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SUMMARY

We report a role for Nogo receptors (NgRs) in
macrophage efflux from sites of inflammation
in peripheral nerve. Increasing numbers of mac-
rophages in crushed rat sciatic nerves express
NgR1 and NgR2 on the cell surface in the first
week after injury. These macrophages show re-
duced binding to myelin and MAG in vitro,
which is reversed by NgR siRNA knockdown
and by inhibiting Rho-associated kinase. Four-
teen days after sciatic nerve crush, regenerat-
ing nerves with newly synthesized myelin have
fewer macrophages than cut/ligated nerves
that lack axons and myelin. Almost all macro-
phages in the cut/ligated nerves lie within the
Schwann cell basal lamina, while in the crushed
regenerating nerves the majority migrate out.
Furthermore, crush-injured nerves of NgR1-
and MAG-deficient mice and Y-27632-treated
rats show impaired macrophage efflux from
Schwann cell basal lamina containing myelin-
ated axons. These data have implications for
the resolution of inflammation in peripheral
nerve and CNS pathologies.

INTRODUCTION

Macrophages respond rapidly to injury and other insults to

the nervous system and play an important role in tissue re-

pair. Successful repair also requires that these cells be

signaled to leave the site of injury appropriately and thus

prevent chronic inflammation. Macrophages, primarily of

hematogenous origin, are recruited into the degenerating

distal segment of the injured nerve between 2 and 3 days

after injury (Bendszus and Stoll, 2003; Bruck, 1997; Muel-

ler et al., 2003; Perry et al., 1987) and increase in number in

the first 2 weeks. The initial breakdown of the axon itself

occurs rapidly within the first day, undergoing granular de-

generation of cytoskeletal structures via the action of cal-

cium-dependent endogenous proteolytic activity and

does not require the presence of macrophages (Coleman
and Perry, 2002; George et al., 1995). Macrophages

phagocytose axonal and myelin debris particularly in the

first 2 weeks and decrease in number thereafter (Bend-

szus and Stoll, 2003; Mueller et al., 2003). The factors

that regulate the recruitment and activation of macro-

phages during Wallerian degeneration have been inten-

sively studied (De et al., 2003; Rotshenker, 2001; Stoll

and Jander, 1999). However, little is known of the mecha-

nisms that signal the clearance or elimination of macro-

phages from the nerve at the end of the period of Wallerian

degeneration. Apoptosis has been reported to account for

the loss of only a very small number of macrophages

(Kuhlmann et al., 2001; Mueller et al., 2003). The available

evidence suggests that the majority of these macro-

phages leave the nerve via the circulation to the spleen

and draining lymph nodes (Kuhlmann et al., 2001). The sig-

nals that trigger the end-stage phagocytic macrophages

to migrate out of the nerve are still not known.

We show here that macrophage clearance from lesioned

peripheral nerves is mediated in part by Nogo receptors

(NgRs). Three members of the NgR family, NgR1, NgR2,

and NgR3, have recently been identified (Venkatesh

et al., 2005). Of these, NgR1 has been extensively studied

in neurons and shown to induce repulsive effects on the

growth cone leading to its collapse, and possibly to inhibi-

tion of axon regeneration (Filbin, 2003; Fournier and Stritt-

matter, 2001; McKerracher and David, 2004). NgR1 binds

to three axon growth inhibitory molecules in myelin: Nogo-

A, myelin-associated glycoprotein (MAG), and oligoden-

drocyte-myelin glycoprotein (OMgp), while NgR2 binds

selectively to MAG but not Nogo-A and OMgp (Filbin,

2003; Venkatesh et al., 2005). We now provide evidence

that NgR1 and NgR2 are expressed on the surface of

phagocytic macrophages and that interaction between

these receptors and their ligands such as MAG, associated

with newly synthesized myelin wrapping around regener-

ated axons, mediates the efflux of macrophages out of

the Schwann cell basal lamina. The efflux of macrophages

into the endoneurial space appears to be an important first

step in their eventual migration out of the injured nerve, re-

sulting in the resolution of the inflammatory response after

peripheral nerve injury. Our current studies therefore reveal

a novel role (to our knowledge) for NgRs in the immune cell

response in injured peripheral nerves and may also have

implications for other nervous system pathologies.
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Figure 1. NgR1 Expression Is Lost in

Axons after Crush Injury

Double immunofluorescence labeling of NgR1

(A) and neurofilament (B) in a longitudinal sec-

tion of uninjured rat sciatic nerve shows coloc-

alization of NgR1 in axons ([A–C], arrows). At 3

days after crush injury, NgR1 expression is not

seen in degenerating axons (D–F) but is ob-

served in a few cells containing neurofilament

debris (arrows in [D] and [F]). These NgR1+ cells

increase in number at 5 days post-injury ([G–I],

arrows), but the newly regenerated neurofila-

ment+ axons do not express NgR1 (I). Luxol

fast blue staining for myelin (K) of 5 day post-

crush nerve shows that NgR1+ cells contain

myelin debris ([J–L], arrows), indicating that

these cells are macrophages. Micrographs

are of longitudinal sections of injured nerve,

2 mm distal to the crush site. Scale bar, 100 mm.
RESULTS

Loss of NgR1 Expression in Degenerating Axons

Robust expression of NgR1 is detected in intact axons of

the normal adult rat sciatic nerve (Figures 1A–1C). The ax-

onal labeling with the anti-NgR1 antibody was confirmed

by its colocalization with profiles containing neurofilament

(Figure 1C). Within 3 days after a sciatic nerve crush injury

in adult rats, all the axons degenerate. This is evident from

the lack of neurofilament immunoreactivity (Figure 1E) and

is in keeping with previous reports of rapid calcium-

dependent degeneration of axons that does not require the

presence of macrophages (George et al., 1995). The label-

ing with the anti-neurofilament antibody is confined to

small globular structures that are likely to be the remnants

of degenerated neurofilaments (Figure 1E). The NgR1 im-

munoreactivity that is normally associated with axons is

therefore completely lost at 3 days post-crush injury (Fig-

ures 1D and 1F). The loss of neurofilament and NgR1 is not

due to phagocytosis by macrophages because at 3 days

post-injury they are in the initial stages of recruitment,

and there are only a few macrophages in the degenerating

nerve (Bruck, 1997; Mueller et al., 2003).

NgR Expression in Macrophages

in the Degenerating Nerve

Regenerating axons are present in the distal nerve seg-

ment by 5 days after crush injury, but these axons do

not express NgR1 (Figures 1G–1I). This immunoreactivity

returns several weeks later when the axons have reinner-

vated their targets (data not shown). However, a small

number of NgR1+ cells appear in the degenerating nerve

at day 3 (Figure 1D) and increase in number thereafter

(Figure 1G). At 3 days, these NgR1+ cells contain neurofi-
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lament debris (Figure 1F), but this is not evident at day 5

(Figure 1I). Furthermore, double labeling tissue sections

with Luxol fast blue, a histological stain for myelin, reveals

that the NgR1+ cells colocalize with degenerating myelin

ovoids (Figures 1J–1L), suggesting that they may be mac-

rophages that have phagocytosed myelin debris. Addi-

tional evidence that these NgR1+ cells are also OX-42+

confirm that they are macrophages (Figures 2A–2F). Mac-

rophages in the degenerating crush-injured nerves almost

double in number between days 3 and 5 post-injury and

remain elevated at day 7 (Figure 2G). The percentage of

these OX-42+ macrophages that express NgR1 increases

from approximately 30% at day 3 to 75% at day 7 post-

lesion (Figure 2H). An increase in NgR1 mRNA is detected

in 3 and 7 day lesioned sciatic nerve (Figure 2I), providing

evidence that the NgR1 detected in macrophages is due

to de novo synthesis after injury. Furthermore, the NgR1

immunoreactivity in tissue sections appears to be present

around the periphery of these cells, especially by day 7

post-crush (Figures 2D–2F), suggesting a cell surface

localization.

