-monostar if the 

following conditions hold: 

(I‘) t(H.c/) = 1; 

(2) 72(H-/) 3 3. 
A mixed hypergraph is called a co-bi-star if there exists a co-bi-transversal {_v, J,} 

of cardinality 2, where {x, y} is not an edge. 

Definition 1.1. A mixed hypergraph H = (X, .d U 6) is called a mixed interval hyper- 

graph, if there exists a linear ordering of the vertex set X such that each edge E,, ,j EJ 

represents an interval, and each co-edge A,, iEI, represents an interval in this ordering. 

The mixed interval hypergraph is illustrated by Fig. 1 where edges are pictured as 

usually (by circle if cardinality is 1. by segments of line if cardinality is 2 and by 
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Al A4 

AZ A3 
J-h 
/ 

El 2 
; 

Fig. 1. H = (X, STI U 8) represents a mixed interval hypergraph, where X = {I, 2,3,4,5,6} is a lineary 

ordered set of vertices, & = {AI,A~,A~,A.+}; 8 = {EI,&,E~,&}. 

ovals if cardinality is > 3). Co-edges are represented by rectangles. Such rules are 

valid throughout the paper. 

2. Coloring properties of mixed interval hypergraphs 

Definition 2.1. In a mixed hypergraph H = (X, .s&’ U 8) an edge Ej, j EJ, 1Ej 1 2 2, is 

called uncolorable if for any pair of vertices X, y E Ej there exists a sequence (xA izlA2z2 

. . .Al_lz,_lAjy) such that: 

(1) ZI,Z~,...,Z[~I EE/, 
(2) A,E&, i = 1,. . .) I, 

(3) Al = {X,ZI)+42 = {ZI,Z2),...,& = {Z/L,,Y}. 

The example of uncolorable edge is shown by the Fig. 2. 

Theorem 2.2. A mixed intervul hypergruph H = (X, LX! u 8) is colorable if nnd only 

if it does not contain uncolorable edges. In this case we have x(H) < 2. 

Proof. (+) Obvious. 

-+ Let H = (X, d U 8) be a mixed interval hypergraph without uncolorable edges 

and X = {xi , . . .,x,} be such an ordering of its vertices on the real line that every 

Ai, iEZ, is an interval and every Ei, jcJ is an interval in this ordering. 

Color the vertices x1,x2 , . ,x, in this order alternatively using the colors 1,2, 1,2,. . 

until we encounter a co-edge of cardinality 2. At the second vertex of such a co- 

edge we reverse the order of the coloring. Since H is without uncolorable edges, such 

procedure gives a coloring of H. 0 

Remark. Note that in general case a mixed hypergraph without uncolorable edges is 

not necessarily colorable. Consider as example H = (X, ~2 U a), X = { 1,2,3,4}, JZ? = 

{(1,2,3);(1,2,4)1; 8 = {(1,2);(2,3);(3,4);(2,4)). 

Remark. Theorem 2.2 leads to a linear time algorithm for computing the lower chro- 

matic number of a mixed interval hypergraph. 
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Fig. 2. Example of uncolorable edge El in a mixed interval hypergraph. 

Definition 2.3. A mixed hypergraph H = (X..d u 8) is called reduced if 

1.41 3 3. iEl, IEjI 2 2. jEJ> 

and no edge (co-edge) is included in another edge (co-edge). 

Such procedures as clearing, co-clearing and contraction being applied as much as 

possible to an arbitrary colorable mixed hypergraph H, lead to the reduced mixed 

hypergraph H’ with the same chromatic spectrum [4]. This may be done in polynomial 

time. Therefore, let us consider further in this paper only reduced mixed hypergraphs 

(if the contrary is not indicated). 

Definition 2.4. A mixed hypergraph H = (X, d U 6) is called a covered co-b&tar if 

and every pair {x. 4’) C ni,, A; is an edge of cardinality 2. 

The example of a covered co-bistar is shown by Fig. 3 

Theorem 2.5. IJ’ a mixed intercal hyperyruph H = (X. .cl U 6) represents LI cowret~ 

co-hi-star. then j(H) = n - 2. 

