The last subconstituent of the Hemmeter graph

John S. Caughman, IVa, Elizabeth J. Hartb, Jianmin Mac

aDepartment of Mathematics, Portland State University, P.O. Box 751, Portland, OR 97207, USA
bDepartment of Mathematics, Penn State University, University Park, State College, PA 16802, USA
cDepartment of Mathematics, Oxford College of Emory University, Oxford, GA 30054, USA

Received 15 June 2006; accepted 9 August 2007
Available online 1 October 2007

Abstract

We prove that when \(q \) is any odd prime power, the distance-2 graph on the set of vertices at maximal distance \(D \) from any fixed vertex of the Hemmeter graph \(\text{Hem}_D(q) \) is isomorphic to the graph \(\text{Quad}_{D-1}(q) \) of quadratic forms on \(\mathbb{F}_q^{D-1} \).

© 2007 Elsevier B.V. All rights reserved.

MSC: 05E30

Keywords: Distance-regular graph; Quadratic form; Hemmeter graph

1. Introduction

In this paper we prove that when \(q \) is any odd prime power, the distance-2 graph on the set of vertices at maximal distance \(D \) from any fixed vertex of the Hemmeter graph \(\text{Hem}_D(q) \) is isomorphic to the graph \(\text{Quad}_{D-1}(q) \) of quadratic forms on \(\mathbb{F}_q^{D-1} \). When \(D \) is even, this result follows from a consideration of the halved graph, as described in [2, p. 287]. Our proof establishes the result for arbitrary \(D \). For more about these graphs and our proof techniques, see [6–9].

The paper is organized as follows. In Section 2, we fix notation and recall some basic properties of distance-regular graphs. In Section 3, we motivate our result by recalling some recent work concerning bipartite \(Q \)-polynomial distance-regular graphs. In Sections 4 and 5, we review the dual polar graphs of type \(C_m(q) \), the Hemmeter graphs, the Ustimenko graphs, and the quadratic forms graphs. In Section 6, we prove the main result.

2. Distance-regular graphs

We begin with some basic concepts concerning distance-regular graphs. We refer the reader to [1,2] for a more thorough introduction. Let \(\Gamma = (X, R) \) denote a finite, connected, undirected graph, without loops or multiple edges, with vertex set \(X \), edge set \(R \), path-length distance function \(\delta \), and diameter \(D := \max \{ \delta(x, y) | x, y \in X \} \). For each \(x \in X \) and each integer \(i \), set \(\Gamma_i(x) := \{ y \in X | \delta(x, y) = i \} \). We call \(\Gamma_i(x) \) the \(i \)th subconstituent of \(\Gamma \) with respect to \(x \). We abbreviate \(\Gamma(x) := \Gamma_1(x) \).

E-mail addresses: caughman@pdx.edu (J.S. Caughman, IV), hart@math.psu.edu (E.J. Hart), jma3@learnlink.emory.edu (J. Ma).

0012-365X/S - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.08.029
Recall Γ is regular, with valency k, if $|\Gamma(x)| = k$ for all $x \in X$. We say Γ is distance-regular, with intersection numbers p_i^h, whenever $|\Gamma_i(x) \cap \Gamma_j(y)| = p_i^h$ for all integers h, i, j and all x, y \in X with $d(x, y) = h$. When Γ is distance-regular, we abbreviate $c_i := p_i^{i-1}$, $a_i := p_i^i$, $b_i := p_{i+1}^i$ ($0 \leq i \leq D$). Note that a distance-regular graph Γ is regular with valency $k = b_0$. Moreover $c_i + a_i + b_i = k$ for all i.

Recall Γ is bipartite if there exists a partition of the vertex set $X = X^+ \cup X^-$ such that X^+ and X^- contain no edges. A distance-regular graph is bipartite if and only if the intersection numbers satisfy $f(x, y) = f(y, x)$.

Then by [4, Corollary 6.2] there exist integers A_i and B_i for each i such that Γ is bipartite dual polar graph $D_D(q)$ whenever there exists a partition of the vertex set $X = X^+ \cup X^-$ such that X^+ and X^- contain no edges.