To confirm that NgR1 is on the cell surface of the mac-

rophages, we dissociated macrophages from 3 and 7 day

post-crush rat sciatic nerves by mild trypsinization, plated

the cells onto poly-L-lysine (PLL) coated round glass cov-

erslips for 2 hr, and incubated the live cells with NgR1 an-

tibodies to detect cell surface labeling. These experiments

show punctate cell surface localization of NgR1 (Figures

3A–3F). The percentage of OX-42+ macrophages that ex-

press NgR1 on the cell surface almost doubles between

days 3 and 7 post-crush (Figure 3G), similar to that seen

in vivo, as noted above. Furthermore, NgR1 immunoreac-

tivity is detected in 70.6% ± 2.0% and 81.5% ± 10.5%

of very strongly OX-42-immunostained macrophages at
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Figure 2. Macrophages in the Degener-

ating Nerve Express NgR1

Double immunofluorescence labeling of injured

rat sciatic nerve at 5 days post-crush (A–C)

shows that OX-42+ macrophages (B) express

NgR1 (large arrows in [A]–[C]). OX-42+ macro-

phages that do not express NgR are also seen

(small arrow in [A]–[C]). Tissue section of a 7

day crush-injured nerve (D–F) shows that the

NgR1+ immunoreactivity (D) of OX-42+ macro-

phages (E) appears to be largely localized to

the cell surface of these large phagocytic cells

(arrowheads in [D]–[F]). Micrographs are of lon-

gitudinal frozen sections at 3 mm distal to the in-

jury site; (C) and (F) show triple labeling for

NgR1, OX-42, and DAPI. Scale bar, 50 mm.

Quantification of the number of OX-42+ macro-

phages (G), and the percentage of OX-42+ mac-

rophages that express NgR1 (H) in the distal

segment of 3, 5, and 7 day post-crush nerves

reveal an increase in macrophage number and

the proportion that express NgR1 between 3

and 7 days. Data represent mean ± SEM; *p <

0.001. n = 3 for each age group. (I) RT-PCR

analysis of NgR1 expression in sciatic nerve

shows increasing upregulation of NgR1 mRNA

in the distal nerve segment at 3 and 7 days after

crush injury. PPIA is used as a control (see Ex-

perimental Procedures for more details).
3 and 7 days, respectively, indicating that NgR1 is mainly

expressed by more activated macrophages (arrows in Fig-

ures 3A–3F), as increased expression of the aMb2 integrin

recognized by the OX-42 antibody is an indicator of

a greater activation state. Since macrophages in the le-

sioned nerve are largely derived from blood monocytes
that enter the nerve during the first week after injury (Bend-

szus and Stoll, 2003), we assessed the percentage of

blood monocytes that express NgR1. Only 17.2% ±

4.3% of the monocytes show NgR1 immunoreactivity on

the cell surface (Figure 3G). This includes cells that show

relatively low as well as higher levels of OX-42 staining,
Figure 3. Cell Surface Expression of

NgR1 by Macrophages

Montages showing immunofluorescence label-

ing of live cultures of macrophages harvested

from 3 (A–C) and 7 day (D–F) crush-injured

nerves reveal that OX-42+ macrophages (A

and D) show punctate cell surface labeling for

NgR1 (B and E). Note that the more activated

macrophages (i.e., stronger OX-42 immunore-

activity) express more NgR1 (arrows). Scale

bar, 20 mm. (G) Only a small percentage of

OX-42+ blood monocytes express NgR1. The

percentage of OX-42+ macrophages in the le-

sioned nerves that show cell surface NgR1+ la-

beling increases significantly from monocytes

and between 3 and 7 days post-crush injury.

Data represent mean ± SEM; *p = 0.003, **p <

0.001. n = 3 for each group.
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suggesting that the latter may be cells that were activated

by the purification process. Only 11.5% ± 3.1% of mono-

cytes that express low levels of OX-42 are NgR1+, indicat-

ing that only a small number of monocytes express NgR1

in the resting state. These data suggest that increasing

numbers of macrophages express NgR1 after they enter

the degenerating nerve and become activated, i.e., after

they phagocytose axonal and myelin debris. The delayed

expression of NgR1 in macrophages after they enter the

nerve also suggests that it is unlikely to have a role in

the recruitment of these cells into the damaged nerve.

We also assessed the cell surface expression of NgR2 in

cells dissociated from the lesioned nerves as described

above. NgR2 is expressed on the cell surface of

53.4% ± 1.8% of the macrophages from 3 day and

74.1% ± 1.9% of 7 day post-lesioned nerve (Figures 4A–

4C and 4J). As with NgR1, only 16.5% ± 3.3% of mono-

cytes purified from the blood were NgR2+, of which only

12.3% that were weakly OX-42+ express NgR2. Since

both NgR1 and NgR2 are GPI-anchored proteins, we ex-

amined whether their transmembrane binding partners,

p75NTR and TROY (a member of the TNF receptor family)

(Filbin, 2003; Park et al., 2005; Shao et al., 2005; Yama-

shita et al., 2002), are expressed by these macrophages.

p75NTR was not expressed by macrophages at any time

points (Figures 4D–4F); however, TROY was expressed

by 65.7% ± 4.7% and 69% ± 5% of OX-42+ macrophages

from 3 day and 7 day lesioned nerves, respectively (Fig-

ures 4G–4I and 4K). Although there was no significant dif-

ference in the numbers of cells expressing TROY at 3 and 7

days post-injury, only 20.8% of blood monocytes express

TROY (Figure 4K), of which only 15.8% that were weakly

OX-42+ express TROY. TROY, like NgR1 and NgR2, is

therefore expressed in monocytes/macrophages largely

after they enter the lesioned nerve and become activated.

NgR/Ligand Interactions Mediate Reduced Binding

and Repulsion of Macrophages to Myelin

Since NgR1 is known to mediate the inhibitory or repulsive

effects of several myelin proteins (Nogo-A, MAG, and

OMgp) to cause collapse of axonal growth cones and

NgR2 mediates MAG-induced neurite growth inhibition,

we first assessed whether macrophages that express

these receptors show repulsion to myelin, i.e., show re-

duced binding to a myelin substrate in vitro. Macrophages

were dissociated from the distal segment of 3 and 7 day

crushed nerves and plated onto myelin-coated tissue cul-

ture wells for 3 hr. The number of macrophages from 7 day

post-crush nerves that bind to the myelin substrate is re-

duced by 35% as compared to macrophages obtained

from 3 day crushed nerves (Figure 5A), which correlates

well with the increase in the percentage of macrophages

that express NgR1 and NgR2 at 7 days post-injury.

To obtain direct evidence for the role of NgRs in reduc-

ing the binding of 7 day post-injury macrophages to mye-

lin, we assessed the effect of selective gene silencing

(knockdown) of NgR1 and NgR2 by small interfering

RNA (siRNA). For these experiments, macrophages from
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7 day crushed sciatic nerves were harvested and trans-

fected in vitro with either a cocktail of NgR1 and NgR2

siRNA or negative control siRNA containing a nonspecific

sequence. Cells were first monitored daily by immunoflu-

orescence labeling, which showed a sustained knock-

down of NgR1 and NgR2 cell surface protein expression

for up to 4 days in culture (see Figures S1A and S1B in

the Supplemental Data available online). The greatest

knockdown efficiency was achieved 2 days after transfec-

tion, with a 69% reduction of NgR1+ cells and 72% reduc-

tion of NgR2+ cells. The percentage of NgR1+ and NgR2+

Figure 4. Cell Surface Expression of NgR2 and TROY by

Macrophages

Micrographs showing macrophages dissociated from the distal

stumps of 7 day crushed adult rat sciatic nerves. Macrophages were

identified by immunofluorescence staining with the OX-42 antibody.