For a mixed hypergraph H = (X, .d U 8) a set P C X is called co-stable if it does 

not contain any co-edge Ai, iE1. The co-stability number r,,(H) is the maximum 

cardinality of a co-stable set of H. 

Theorem 2.6 (Voloshin [4]). For any mixed hyprrgruph H = (X, .cd u 6 ) 

7(H) < w(H). 

A mixed hypergraph H is called co-perfect hypergraph if for every subhypergraph 

H’ the following equality holds: 

j(H’) = ^A.&H’). 

As it was shown in [4] any co-bi-star is a co-perfect and any co-monostar is not a 

co-perfect mixed hypergraph. 
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A4 

Fig. 3. Mixed hypergraph H = (X, ss! U 8) represents a covered co-bistar. 

Theorem 2.7. Every covered co-bi-star H = (X,& U 8) is not u co-per&t mixed 

hypergraph. 

Proof. It is clear that for every covered co-bi-star H x,&H) = n - 1. 

Let us suppose that i(H) = n - 1 and consider some strict coloring of H with 

y1 - 1 colors. Hence, there are only two vertices that have the same color. Therefore 

they belong to all co-edges. On the other hand, the intersection of all co-edges induces 

a usual complete graph in H and must be colored overall differently. Consequently, 

f(H) # n - 1, and the theorem follows. 0 

Theorem 2.8. A mixed interval hypergraph is co-perjkct if’ and only if it does not 

contain co-monostars and covered co-bi-sturs as subhypergruphs. 

Proof. (=+) It is evident because co-monostars [4] and covered co-bi-stars (Theorem 

2.7) are not co-perfect. 

+ Let H = (X, J&’ U 8) be a mixed interval hypergraph without co-monostars and 

covered co-bi-stars. It is clear that for any Y C X the subhypergraph 

H/Y = (Y,B, u 8,) 

is also a mixed interval hypergraph. So, it is sufficient to prove only that 

X(H) = a,/(H). 

Consider H,d = (X, ~2) that is an interval co-hypergraph. Since H.-J does not contain 

co-monostars, we have that 
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Fig. 4. Set of co-edges {A 1, A3, Ah} forms a sieve in a mixed interval hypergraph H = (X. .-/ u R ) 

implies 

for any II c I. 

Consider the line graph [l] of H,d, that is the graph G = (&, V), where (A,,A,)E V 

if and only if A, n Aj # 8, i, jE I. It is easy to see that in these conditions every 

clique of graph G induces a co-bi-transversal for the respective set of co-edges in 

H,d. Therefore minimum covering of graph G by cliques corresponds to the minimum 

co-bi-transversal of H. Let Ct , C2, . . . , C,7 be the cliques of such minimum covering of 

G. Consequently, ~,d((Hd) = X,&H) = PI - s. 

Since H does not contain covered co-bi-stars, for any clique CL, i = 1,2,. ,s there 

exists a co-bi-transversal, say {xi, yi}, that is not an edge of cardinality 2. All these 

co-bi-transversals are different because C, # Cj implies that there exist Ak EC,, and 

A/ E Cj, with Ak nA/ = 0. So, we can color the vertices x1, ~1 with the first color, x2, _Q 

with the second color, . ,x,, ys with the s-th color. All the remaining vertices color 

overall differently with the colors s + 1,s + 2,. . . , n - s. 

Thus we obtain the coloring of H.,i with n --s colors, and consequently, the coloring 

of H with x,/(H) colors, hence the theorem follows. 0 

Definition 2.9 ( Voloshin [5]). In a mixed hypergraph H = (X,.&k?) the set of indices 

It c I and a respective subfamily {Ai}, i ~11 of co-edges is called a sieve, if for any 

x. yc:X and any j, k EZ, the following implication holds: 

(x, y) E A, n An- =+ (x, y) = El E 8, for some 1 E J. 

The maximum cardinality of a sieve of a hypergraph H is called the sieve-number 

of H and is denoted by s(H). 

An example of a sieve is illustrated by the Fig. 4. 

So, any co-edge, any co-matching are examples of sieves in mixed hypergraphs. 