We next review the Q-polynomial property. Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter D. Let $\text{Mat}_X(C)$ denote the set of matrices with complex entries and whose rows and columns are indexed by X. Let A denote the matrix in $\text{Mat}_X(C)$ with yz-entry if $d(y, z) = 1$ and 0 otherwise, for all $y, z \in X$. We refer to A as the adjacency matrix for Γ. Let $0, \theta_1, \ldots, \theta_D$ denote the distinct eigenvalues of A, and let E_0, E_1, \ldots, E_D denote the matrices in $\text{Mat}_X(C)$ representing orthogonal projection onto the corresponding maximal eigenspaces of A. We refer to E_0, E_1, \ldots, E_D as the primitive idempotents of Γ. We say Γ is Q-polynomial with respect to the ordering E_0, E_1, \ldots, E_D provided that, for each i ($0 \leq i \leq D$), the matrix $E_i = p_i(E_1)$ for some (entrywise) polynomial of degree i. We say Γ is Q-polynomial whenever there exists a Q-polynomial ordering of its primitive idempotents.

3. Bipartite Q-polynomial distance-regular graphs

In this section, we recall some recent results concerning bipartite Q-polynomial distance-regular graphs.

First, suppose Γ is bipartite distance-regular with diameter D. Fix $x, y \in X$ with $d(x, y) = D$. For each i, j define $\Omega_{i,j} := \Gamma_i(x) \cap \Gamma_j(y)$. For each $z \in \Omega_{i,j}$, define $N_{i,j}(z) := |\Gamma(z) \cap \Omega_{i,j}^+|$, $S_{i,j}(z) := |\Gamma(z) \cap \Omega_{i,j}^-|$, $E_{i,j}(z) := |\Gamma(z) \cap \Omega_{i,j}^{+1}|$, and $P_{i,j}(z) := |\Gamma(z) \cap \Omega_{i,j}^{-1}|$. Now suppose further that Γ is Q-polynomial with diameter $D \geq 3$. Then by [4, Corollary 6.2] there exist integers $n_{i,j}, s_{i,j}, e_{i,j}, w_{i,j}$ such that $N_{i,j}(z) = n_{i,j}$, $S_{i,j}(z) = s_{i,j}$, $E_{i,j}(z) = e_{i,j}$, and $P_{i,j}(z) = w_{i,j}$ for any vertices $x, y, z \in X$ with $d(x, y) = D$ and $z \in \Omega_{i,j}$. As a consequence, the graph $I_{D,x}^2$ is distance-regular for any $x \in X$ [4, Theorem 9.2].

Suppose Γ is bipartite and Q-polynomial with $D \geq 12$. Then by [5], Γ is an even cycle, a Hamming cube, the antipodal quotient of a Hamming cube of even diameter, or there is an integer $q \geq 2$ such that Γ has intersection numbers

$$c_i = \frac{q^i - 1}{q - 1} \quad (1 \leq i \leq D), \quad b_i = \frac{q^D - q^i}{q - 1} \quad (0 \leq i \leq D - 1).$$

There are two known families whose parameters satisfy the last condition: the bipartite dual polar graphs $D_D(q)$ (when q is any prime power), and the Hemmeter graphs Hem$_D(q)$ (when q is an odd prime power). It is unknown whether there are other such graphs.

Let us now briefly survey the graphs $I_{D,x}^2$ for some of the graphs mentioned above. If Γ is an even cycle or a Hamming cube, then $I_{D,x}^2$ is just an isolated vertex. If Γ is the antipodal quotient of a Hamming cube of even diameter, then $I_{D,x}^2$ is the folded Johnson graph $\tilde{J}(4D, 2D)$. If Γ is a bipartite dual polar graph $D_D(q)$ where q is a prime power, then $I_{D,x}^2$ is the graph $\text{Alt}_D(q)$ of alternating forms on F_{q}^{D}. (For more about these graphs, see [2, Chapter 9]). In Section 6, we show that if Γ is the Hemmeter graph Hem$_D(q)$, where q is an odd prime power, then $I_{D,x}^2$ is the graph $\text{Quad}_{D-1}(q)$ of quadratic forms on F_{q}^{D-1}.