(A), (D), and (G) show cell surface labeling for NgR2 (B), and TROY

(H) but not for p75NTR (E). Panels (C) and (I) are merged images of

panels (A) and (B) and (G) and (H), respectively, and panel (F) is a merge

of panels (D) and (E) plus the nuclear DAPI stain. Scale bar, 20 mm. (J)

Only 16.5% of OX-42+ monocytes express NgR2 on the cell surface. In

contrast, about 53% of the macrophages from nerves 3 days after in-

jury express NgR2 (*p<0.001) and this number increases further to

about 74% at 7 days post-injury (**p = 0.002). (K) TROY is expressed

on the cell surface of about 20% of blood monocytes, and this number

increases rapidly to between 65% and 70% in macrophages obtained

from 3 and 7 day crushed nerves. The values at 3 and 7 days are sig-

nificantly higher than for blood monocytes (*p = 0.003). Data represent

mean ± SEM; n = 3 for each group.
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Figure 5. NgR/Ligand Interactions and

RhoA Activation Mediate Reduced Bind-

ing and Repulsion of Macrophages to

Myelin

(A) Graph showing the binding of macrophages

obtained from 3 and 7 day crush-injured nerves

plated on myelin. The binding of these cells is

significantly reduced at 7 days post-injury

(*p = 0.025).

(B) Slot blots show a reduction in NgR1 and

NgR2 protein expression in macrophages

from 7 day lesioned nerves, 2 days after trans-

fection with siRNA specific for NgR1 and NgR2

(+) as compared to macrophages treated with

nonspecific siRNA (�). Quantification of the

slot blot data (graphs) indicates a knockdown

in NgR1 and NgR2 expression of approxi-

mately 70%, 2 days after transfection with spe-

cific siRNA (+, *p < 0.001).

(C) Graph of macrophage binding to myelin

substrate 2 days after transfection with specific

(+) or nonspecific (�) siRNA. Binding is signifi-

cantly increased after NgR1 and NgR2 siRNA

knockdown (+) (*p = 0.03). The values were nor-

malized to that obtained from poly-L-lysine

(PLL) coated areas of the same wells (see Ex-

perimental Procedures).

(D) Treatment with Y-27632 (10 mM) of macro-

phages harvested from nerves 3 and 7 days af-

ter injury increases binding of these cells to my-

elin-coated substrates (*p = 0.03). Controls

were treated with vehicle.

(E) A similar reversal of the decrease in binding

to recombinant MAG-coated substrates is also

detected when cultures were treated with Y-

27632 (*p = 0.028).

(F and G) Micrographs showing cultures of the migration assay with macrophages from 3 and 7 day lesioned nerves. Note that the majority of 7 day

macrophages are repulsed at myelin interface ([G], arrows), while a greater number of 3 day macrophages migrate across the myelin interface (F). The

dashed lines indicate the myelin interface. Scale bar, 200 mm.

(H) Quantification of the migration assay shows a marked reduction in migration of macrophages from 7 day lesioned nerves versus 3 day lesioned

nerves across the myelin interface (*p = 0.004).

(I) Quantification of the migration assay using macrophages from 7 day crushed nerves, 2 days after transfection with NgR1/NgR2-specific (+) or non-

specific control (�) siRNA. The inhibition of migration seen with cells treated with control siRNA (�) was completely reversed with cells after NgR1/

NgR2 siRNA knockdown (+) (*p < 0.001).

All data represent mean ± SEM; n = 3.
macrophages transfected with negative control siRNA

was not significantly different from nontransfected macro-

phages over 4 days in culture (p = 0.959). The knockdown

at 2 days in the NgR-specific siRNA-treated macrophages

was further confirmed by slot blot analysis that showed

a 78% and 70% reduction in NgR1 and NgR2 protein ex-

pression, respectively, as compared to control siRNA-

treated cells (Figure 5B). We then assessed the ability of

macrophages from 7 day lesioned nerves, 2 days after

transfection with NgR1/NgR2 siRNA, to bind to myelin.

The assay used was similar to the assay described

above. The NgR1/NgR2 siRNA-transfected macrophages

showed a 55% increase in binding to the myelin-coated

substrate as compared to control siRNA-transfected

macrophages (Figure 5C). The binding to myelin by control

(nonspecific) siRNA-transfected macrophages was simi-

lar to that observed with nontransfected macrophages

from 7 day lesioned nerves. These results therefore pro-
vide direct evidence that NgR1 and NgR2 on macro-

phages mediate the reduced binding of these cells to

myelin.

NgR1, with its coreceptors, has been shown to mediate

growth cone collapse and axon growth inhibition via acti-

vation of RhoA and downstream molecules such as Rho-

associated kinase (ROK) (Filbin, 2003; Fournier et al.,

2003; McKerracher and David, 2004). We therefore exam-

ined whether RhoA plays a role in the reduction of macro-

phage binding to myelin by treating dissociated cultures of

macrophages obtained from the distal segment of 3 and 7

day crushed nerves with Y-27632, an inhibitor of ROK.

Blocking ROK increased binding of macrophages from

3 and 7 day crushed nerves to myelin up to 100% and

81% of PLL-control values, respectively (Figure 5D).

These results suggest that the expression of NgR1 and

NgR2 by phagocytic macrophages reduces their binding

to myelin via a RhoA-dependent mechanism. To further
Neuron 53, 649–662, March 1, 2007 ª2007 Elsevier Inc. 653
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assess whether these effects are mediated via MAG, one

of the axon growth inhibitors found in myelin, we carried

out similar in vitro assays with recombinant MAG-coated

wells. MAG was chosen because (1) it is a ligand for

both NgR1 and NgR2; (2) NgR2 selectively binds only

MAG and not Nogo-A and OMgp; and (3) MAG is ex-

pressed in peripheral nerve myelin but Nogo-A is not.

We found that, like the effects of myelin substrates, the

binding of macrophages was also inhibited by recombi-

nant MAG-coated substrates, and this effect could also

be reversed by treatment with the ROK inhibitor Y-

27632. Blocking ROK increased binding of macrophages

obtained from 7 day lesioned nerves to MAG-coated sub-

strates up to 86% of the PLL-control value (Figure 5E). This

reduction in binding to myelin and MAG may reflect a re-

pulsive effect of myelin proteins on macrophage behavior.

To further assess whether this is a repulsive interaction,

we designed a migration assay in which macrophages

from 3 and 7 day lesioned nerves were plated on the

poly-L-lysine-coated portion of the culture substrate and

allowed to migrate toward an adjacent myelin-coated re-

gion. The behavior of the cells after they contact the myelin

interface was assessed 24 hr after plating. Interestingly,

macrophages from the 3 day lesioned nerves migrated

across the interface on to the myelin substrate (Figure 5F).

In contrast, the majority of the macrophages from the 7

day lesioned nerves appeared to be arrested at the myelin

interface (Figure 5G). Quantification of the macrophages

that migrated on to myelin showed a 65% reduction be-

tween cells from 3 and 7 day lesioned nerves (Figure 5H).

To obtain direct evidence that this reduction in the migra-

tion of macrophages from 7 day lesioned nerves on to my-

elin is mediated by NgRs, we did the migration assay using

these cells after siRNA knockdown of NgR1 and NgR2.