Theorem 2.10 (Voloshin [5]). If’H = (X,.&U&) is u mixed interval hypergruph, then 

f(H) = IX/ - s(H). 
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Proof. Let the set X be ordered from left to right in order xi <x2 < . <x,. First we 

show that j(H) < 1x1 -s(H). Let us suppose that j(H) 3 1x1 -s(H)+ 1 and consider 

some strict coloring of H with j(H) colors. Let &i cd be a sieve of a maximum 

cardinality, Idi I = s(H) = s, and, moreover, the co-edges from &i are ordered 

according to their left extremity from left to right: ~&‘i = {Ai, AZ,. . ,A,}. Since H is 

reduced, this ordering is uniquely determined. Let xi, yi EAi, x, < yi, i = 1,. . . ,s be 

the vertices colored with the same color ci in each Ai E &I. We consider the following 

two possible cases. 

Case a: No two consecutive colors ci, i = 1 , . . . , s coincide. There can be repeated 

non-consecutive colors. However, if even all Ci, i = 1,. . ,s are different, the total 

number of used colors is at most 

s + 1x1 - 2s = (XI -s, 

which contradicts the assumption. 

Case b: There exists at least one monochromatic sequence cl = cl+1 = . = CI+~ 

forsome l<l<s-t, t>l. 

Since &i is a sieve, l{xi,n} fl {xi+i,yi+l}l < 1, i = l,...,s - 1, and therefore 

XI < YI d x1+1 < .Yl,l G . . . 6 X1+t < y/+t. 

If even YI = x1+1, Y/+I = x1+2,. . . , Y~+~-I = xl+[, and thus t + 2 vertices are colored 

with the same color, and if even the remaining s - t - 1 colors are all different, then 

the total number of used colors is 

Hence, we again have a contradiction. Therefore, j(H) d 1x1 - s(H). 

We show now that we can color H with /XI --s colors, i.e. X(H) 3 IX/ -s(H), by 

induction on s(H). Let s(H) = 1. Then H does not contain co-monostars and covered 

co-bi-stars. It implies that H is a co-perfect mixed hypergraph (Theorem 2.8), and, 

moreover, ct,d(H) = /XI - 1. Hence we have 

j(H) = a&H) = 1x1 - 1 = 1x1 -s. 

Suppose that our assertion j(H) 3 1x1 - s is true for any mixed interval hypergraph 

H’ with s(H’) < s(H). 

Let ~41 = {Al,..., A,}, s = s(H) be again a maximum and ordered from left to right 

sieve of a mixed interval hypergraph H = (X, d U a), and Al = (XI ,x2,. . . ,xk), k 3 3 

be the first co-edge of this sieve. 

If A1 is not the very left co-edge of H, then we can construct another maximum 

sieve of H replacing Al in &‘I by the very left co-edge of H. Therefore let us assume 

without loss of generality that AI is the very left co-edge of H. Consider the following 

possible cases. 

Case 1: (xk_i,xk) $! 8. Colorxi,xz , . . . ,x&2 respectively with the colors 1,2,. . . , k-2 

and color xk_i ,-xk with the color k - 1. If xk_ 1 EAT for some Aj Ed, Aj # Al, then 

xk EAj because no co-edge is included in another one. Therefore any such co-edge Aj 

is colored correctly. 
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Consider the subhypergraph 

HI = H/{Xk>Xk+l,. . .,xn} = (&,.d’ u 8’) 

with 

s(H,) = s(H) - 1, IX11 = 1x1 -k + 1. 

By virtue of the induction hypothesis ;C(Hl ) = (Xl 1 - s(Hl ). Color HI with j(Hl ) 
colors using the colors k - 1, k, . . . , k + j(H1) - 2 in such a way that the vertex .q. is 

colored with the color k - 1. We obtain a coloring of the initial hypergraph H, and 

j(H) 3 k - 1 + jl(H,) - 1 = IX, I - s(H1) + k - 2 

=1X1-kfl-s(H)+l+k-2=/X1-s(H). 