4. Dual polar graphs and the Hemmeter graph

Let m be a positive integer and let q be an odd prime power. Let F_{q}^{2m} denote the vector space of dimension $2m$ over the finite field of order q. An alternating form on F_{q}^{2m} is a function $f: F_{q}^{2m} \times F_{q}^{2m} \rightarrow F_{q}$ such that for all $x, \beta \in F_{q}$ and all $x, y, z \in F_{q}^{2m}$,

1. $f(xz + \beta y, z) = xf(x, z) + \beta f(y, z)$,
2. $f(y, x) = -f(x, y)$.

We say f is nondegenerate if for every nonzero $x \in F_{q}^{2m}$, there exists $y \in F_{q}^{2m}$ such that $f(x, y) \neq 0$. Notice that since q is odd, condition (ii) implies $f(x, x) = 0$ for all x.

3057
Fix a nondegenerate alternating form \(f \) on \(\mathbf{F}_{q}^{2m} \). A subspace \(W \) of \(\mathbf{F}_{q}^{2m} \) is isotropic if \(f(x, y) = 0 \) for all \(x, y \in W \). By Witt’s theorem, the maximal isotropic subspaces all have dimension \(m \). (See [2, p.274] for more information).

The dual polar graph \(C_{m}(q) \) has as vertices the maximal isotropic subspaces of \(\mathbf{F}_{q}^{2m} \). Two such vertices \(\gamma, \delta \) are adjacent if and only if \(\dim(\gamma \cap \delta) = m - 1 \). By [2, Theorem 9.4.3] the graph \(C_{m}(q) \) is distance-regular with diameter \(m \) and intersection numbers

\[
c_i = \frac{q^i - 1}{q - 1} \quad (1 \leq i \leq m), \quad b_i = \frac{q^{m+1} - q^{i+1}}{q - 1} \quad (0 \leq i \leq m - 1).
\]

We now recall the construction of the Hemmeter graph. Given a graph \(\Gamma = (X, R) \), let \(\hat{\Gamma} \) denote the graph with a pair vertices \(x^+, x^- \) for every vertex \(x \in X \), and edges

\[
\{x^+y^-|xy \in R\} \cup \{x^+x^-|x \in X\}.
\]

The graph \(\hat{\Gamma} \) is called the extended bipartite double of \(\Gamma \). By [2, Theorem 1.11.2] the graph \(\hat{\Gamma} \) is distance-regular (with diameter \(D + 1 \)) if and only if \(\Gamma \) is distance-regular (with diameter \(D \)) and \(b_i + c_{i+1} = k + 1 \) (\(1 \leq i \leq D - 1 \)). So it follows from (1) that the extended bipartite double of \(C_{m}(q) \) is distance-regular, with diameter \(m + 1 \) and intersection numbers

\[
c_i = \frac{q^i - 1}{q - 1} \quad (1 \leq i \leq m + 1), \quad b_i = \frac{q^{m+1} - q^i}{q - 1} \quad (0 \leq i \leq m).
\]

This bipartite graph is known as the Hemmeter graph and we denote it by \(\text{Hem}_{m+1}(q) \).

5. The Ustimenko graph and the quadratic forms graph

Let \(\Gamma = (X, R) \) denote an arbitrary bipartite graph with partition \(X = X^+ \cup X^- \). Define \(\frac{1}{2}\Gamma^+ \) to be the graph with vertex set \(X^+ \) and where \(x, y \) are adjacent whenever \(\partial \Gamma(x, y) = 2 \). Define \(\frac{1}{2}\Gamma^- \) similarly on the vertex set \(X^- \). Then \(\frac{1}{2}\Gamma^+ \) and \(\frac{1}{2}\Gamma^- \) are called the halved graphs of \(\Gamma \).