Only 27% of the control siRNA-treated macrophages

from 7 day lesioned nerves migrated across the myelin

interface on to myelin. This inhibition was completely re-

versed in the NgR1/NgR2 siRNA-transfected macro-

phages, which showed migration of up to 100% of PLL-

control values (Figure 5I). Taken together, these results

indicate that NgR expressed on macrophages mediates

the repulsion of these cells by myelin.

Macrophage Efflux from the Lesioned Sciatic Nerve

Is Controlled by the Presence of Myelin around

Remyelinated Axons

We next assessed whether the reduced binding of macro-

phages to myelin and the repulsion of macrophages by

myelin in vitro is reflected in vivo by increased macro-

phage clearance from injured nerves in the presence of

myelin. To do this, we compared the number of macro-

phages in the adult rat sciatic nerve 14 days post-lesion

in two injury models: (1) sciatic nerve crush injury in which

axons regenerate into the distal nerve segment and be-

come remyelinated, and (2) sciatic nerve cut and ligation

in which axons are prevented from regenerating, and

thus the distal nerve segment lacks newly synthesized

myelin. The number of macrophages in the distal segment
654 Neuron 53, 649–662, March 1, 2007 ª2007 Elsevier Inc.
of the cut and crushed nerves 14 days after lesion, quan-

tified from longitudinal frozen sections labeled by immu-

nofluorescence for OX-42, show that there is a significant

increase in the number of macrophages in the cut/ligated

nerves (201.8 ± 14.8/0.25 mm2; p = 0.003) as compared to

the crushed nerves (132.1 ± 14.6/0.25 mm2). These data

suggest that in the absence of newly synthesized myelin

the clearance of macrophages from the injured nerve is

impaired.

Macrophages penetrate the Schwann cell basal lamina

to reach and phagocytose the myelin that is shed by

Schwann cells after nerve injury. In crush-injured nerves,

axons regenerate through Schwann cell basal lamina

tubes that contain macrophages. If macrophages that ex-

press NgR1 were repulsed by myelin, we would predict

that they would leave the Schwann cell basal lamina

tube when the newly regenerated axons become remyeli-

nated. On the other hand, in the cut/ligated nerves in

which axon regeneration is prevented, the macrophages

that have entered the Schwann cell basal lamina to phago-

cytose debris would not be signaled to leave because of

the lack of newly synthesized myelin. To assess whether

this is the case, we examined cross-sections of 14 day

cut/ligated or crush-injured nerves by electron micros-

copy. Quantification of cross-sections of the nerve by

electron microscopy revealed a 65% increase in the total

number of macrophages in the cut/ligated nerves as com-

pared to crush-injured nerves (Figure 6A). Furthermore,

the number of macrophages within the Schwann cell basal

lamina in the cut/ligated nerves is 5.8-fold greater than in

Figure 6. Macrophage Clearance from Lesioned Sciatic

Nerve Is Controlled by the Presence of Newly Synthesized

Myelin around Regenerated Axons

(A) Quantitative EM analysis of the number of macrophages in 14 day

injured nerves indicates that their number is significantly greater in cut/

ligated nerves than in crush-injured nerves (*p = 0.003).

(B) The percentage of macrophages located within the Schwann cell

basal lamina. Almost all the macrophages in cut/ligated nerves remain

inside the basal lamina (97.8%), while in crush-injured nerves that re-

generate and remyelinate, only 48.3% are within the Schwann cell

basal lamina, of which 29% are associated with axons that have not

yet become remyelinated, and the remaining 19% are in basal lamina

tubes that lack regenerated axons (*p = 0.001).

(C) The percentage of macrophages located outside the Schwann cell

basal lamina. About 52% of the macrophages in the regenerating

crush-injured nerves lie outside the Schwann cell basal lamina as com-

pared to only about 2% in the cut/ligated nerves (*p < 0.001).

All data represent mean ± SD; n = 3.
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Figure 7. Presence of Newly Synthesized

Myelin Influences the Efflux of Macro-

phages from the Schwann Cell Basal

Lamina

Electron micrographs taken from cross-

sections of the sciatic nerve, 2 mm distal to

the site of cut/ligation (A–C) and crush injury

(D–H) taken 14 days after lesioning.

(A and B) Macrophages containing clear and

light-density vacuoles that are end-state prod-

ucts of myelin degradation are located within

the Schwann cell basal lamina in the nonregen-

erating cut/ligated nerve. The ‘‘insert’’ in panel

(A) is a higher magnification of the boxed area

that illustrates the basal lamina (arrowheads)

surrounding the cell membrane.

(C) A motile macrophage that lacks phagocy-

tosed material or secondary lysosomes but

has numerous cytoplasmic processes (arrow-

heads) and is located outside of the basal lam-

ina suggests that it might be a newly recruited

cell.

(D) In contrast, after crush injury, numerous

axons (a) in various stages of remyelination

are visible in the nerve. In addition, many foamy

phagocytic macrophages (m) located outside

the Schwann cell basal lamina are seen close

to the blood vessel (bv). Note that none of the

myelinated axons have macrophages within

their basal lamina.

(E and F) Additional examples of macrophages

(m) with phagocytosed material and end-state

products of myelin-degradation. These macro-

phages are located outside the Schwann cell

basal lamina as evident by the absence of

basal lamina around them. The absence of the basal lamina is illustrated in the higher magnification shown in the ‘‘insert’’ (arrowheads) in panel

(F), which is taken from the boxed area. Note that the basal lamina sheaths of myelinated axons (‘‘a’’ in [E] and [F]) are devoid of macrophages.

(G) A macrophage (m) with an elongated cytoplasmic process (arrowheads) that suggests that this is a motile cell. It is located outside the Schwann

basal lamina in the endoneurial space. The Schwann cell basal laminae of the two myelinated axons (a) are devoid of macrophages. Arrow indicates

small, unmyelinated axons.

(H) An example of a macrophage (m) that lies within a basal lamina that contains an axon (a) which lacks myelin. The ‘‘insert’’ at the bottom is a higher

magnification of the boxed area that illustrates the basal lamina (arrowheads). Note the larger size of this axon (a) as compared to the typical unmy-

elinated axons (arrows in [G] and [H]), which indicates that it has not yet been remyelinated.

Scale bar in (A)–(C) and (E)–(H), 2 mm; (D), 10 mm; insert in (A), 1 mm; insert in (F) and (H), 0.5 mm.
crushed/regenerated nerves. The cell counts for the two

groups are 118 ± 21.5 cells/4 3 105 mm2 in cut/ligated

nerves versus 19.3 ± 5.1 cells in crush-injured nerves in

the same area (p < 0.001). In the cut/ligated nerves, this

represents 97.8% ± 1.8% of the total number of macro-

phages in the distal nerve segment (Figure 6B). Examples

of macrophages within the Schwann cell basal lamina in

cut/ligated nerves are shown in Figures 7A and 7B. In con-

trast, of the small number of macrophages present in

crushed/regenerated nerves, only 48.3% ± 6.3% are

within Schwann cell basal lamina, of which 29% are asso-

ciated with nonmyelinated axons (Figure 6B). Based on

the size of these axons, they are likely to be axons that

have not yet become remyelinated (Figure 7H). The re-

mainder of the macrophages within the Schwann cell

basal lamina in the crushed/regenerated nerves are within

basal lamina tubes that lack regenerated axons (Fig-

ure 6B). Importantly, none of the large number of myelin-
ated axons in the crushed/regenerated nerves contain

macrophages within their basal lamina (Figures 7D–7G),

including those that have just begun to myelinate

(Figure 7D and Figures S2A and S2B). Additionally,

51.7% ± 6.3% of the total number of macrophages in

crushed/regenerated nerves that contain newly synthe-

sized myelin lie in the endoneurial space outside the

Schwann cell basal lamina, as compared to only 2.2% ±

1.8% in the cut nerves lacking myelin (Figures 6C and

7D–7G). In the crushed nerves, macrophages located out-

side Schwann cell basal lamina were detected in close

proximity to blood vessels, suggesting that these cells

may be migrating toward these vessels (Figure 7D). Mac-

rophages were easily identified by their foamy appearance

due to the presence of numerous light-density vacuoles

and lysosomes containing the end products of phagocy-

tosis, and when located outside the Schwann cell basal

lamina in crush-injured nerves, they possess an irregular
Neuron 53, 649–662, March 1, 2007 ª2007 Elsevier Inc. 655