&se 2: (Xk_l,Xk)E&. COhXI,X2,.. . ,Xk_ 1 with the colors 1,2,. . , k- 1 respectively, 

and color xk with the color k - 2. If xk__2 EA, for some Aj E &‘,Aj # Al, then xk EAi 

because no co-edge is included in another one. Hence any such co-edge Aj is colored 

correctly. Consider the subhypergraph 

H2 = H/{Xk-l,Xk>. ..,x,} = (X2,d2 u&2) 

with 

s(H2)=s(H)-1, 1X2/=1X/-kf2. 

By the induction hypothesis j(H2) = IX,\ -s(H2). Color H2 with z(H2) colors using 

the colors k-2,k- l,...,k+j(H2)-3 in such a way that the vertices q-1 and xX_ 

are colored with the colors k - 1 and k - 2, respectively. We again obtain a coloring 

of the initial hypergraph H and thus 

j(H)>k-2+j(H2)-1 =1X2(-s(H2)+k-3 

=jXl-k+2-s(H)+l+k-3=1X/-s(H). q 

Corollary 2.11. For any colorable mixed interval hypergraph H = (X, dU&), B # 8, 

the ,following statements are equivalent: 

(1) X(H) = X(H); 
(2) s(H) = 1x1 - 2. 

The mixed hypergraph in Fig. 5 is an example of a mixed interval hypergraph with 

s(H) = /X( - 2. 

Corollary 2.12. For any interval co-hypergraph with IAil > 2, igZ, the ,following 

statements are equivalent: 

(1) X(H) = X(H) = 1; 
(2) s(H) = (XI - 1; 

(3) H is a co-path. 
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‘43 

‘41 A5 

‘41 -44 

1 E, 2 Ez 3 Es 4 E., 5 E5 

Fig. 5. 

Corollary 2.13. For any colorable mixed interval hypergraph H = (X, d U 8) 

1 = x(&) d x(H8) = X(H) d X(H) = 1x1 -s(H) d X(k) d XC&) = n. 

Corollary 2.14. If H = (X,d) is a co-perfect inter& co-hypergraph, v(H) 

z(H) are the maximum cardinality oj a matching and the minimum cardinality 

transversal [ 11, respectively, then 

z(H) = 1x1 -s(H) = 1x1 - v(H) = 1x1 - z(H) = a&H). 

and 

of a 

Proof. It follows from the fact that in this case any maximum sieve is a matching (H 

is without monostars), and for interval hypergraph z(H) = v(H) [l]. q 

Corollary 2.15. For any mixed interval hypergraph H = (X, A? U 8) the following 

statements are equivalent: 

(1) H is co-perject; 

(2) H does not contain co-monosturs and covered co-bi-stars; 

(3) uny maximum sieve in every subhypergruph of H is u co-matching. 

Proof. It follows immediately from Theorems 2.8 and 2.10. q 

Remember that we consider reduced mixed hypergraphs. 

Definition 2.16. A mixed interval hypergraph H = (X, B U &) is called complete, if 

in linear ordering of X any two consecutive vertices form an edge and any three 

consecutive vertices form a co-edge. 

Hence for complete mixed interval hypergraph l&l = n - 2, lb( = n - 1. Fig. 5 

shows an example of such a hypergraph. 

Theorem 2.17. For any mixed interval hypergruph H = (X, ~2 U 8) with 1x1 > 2 the 

jollowing statements are equivalent: 

(1) H is complete; 

(2) R(H) = (0, l,O,. . ,O). 
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Proof. ( 1) + (2): Obvious. 

(2) =F (1). Consider the unique strict coloring of H with two colors, say, I and 

2. If (x/,x,+r) $Z t” for some 1, 1 d I d IZ - 1, th en reverse the color at any vertex 

xf. t 2 L + 1. Since lA,l >, 3, iE1, we obtain one more strict coloring of 14, which 

contradicts the assumption. 

If (x~,x~+~,x~+~) g .d for some I, 1 < I < n - 2, then consider all the vertices 

xi, t > 1 + 2 having the same color as ,u/+2. Re-color these vertices with the color 3. 