If \(\Gamma \) is bipartite and distance-regular then the halved graphs are distance-regular (see [2, Proposition 4.2.2]). It follows that the halved graphs of \(\text{Hem}_{m+1}(q) \) are distance-regular. (In fact, they are isomorphic to each other since \(\text{Hem}_{m+1}(q) \) is vertex-transitive [3, Theorem 2.5].) This graph has diameter \(d := \lceil (m + 1)/2 \rceil \) and intersection numbers

\[
c_i = \frac{(q^{2i} - 1)(q^{2i-1} - 1)}{(q^2 - 1)(q - 1)} \quad (1 \leq i \leq d), \quad b_i = \frac{q^{2i+1} - q^{m+1-2i} - 1}{(q^2 - 1)(q - 1)} \quad (0 \leq i \leq d - 1).
\]

This halved graph is known as the Ustimenko graph and we denote it by \(\text{Ust}_{(m+1)/2}(q) \).

Given any graph \(\Gamma = (X, R) \), let \(\Gamma_{1/2} \) denote the graph with vertex set \(X \) and where \(x, y \) are adjacent whenever \(\partial \Gamma(x, y) = 1 \) or 2. The graph \(\Gamma_{1/2} \) is called the distance 1 or 2 graph of \(\Gamma \). It is known [2, Theorem 4.2.18] that if \(\Gamma \) is distance-regular with diameter \(D \), then the graph \(\Gamma_{1/2} \) is distance-regular if and only if \(\Gamma \) satisfies

\[
b_{i-1} + c_{i+1} - a_i = k + c_2 - a_1 \quad (2 \leq i \leq D - 1).
\]

Notice that the dual polar graph \(C_{m}(q) \) satisfies the above condition, so its distance 1 or 2 graph is distance-regular. Indeed, it follows from the construction (or see [2, Theorem 1.11.2(iii)]) that if \(\Gamma = C_{m}(q) \) then the graph \(\Gamma_{1/2} \) is isomorphic to the Ustimenko graph \(\text{Ust}_{(m+1)/2}(q) \).

Now let \(q \) denote an odd prime power. Let \(B \) denote any symmetric \(m \times m \) matrix over \(\mathbf{F}_q \). The quadratic form associated with \(B \) is the function \(f_{B} : \mathbf{F}_q^m \to \mathbf{F}_q \) given by \(f_{B}(x) = x^{\top}Bx \). The quadratic forms graph \(\text{Quad}_{m}(q) \) is defined to be the graph whose vertices are the symmetric \(m \times m \) matrices over \(\mathbf{F}_q \) and where \(B_1, B_2 \) are adjacent whenever \(\text{rank}(B_1 - B_2) = 1 \) or 2. (Indeed, in this case, where \(q \) is odd, the quadratic form graphs are the distance 1 or 2 graphs of the so-called symmetric bilinear form graphs. See [2, p. 290]). By [2, Theorem 9.6.3] the quadratic form graph \(\text{Quad}_{m}(q) \) is distance-regular, with diameter \(d = \lfloor (m + 1)/2 \rfloor \) and intersection numbers

\[
c_i = q^{2i-2} \frac{(q^{2i} - 1)}{(q^2 - 1)} \quad (1 \leq i \leq d), \quad b_i = \frac{q^{4i} (q^{m+1-2i} - 1)(q^{m-2i} - 1)}{(q^2 - 1)} \quad (0 \leq i \leq d - 1).
\]
6. The last subconstituent of the Hemmeter graph

We are now ready to prove our main result.

Theorem 6.1. Let \(q \) denote an odd prime power, and let \(\Gamma \) denote the Hemmeter graph \(\text{Hem}_D(q) \) of diameter \(D \). Then for any vertex \(x \), the graph \(\Gamma^2_D(x) \) is isomorphic to the quadratic forms graph \(\text{Quad}_{D-1}(q) \).

Proof. First, suppose \(D \) is even. Then by the construction, for any vertex \(x \), the graph \(\Gamma^2_D(x) \) is precisely the subgraph induced on the last subconstituent of the halved graph \(U_{D/2}(q) \). By [2, p. 287] this graph is isomorphic to \(\text{Quad}_{D-1}(q) \), as desired.