Neuron

NgR Mediates Macrophage Repulsion in Injured Nerve
shape with cytoplasmic processes indicative of motile

cells (Figures 7E and 7G). Small-diameter, unmyelinated

axons ensheathed by Schwann cell were not associated

with macrophages (arrows in Figures 7G and 7H). This is

in keeping with previous studies showing that, following

injury, macrophages are not recruited into purely unmy-

elinated peripheral nerves to clear the minimal debris

that is present (Bray et al., 1972). Interestingly, macro-

phages lacking phagocytosed material and with morpho-

logical features of highly motile cells were also occasion-

ally detected in cut/ligated nerves, suggesting that they

continue to be recruited into nerves lacking myelin

(Figure 7C). The 14 day time point was chosen for these

studies because, at the earlier time point of 7 days, the

majority of the macrophages (71.6% ± 3.6%) in crush-

injured nerves were still contained within Schwann cell

basal lamina (Figure S2C). Furthermore, 96% of these

macrophages within the Schwann cell basal lamina were

associated with large nonmyelinated axons, indicating that

remyelination had not yet occurred. Only a small propor-

tion (13.6% ± 5.7%) of end-stage macrophages filled

with phagocytosed debris were found outside the basal

lamina.

Macrophage Efflux from Schwann Cell Basal Lamina

Is Impaired by Disrupting NgR/Ligand Interactions

We next carried out experiments to obtain direct evidence

whether NgR/ligand interactions influence macrophage

efflux out of the Schwann cell basal lamina after nerve-

crush injury by assessing this in two different strains of

gene knockout mice. Previous studies have reported

that NgR1 is a higher-affinity receptor for Nogo-A than

for MAG (Fournier and Strittmatter, 2001; Liu et al.,

2002), while NgR2 is a high-affinity receptor only for

MAG (Venkatesh et al., 2005). Since peripheral nerve my-

elin expresses high amounts of MAG but not Nogo-A, it

would have been preferable for us to use NgR2-deficient

mice. However, at present only NgR1-deficient mice are

available, which might be expected to yield only a moder-

ate effect on macrophage behavior after injury. On the

other hand, MAG-deficient mice provide the best opportu-

nity at present to disrupt the ligand/receptor interactions

of both NgR1 and NgR2, as peripheral myelin as men-

tioned above has MAG, the sole known ligand for NgR2,

but does not contain Nogo-A (GrandPre et al., 2000) and

has lower levels of OMgp (Huang et al., 2005). If our hy-

pothesis is correct, we would predict that macrophage ef-

flux from the Schwann cell basal lamina would be impaired

in the presence of newly synthesized myelin surrounding

the regenerated axons in NgR1- and MAG-deficient mice.

We therefore quantified by electron microscopy the

number of macrophages containing phagocytosed debris

that are found together with myelinated axons within the

same Schwann cell basal lamina tube. This analysis was

carried out on cross-sections of the nerve 14 days after

crush injury in NgR1-deficient (Zheng et al., 2005) and

MAG-deficient mice (Li et al., 1994) and their respective

wild-type controls. Interestingly, in NgR1-deficient mice,
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�16% of the macrophages contained within the Schwann

cell basal lamina were associated with well myelinated

axons (Table 1). Their containment within the same basal

lamina and association with myelinated axons are clearly

visible by electron microscopy (Figures 8A and 8B). In

contrast, in crush-injured wild-type mice, no macro-

phages were present within the Schwann cell basal lamina

that contained myelinated axons (Table 1). The partial

effect seen in the NgR1-deficient mice is not surprising

given the lower affinity of NgR1 for MAG (Liu et al., 2002;

Venkatesh et al., 2005). As predicted, in MAG-deficient

mice, double the numbers of macrophages (�30%, p =

0.01) in the basal lamina were associated with myelinated

axons as compared to NgR1 null mice (Table 1 and

Figure 8C and 8D). Importantly, this was never observed

in the wild-type mice 14 days after crush injury (Table 1).

It is possible that OMgp, which is localized to the region

of the paranodal loops in peripheral nerve myelin (Huang

et al., 2005), may also exert some effect on macrophage

responses in the MAG null mice. These data, however,

provide strong evidence that interactions between NgRs

and their ligands may provide one of the initial signals

for macrophage repulsion by newly synthesized myelin,

resulting in the efflux of these cells from the Schwann

cell basal lamina.

As NgR/ligand interactions in neurons have been shown

to be mediated by Rho activation, and as our in vitro stud-

ies detailed above also indicate that macrophage re-

sponses to myelin are mediated via Rho activation, we

next assessed the effects of treating crush-injured rat sci-

atic nerve with the ROK inhibitor Y-27632. By blocking

Rho activation in these nerves,�36% of the macrophages

remaining inside the Schwann cell basal lamina were

associated with well myelinated axons at 14 days after sci-

atic nerve crush injury in rats (Table 1 and Figures 8E and

8F). Macrophages associated with myelinated axons were

not present in vehicle-treated control injured nerves (Table

1). Taken together, these results further suggest that NgR/

ligand interactions via Rho-A-mediated signaling is likely

Table 1. Disruption of NgR/Ligand Interactions Impairs
Macrophage Efflux from Schwann Cell Basal Lamina

Null/Treated (%) Wild-Type/Vehicle (%)

NgR1 16.3 ± 1.1 0

MAG 29.1 ± 5.1 0

Y-27632 36.3 ± 7.1 0

The percentage of macrophages located within the Schwann

cell basal lamina that also contained well myelinated axons,

14 days after sciatic nerve crush injury in NgR1 null and

MAG null mice, and rat sciatic nerves treated with Y-27632
compound, and their respective controls. The mean values

for the MAG null and the Y-27632 groups are significantly dif-

ferent from the NgR1 null mice (p = 0.01 and 0.02, respec-

tively). The MAG null and the Y-27632 groups are not signifi-
cantly different from each other. Data represent mean ± SD;

n = 3.
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Figure 8. Disruption of NgR/Ligand In-

teractions Impairs Macrophage Efflux

from Schwann Cell Basal Lamina in the

Presence of Myelinated Axons

Electron micrographs taken from cross-sec-

tions of 14 day crushed sciatic nerve, 2 mm dis-

tal to injury from NgR1-deficient (A and B) and

MAG-deficient (C and D) mice and Y-27632-

treated rats (E and F). Note the presence of

macrophages (m) laden with phagocytosed

myelin debris that are contained along with fully

myelinated axons (a) within the same Schwann

cell basal lamina. The ‘‘inserts’’ in each panel

are higher magnification of boxed areas that

show where the basal lamina (arrowheads) is

continuous around the macrophage and myeli-

nating Schwann cell. Panel (D) shows a region

of the paranodal loop of myelin that is less

compact than the myelin sheaths in the other

examples. Panels (E) and (F) illustrate exam-

ples of Y-27632-treated rats showing end-

stage phagocytic macrophages (m) with clear

vacuoles of myelin breakdown products lo-

cated in the same Schwann cell basal lamina

as the myelinated axons (a). The macrophage

(m) in (F) is extremely large, and the electron mi-

crograph shows only a portion of the cell.