Hence, we again obtain one more strict coloring of H. 3 

In contrast with x,f, the problem to find the chromatic spectrum R(H) for general 

mixed interval hypergraphs is hard. The only known method is the splitting-contraction 

algorithm described in [4]. 

A new approach may be developed using probabilistic methods of coloring. In this 

case parameters such as the middle chromatic number x m = (z + ;0/2 and the breadth 

of chromatic spectrum b(H) = ;C ~ x + 1. as introduced in [4]. are important. We can 

give here their exact values: 

Corollary 2.18. (1) For any mixed irltrruul I?ypercgraph 

%m(H) = ;(I4 -s(W) + 1, b(H)= 1x1 -s(H)- 1. 

(2) For an)’ interval co-hypergraph 

Xm(H) = +(1x1 - s(H) + I>, h(H) = /x/ - s(H). 

(3) For any interval hypergraph 

)Im(H) = y, h(H) = IX/ - I 

We now describe an algorithm for finding the upper chromatic number, sieve and 

optimal coloring for a mixed interval hypergraph H = (X, .d U 8). 

As it was shown in [2], for a given hypergraph H one can decide in time proportional 

to vertex number plus sum of all edges cardinalities whether or not H is an interval 

hypergraph. We suppose here that the recognition problem is solved and we know the 

linear ordering of vertices of the mixed interval hypergraph. 

So, let H = (X, .d U 8) be an arbitrary (generally not reduced) mixed interval 

hypergraph, and X = {xt,x2,. . .,x,} be the linear ordering of its vertex set in such a 

way that every Ai, iEl, and every E,, jEJ forms an interval. 

Algorithm CHI-UPPER 

Input: A mixed interval hypergraph H = (X,.d U R), and a linear ordering X = 

{xI>x2,“‘,-G,); 

Output: j(H), optimal coloring, list SIEVE of co-edges forming maximum sieve. 

1. Do all clearings and co-clearings in H = (X. .rri’ U 6). 
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2. Search for an uncolorable edge. If such an edge exists, then output “H is uncol- 

orable, 2 = 0” and STOP. 

3. Find a linear ordering of d from left to right. 

4. Choose the first co-edge A of H and include A in SIEVE. 

5. If the two last vertices of A constitute an edge of & then go to step 7. Color all 

the uncolored vertices before A and all vertices of A, except the last one, with the new 

different colors. Color the last vertex of A with the color of a preceding vertex. 

6. Search for the first co-edge A’ beginning not before the last vertex of A. If 

successful, then include A’ in SIEVE and go to step 5 with A = A’. Otherwise, color 

all uncolored vertices with different new colors and go to step 9. 

7. Color all uncolored vertices before A and all the vertices of A, except the last 

one, with the new different colors. Color the last vertex of A with the color of a vertex 

which is preceding to the last but one. 

8. Search for the first co-edge A” beginning not before the last but one vertex of 

A. If successful, then include A” in SIEVE and go to step 5 with A = A”. Otherwise, 

color all uncolored vertices with different new colors and go to step 9. 

9. Output j(H), coloring, SIEVE. End. 

Theorem 2.19. The algorithm CHI-UPPER correctly jinds the upper chromatic num- 
ber and respective coloring of any mixed interval hypergraph in linear time. 

The algorithm CHLUPPER correctly finds the maximum sieve of any reduced 
mixed interval hypergraph in linear time. 

Proof. Correctness of algorithm is based on Theorem 2.10. If we use the linked in- 

cidence lists as data structures, then clearing, co-clearing, search for the uncolorable 

edge, linear ordering of L& (steps l-3) may be implemented in linear time on size of 

a hypergraph expressed by vertex number plus sum of all edges cardinalities. 

Since the steps 4-9 require less time than hypergraph size, we have that the whole 

algorithm may also be implemented in linear time. 0 

Remark. The problem to find a maximum sieve for an arbitrary mixed hypergraph is 

hard. In partial case, when H is a co-hypergraph without monostars, the problem is 

equivalent to find a maximum matching [l]. 

We conclude this paper by the following 

Open Problem: Characterize all mixed hypergraphs with 

j(H) = (XI -s(H). 
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