Now suppose \(D \) is odd and write \(D = m + 1 \). Let \(X = X^+ \cup X^- \) denote the bipartition of the vertex set of \(\Gamma \). Pick any vertex \(\gamma^+ \in X^+ \) and note that since \(D \) is odd, \(\Gamma_D(\gamma^+) \) is contained in \(X^- \). Indeed, it is easily shown that

\[
\Gamma_D(\gamma^+) = \{ \delta^- | \delta = m \text{ in } C_m(q) \}. \tag{3}
\]

Now, without loss of generality, we may take the form \(f \) on \(C_m(q) \) to be

\[
f(x, y) = x^t \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} y.
\]

And by the transitivity of \(\text{Aut}(C_m(q)) \) (see [2, p. 286]), we may take \(\gamma = \text{cols} \left(I \right) \). We then observe that

\[
\{ \delta | \delta = m \text{ in } C_m(q) \} = \left\{ \text{cols} \left(\begin{array}{c} A \\ I \end{array} \right) | A = A^t \text{ and } A \text{ is } m \times m \right\}. \tag{4}
\]

So by (3) and (4) we have

\[
\Gamma_D(\gamma^+) = \left\{ \delta^- | \delta = \text{cols} \left(\begin{array}{c} A \\ I \end{array} \right), \text{ where } A = A^t \text{ is } m \times m \right\}.
\]

Let \(\theta \) denote the function that associates, to each vertex \(\delta^- \in \Gamma_D(\gamma^+) \), the matrix \(A \), where \(\delta = \text{cols} \left(\begin{array}{c} A \\ I \end{array} \right) \). Then \(\theta \) is clearly a bijection between \(\Gamma_D(\gamma^+) \) and the vertex set of \(\text{Quad}_m(q) \). So it remains to show that for any \(\delta^-, \beta^- \in \Gamma_D(\gamma^+) \),

\[
\tilde{\delta}(\delta^-, \beta^-) = 2 \iff \text{rank} (\theta(\delta^-) - \theta(\beta^-)) = 1 \text{ or } 2.
\]

To see this, let \(\delta = \text{cols} \left(\begin{array}{c} A \\ I \end{array} \right) \) and \(\beta = \text{cols} \left(\begin{array}{c} B \\ I \end{array} \right) \).

Now observe that since \(\Gamma \) is the extended bipartite double of \(C_m(q) \),

\[
\tilde{\delta}(\delta^-, \beta^-) = 2 \iff \tilde{\delta}(\delta, \beta) = 1 \text{ or } 2 \text{ in } C_m(q).
\]

But by the definition of \(C_m(q) \),

\[
\tilde{\delta}(\delta, \beta) = 1 \text{ or } 2 \text{ in } C_m(q) \iff \text{dim (span} (\delta \cup \beta)) = m + 1 \text{ or } m + 2.
\]

But since

\[
\text{span} (\delta \cup \beta) = \text{cols} \left(\begin{array}{c} A \\ I \\ B \\ I \end{array} \right) = \text{cols} \left(\begin{array}{c} A \\ I \\ B - A \\ 0 \end{array} \right),
\]

the above conditions hold if and only if \(\text{rank} (B - A) = 1 \) or 2. Recall this is the criterion for adjacency in \(\text{Quad}_m(q) \). So \(\Gamma^2_D(x) \) is isomorphic to \(\text{Quad}_m(q) \) as desired. \(\Box \)

Remark. To put the above result into context, recall that the Hemmeter graphs \(\text{Hem}_D(q) \) have the same intersection numbers as the bipartite dual polar graphs \(D_D(q) \) (see [2, p. 279]). When \(q \) is odd, however, the graphs are not isomorphic. The bipartite dual polar graphs are related to several other families of graphs, and the relationships that
exist among the bipartite dual polar graphs $D_D(q)$, the halved dual polar graphs $\frac{1}{2}D_D(q)$, the dual polar graphs of type $B_{D-1}(q)$, and the alternating form graphs $\text{Alt}_D(q)$ are depicted in Fig. 1. The same relationships exist among the Hemmeter graphs, the Ustimenko graphs, the dual polar graphs of type $C_m(q)$, and the quadratic form graphs, as depicted in Fig. 2. The content of Theorem 6.1 is represented by the top right-most arrow. For more about these graphs, the reader is referred to [2, pp. 274–284].

Acknowledgements

The authors would like to thank the referees for their helpful comments and suggestions.

References