Scale bars in (A)–(E), 2 mm; (F), 1 mm. Higher

magnification ‘‘inserts’’ in (A) and (E), 1 mm,

(B)–(D) and (F), 0.5 mm.
to initiate the repulsion of macrophages by newly syn-

thesized myelin and their subsequent efflux from the

Schwann cell basal lamina into the endoneurial space.

This being one of the first steps in the clearance of macro-

phages from injured nerves and the termination of inflam-

matory responses at the end of the period of Wallerian

degeneration.

DISCUSSION

The clearance of immune cells from the site of inflamma-

tion that ultimately results in the termination of the inflam-

matory response is essential for affected tissues to return

to their normal basal state. If immune cells, such as mac-

rophages, persist for long periods beyond the time re-

quired for tissue repair, these cells may contribute to tis-

sue damage through the release of toxic mediators

(Kiefer et al., 2001; Prineas and McLeod, 1976). In injured

peripheral nerves, the entry of macrophages of hematog-

enous origin and their activation leading to phagocytosis

of debris, followed by their clearance from the nerve, is

precisely timed (Bruck, 1997; Leskovar et al., 2000; Muel-

ler et al., 2003). This well-coordinated sequence of macro-

phage responses serves to rid the distal nerve segment of
its myelin and axonal debris and prepare the distal seg-

ment to receive regenerating axon sprouts. Much of the

work in the field has focused on the mechanisms that un-

derlie macrophage recruitment and activation (De et al.,

2003; Kuhlmann and Bruck, 1999; Rotshenker, 2001,

2003; Rotshenker et al., 1992; Saada et al., 1996; Sha-

mash et al., 2002; Siebert and Bruck, 2003; Siebert

et al., 2001, 2000; Stoll et al., 1993). The termination of

this macrophage response is thought to involve, in part,

the downregulation of proinflammatory cytokines and

the upregulation of anti-inflammatory ones (George

et al., 2004; Perrin et al., 2005; Rotshenker, 2001; Sha-

mash et al., 2002; Stoll et al., 2004). Previous studies

have reported that only a small number of macrophages

(2%–4%) show signs of apoptosis at day 10 post-injury

(Kuhlmann et al., 2001), while other studies failed to detect

apoptotic macrophages after sciatic nerve crush injury

(Mueller et al., 2003). The majority of the macrophages

are thought to leave the nerve via the circulation into the

regional lymph nodes and spleen (Kuhlmann et al.,

2001). Interestingly, we observed examples by electron

microscopy in which macrophages located outside the

Schwann cell basal lamina appear to migrate toward

blood vessels.
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When macrophages enter the lesioned nerve after in-

jury, they need to penetrate into the Schwann cell basal

lamina tube to be able to phagocytose the myelin that is

shed by Schwann cells. Therefore, before macrophages

can migrate out of the lesioned nerve after phagocytosis

is completed, they will first need to migrate out of the

Schwann cell basal lamina into the endoneurial space.

Our work suggests that this initial step is mediated via re-

pulsive interactions between NgRs expressed by macro-

phages and NgR ligands such as MAG present in newly

forming myelin around regenerated axons. NgR1 and

NgR2 are known to mediate inhibitory signaling that

causes collapse of axonal growth cones (Domeniconi

et al., 2002; Filbin, 2003; Fournier et al., 2001; Venkatesh

et al., 2005). NgR1 is also expressed by glioma cells and

mediates reduced adhesion and migration of these cells

in response to MAG (Liao et al., 2004). We show here

that the majority of highly activated phagocytic macro-

phages from the 7 day crush-injured nerve express

NgR1 and NgR2 and exhibit reduced binding to myelin

and recombinant MAG in vitro, which can be neutralized

by siRNA knockdown of NgR1 and NgR2. Additionally,

our in vitro migration assay also indicates that macro-

phages from 7 day lesioned nerves are repulsed by myelin

via interactions with NgR. The NgR ligand MAG is rapidly

re-expressed in remyelinating peripheral nerve after crush

injury (LeBlanc and Poduslo, 1990) and is therefore avail-

able to interact with NgR1 and NgR2 expressed on macro-

phages located within the Schwann cell basal lamina. This

repulsive interaction between NgRs expressed on macro-

phages and the NgR ligands expressed on Schwann cell

membranes occurs as the Schwann cells begin to remye-

linate because axons with even the first few turns of myelin

are devoid of macrophages within their basal lamina (Fig-

ures S2A and S2B). This inhibitory effect may reflect a re-

pulsive interaction with myelin as has been reported for

neurons and glioma cells. As with neurons (Filbin, 2003;

McKerracher and David, 2004), this macrophage effect

could also be neutralized by inactivating ROK, a down-

stream target of RhoA. NgR1 is a GPI-anchored protein

that has been reported to act via its transmembrane core-

ceptors, p75NTR (Filbin, 2003; Yamashita et al., 2002) or

TROY (Park et al., 2005; Shao et al., 2005), to activate

RhoA (Fournier et al., 2003; Winton et al., 2002; Yamashita

et al., 2002, 1999). Our data indicate that none of the mac-

rophages express p75NTR but about 65%–70% of macro-

phages in the lesioned sciatic nerve express TROY at 3

and 7 days after nerve injury. It is possible that a receptor

complex of TROY with NgR1 and NgR2 may mediate the

macrophage efflux response after nerve injury, although

the coreceptors for NgR2 have yet to be identified. Rho ac-

tivation reduces adhesion and increases migration of

monocytes, and these responses can be reversed by in-

hibiting RhoA with C3 transferase (Aepfelbacher et al.,

1996; Pomorski et al., 2004). Interaction of NgR on macro-

phages with its ligands in newly synthesized myelin, there-

fore, has the potential to mediate repulsive effects in vivo

and convert them from adherent cells to motile ones that
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are stimulated to migrate out of the basal lamina. In the

nerve, the activation of RhoA is likely to occur on the

side of the macrophage that is in contact with newly syn-

thesized myelin and thus constitutes the retracting portion

of the cell, while the migrating front would be located on

the opposite side that is associated with the Schwann

cell basal lamina. RhoA activation in Schwann cells re-

duces their migration and promotes normal myelination

(Melendez-Vasquez et al., 2004; Yamauchi et al., 2004),

mediated by neurotrophins acting via p75NTR (Yamauchi

et al., 2004). RhoA activation can therefore affect multiple

cell types and influence different aspects of the response

of the nerve to injury, including macrophage efflux, axon

regeneration, and remyelination.

We provide strong in vivo evidence that the presence of

myelin stimulates macrophage efflux from the Schwann

cell basal lamina and thus influences their eventual clear-

ance from the lesioned sciatic nerve. In the model in which

the sciatic nerve was cut and ligated to prevent axon re-

generation and therefore lacks newly synthesized myelin

in the distal nerve segment, almost 98% of the macro-

phages were still within the Schwann cell basal lamina

into which they had migrated to phagocytose the myelin

debris. In contrast, in crush-injured nerves in which axons

are permitted to regenerate and remyelinate, macro-

phages were not found in the Schwann cell basal lamina

of any of the remyelinated axons, including those in the

early stages of remyelination. Another noteworthy finding

is that the efflux of macrophages out of the Schwann cell

basal lamina results in a greater number of them leaving

the nerve, as the crushed nerves had 65% fewer macro-

phages than cut nerves as estimated by electron micros-

copy. This suggests that the efflux of macrophages out of

the Schwann cell basal lamina is a first step in their clear-

ance from the regenerating nerve. Once macrophages

have effluxed out of the Schwann cell basal lamina into

the endoneurial space, they will not be in direct contact

with myelin and thus not be influenced by it. Other factors

then play a role in their eventual clearance from the endo-

neurial space.

Additionally, unlike wild-type mice, macrophage efflux

from the Schwann cell basal lamina containing well myelin-

ated axons is impaired in NgR1-deficient mice and MAG-

deficient mice 14 days after crush injury. These data

provide direct evidence that interaction between NgR on

macrophages and their ligands such as MAG in Schwann

cell membranes that are beginning to form myelin around

regenerated axons signal macrophages to leave the

Schwann cell basal lamina. Furthermore, the effect of the

ROK inhibitor in vivo indicates that these NgR/ligand inter-

actions mediating macrophage responses in lesioned pe-

ripheral nerve may occur via Rho activation. These results

provide in vivo evidence that NgR-mediated interactions

with their ligands at the very early stages of myelination

contribute to the efflux of macrophages from Schwann

cell basal lamina. Interestingly, activated microglia/macro-

phages in cerebral ischemic lesions and multiple sclerosis

lesions also express NgR1 (Satoh et al., 2005), as do
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macrophage/microglia after spinal cord injury (data not

shown). Our discovery of this novel (to our knowledge)

role for NgRs in mediating the efflux of macrophages

from inflamed neural tissue via interactions with myelin

could therefore have broader implications for the regula-

tion of inflammatory responses not only in other peripheral

nerve pathologies but also in CNS inflammation such as in

spinal cord injuries, stroke, and multiple sclerosis.

EXPERIMENTAL PROCEDURES

Sciatic Nerve Lesions

Adult female Sprague-Dawley rats (180–200 g, Charles River Labora-

tories) and adult MAG null (Mag < tm1Rod > /J) (Li et al., 1994), and

wild-type mice (6–8 weeks of age, obtained from Jackson Laborato-

ries) were deeply anesthetized with ketamine:xylazine:acepromazine

(50/5/1 mg/kg). Adult NgR null and wild-type mice on a (C57BL/

6x129S7) N2 background (Zheng et al., 2005) were deeply anesthe-

tized with Avertin (15 ml of 2.5% solution/g). A unilateral sciatic nerve

crush was performed in the region of the upper thigh using a laminec-

tomy forceps chilled in liquid nitrogen and held for 30 s. In other ani-

mals, the sciatic nerve was ligated at the same region and cut with

a pair of microscissors. This ligation prevented growth of axons into

the distal nerve segment. All procedures were approved by the McGill

University Animal Care Committee and followed the guidelines of the

Canadian Council on Animal Care or were approved by the Genentech

and Stanford Animal Care Committees.

Animals were euthanized by perfusion under deep anesthesia at

post-surgical survival times of 3, 5, 7, or 14 days with 0.1 M phosphate

buffer, followed by 4% paraformaldehyde in 0.1 M phosphate buffer.

The distal segment of the lesioned sciatic nerves and uninjured control

sciatic nerves were collected and longitudinal cryostat sections

(14 mm) picked up on gelatin-coated glass slides.

Immunofluorescence

Double or single immunofluorescence labeling of the sciatic nerves was

carried out using standard protocols (De et al., 2003). The following pri-

mary antibodies were used: mouse monoclonal antibody SMI-312 for

neurofilaments (Sternberger Monoclonals; 1:5000); rabbit polyclonal

anti-NgR1 (1:100; Alpha Diagnostic International [ADI]); mouse mono-

clonal antibody OX-42 to detect macrophages (Serotec, 1:100). Pri-

mary monoclonal and polyclonal antibodies were detected with rhoda-

mine-conjugated rabbit anti-mouse IgG and fluorescein-conjugated

goat anti-rabbit IgG (Jackson Laboratories, 1:200), respectively. NgR

antibody specificity was assessed by immunofluorescence staining

of tissue sections from NgR1-deficient mice and Western blotting

(Figure S3). The specificity of the NgR1 antibody was determined by

the lack of immunofluorescence staining of tissue sections of sciatic

nerve from NgR1-deficient mice (Figures S3A–S3C) as compared to

wild-type nerve (Figures S3D–S3F). The tissue sections from NgR1-

deficientmice,however, stainedwith theNgR2antibody (datanotshown),

indicating that the NgR2 antibody does not cross-react with NgR1.

For quantification of macrophage numbers, digital images of longi-

tudinal sections of the sciatic nerve for each fluorophore (fluorescein,

rhodamine, and DAPI) were captured at a magnification of 203 using

a Retiga digital camera with Qcapture software. Images were taken at

1–3 mm distal to the injury site. A minimum of three sections from each

animal (n = 3 for each group) was analyzed to obtain the means. The

data are presented as the mean ± standard error of the mean (SEM).

Statistical significance was determined using the two-tailed student’s

t test. The alpha value was set to p < 0.05.

Cell Culture Studies

Adult rat sciatic nerve segments distal to the site of crush or cut injury

were obtained 3 and 7 days after lesion, cut into small pieces, and dis-
sociated by incubation with 0.125% trypsin for 20 min. For immunoflu-

orescence staining, cells were plated on poly-L-lysine-coated 13 mm

round glass coverslips at a density of 1 3 105 and allowed to adhere

for 2 hr. To demonstrate cell surface localization of NgR1 and -2,

TROY and p75NTR live cells were incubated for 30 min at room temper-

ature with a mouse monoclonal antibody OX-42 (to label macrophages;

1:100, Serotec) and one of either polyclonal goat anti-NgR1 antibody

(1:100; R & D Systems) or rabbit anti-NgR1 (1:100; ADI), goat anti-

NgR2 (1:100; R & D Systems), or rabbit anti-NgR2 (1:100, ADI), goat

anti-TROY (1:100 R & D Systems) or p75NTR (1:100, provided by

Dr Phil Barker [McGill University]) in Hanks balanced salt solution

(HBSS), followed by a 30 min incubation with a goat anti-rabbit or don-

key anti-goat secondary antibody conjugated to fluorescein, and a goat

or rabbit anti-mouse secondary antibody conjugated to rhodamine

(1:200, Jackson Laboratories). Cells were then fixed in acetic acid:etha-

nol (1:9) for 20 min at �20�C. Coverslips were then mounted on glass

slides in an aqueous nonfade mounting medium containing the nuclear

marker DAPI (Vector Laboratories). The majority of the cells that are ob-

tained under these conditions are macrophages. A minimum of three

coverslips was prepared for each time point and the experiments re-

peated three times. Cells were examined with a Zeiss Axioskop fluores-

cence microscope, and at least 100 OX-42+ cells were counted on each

coverslip, and the proportion that was NgR1, NgR2, p75NTR, and TROY

positive recorded. Data are presented as a mean ± SEM.

For the cell adhesion assay, dissociated cells were plated in 96-well

plates coated with CNS myelin or recombinant MAG as described pre-

viously (Huang et al., 1999). Briefly, the wells were coated with nitrocel-

lulose solubilized in ethanol. After drying the wells, they were coated

with poly-L-lysine (5 mg/ml) overnight. 0.4 mg of bovine myelin or re-

combinant MAG in a 2 ml drop in HBSS was placed in the center of

the wells and incubated for 3 hr at 37�C. Myelin and recombinant

MAG were purified as previously reported (McKerracher et al., 1994).

The myelin or recombinant MAG drop was then removed, the dissoci-

ated cells plated in the wells at a density of 1 3 105 cells per well, and

placed in a tissue culture incubator at 37�C and 5% CO2 for 2 hr. The

wells were washed with HBSS to remove unattached cells and then

fixed with 4% paraformaldehyde. Macrophages were easily identified

by their large size. The number of these large round cells was counted

in an area of 0.25 mm2. Additional experiments were performed by in-

cubating the macrophage cultures plated on myelin or MAG with the

ROK inhibitor (Y-27632, 10 mM; CalBioChem) or vehicle (PBS) for

30 min during the preplating stage and for the entire culture period of

3 hr. A minimum of four wells were plated with cells for each experi-

mental condition (myelin substrate, myelin with Y-27632, myelin with

PBS, MAG with Y-27632, MAG with PBS). Experiments were repeated

three times (n = 3). The number of macrophages bound to the various

substrates was counted using an ocular grid in four consistent places in

each well within an area of 0.25 mm2. In addition, the number of mac-

rophages bound to the poly-L-lysine substrate around the edge of

the central myelin- or MAG-coated region within the same well was

also counted as an internal control. Data are presented as a mean ±

SEM. Statistical analysis was performed as described above.

Separation of Blood Monocytes

Blood monocytes were obtained by Percoll density centrifugation.

Cells were plated on poly-L-lysine-coated 13 mm round glass cover-

slips at a density of 2.5 3 105 cells and allowed to adhere for 3 hr. Cells

were then labeled by double immunofluorescence with the mouse

monoclonal antibody OX-42 and rabbit polyclonal anti-NgR1, NgR2,

p75NTR, and TROY as described above. Counts were made from three

coverslips prepared from each of three animals (n = 3), and the propor-

tions of NgR1, NgR2, p75NTR, and TROY positive monocytes were cal-

culated. Data are presented as mean ± SEM.

siRNA Knockdown of NgR1 and NgR2

The following siRNA sequences for rat NgR1 and NgR2 were designed

according to criteria stipulated by Elbashir et al. (2001). NgR1,
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50-AATGACTCTCCATTTGGGACT-30; NgR2, 50-AAACAGCTCTTCCAAC

CACCT-30. Oligonucleotide sequences were synthesized by Ambion.

Macrophages plated at a density of 1 3 106 in 24-well tissue culture

plates were incubated with 10 nM of fluorocein (FAM) labeled NgR1

and NgR2 siRNA or FAM-labeled negative control siRNA (nonspecific

Silencer negative control #1, Ambion) in OPTI-MEM medium contain-

ing 2 ml of Lipofectamine 2000 (Invitrogen) transfection agent. Cells

were incubated for 24 hr, after which the transfection medium was re-

placed by DMEM culture medium containing 10% fetal bovine serum

and the mitotic inhibitor cytosine arabinoside to prevent proliferation

of any fibroblasts, and cultured for up to 4 days. siRNA knockdown

was first assessed by slot blot analysis (see below) and immunofluo-

rescence staining for cell surface NgR1 and NgR2 on OX42-positive

macrophages at 1, 2, and 4 days after transfection. The 2 day time

point was used for the myelin-binding and migration assays. Experi-

ments were repeated three times (n = 3).

Slot Blots

Slot blots were used to detect the level of NgR1 and NgR2 protein in

macrophages purified from 7 day lesioned nerves, 2 days after trans-

fection with siRNA specific for NgR1 and NgR2 or negative control

siRNA. 10 mg of cell extract was blotted onto Protan Pure nitrocellulose

membrane (Schleicher and Schueil). Membranes were incubated with

goat anti-NgR1 and NgR2 antibodies (R & D systems; 1:2500, 1:2000,

respectively) overnight at 4�C. After washing, the membranes were in-

cubated with donkey anti-goat secondary antibody conjugated to

horseradish peroxidase (HRP, 1:400,000) for 1 hr at RT, and visualized

using enhanced chemiluminescence (Perkin-Elmer Life Science,

Boston, MA). Densitometry was done using ImageQuant (Amersham

Biosciences, Piscataway, NJ).

Macrophage Migration Assay

Macrophages from 3 day and 7 day crushed rat sciatic nerves were

dissociated as described above and were purified on a Percoll gradi-

ent. The macrophages were further purified by immunopanning for

30 min in Petri dishes coated with anti-OX-42 antibodies (1:500, Sero-

tec). 24-well tissue culture plates were coated with poly-L-lysine, and

one side of each well was coated with myelin (10 ml of 0.2 mg/ml). Mac-

rophages were plated at a density of 1 3 105 in a 50 ml droplet on the

side coated only with poly-L-lysine and allowed to adhere for 4 hr be-

fore adding culture medium to the well. After 24 hr, the cultures were

fixed with 4% paraformaldehyde. To visualize the macrophages for

analysis, cells were stained with anti-OX-42 antibody and a biotinylated

horse anti-mouse secondary antibody conjugated to HRP (1:200,

Jackson Laboratories). Immunoreactivity was visualized with diamino-

benzidine. The number of macrophages that had migrated past the

poly-L-lysine/myelin interface was quantified. Three to four wells per

group were quantified per experiment, and the experiments were re-

peated three times (n = 3).

In additional experiments, the migration assay was carried out with

macrophages from 7 day crushed rat sciatic nerves, 2 days after trans-

fection with NgR1 and NgR2 siRNA or nonspecific negative control

siRNA. The dissociation method used and the siRNA transfection pro-

tocol was similar to that described above. The number of macro-

phages that migrated past the poly-L-lysine/myelin interface was

quantified. Three wells were quantified per experiment and the exper-

iments repeated three times (n = 3).

Histochemical Staining

Luxol fast blue staining for myelin was done as follows: sections were

washed in PBS, dehydrated in increasing concentrations of ethanol

(50%–95%), and incubated in 0.1% Luxol fast blue (diluted in 95% eth-

anol and 10% acetic acid) overnight at 37�C. Sections were then differ-

entiated in 0.05% lithium carbonate and 70% ethanol. Luxol fast blue

staining was combined with immunofluorescence and the sections

mounted in aqueous nonfade mounting medium containing the nu-

clear marker DAPI (Vector Laboratories).
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Electron Microscopy

Rat sciatic nerve injury groups included 7 day crush, 14 day crush and

cut, 14 day crush treated with Y-27632 or vehicle treatment. Mouse

sciatic nerve injury groups included 14 day crush MAG null and wild-

type, 14 day crush NgR1 null and wild-type mice. Y-27632 mixed in

a thrombin/fibrin gel (Tisseel; Baxter) at a concentration of 1 mM

Y-27632 (CalBioChem) was placed directly on the nerve over the

crush-injury site. In addition, daily injections of Y27632 (75 ml of

1 mM in 300 ml of PBS) were administered intraperitoneally. Rats in

the control group were treated with the vehicle.

Rats and mice were deeply anesthetized 7 or 14 days after sciatic

nerve injury and perfused with 0.1 M phosphate buffer followed by

3% glutaraldehyde, 0.5% paraformaldehyde in 0.1 M phosphate

buffer. The distal segment of sciatic nerve was post-fixed in 2% os-

mium tetroxide for 2 hr and processed for embedding in Epon. Thin

cross-sections of the nerves (n = 3 for each group) at a 2 mm distance

from the lesion site were stained with lead citrate and viewed with a

Philips CM 10 electron microscope. Macrophages were counted in

an area of 4 3 105 mm2, and their position within or outside the

Schwann cell basal lamina were recorded. Data are presented as the

mean ± SD. Statistical analysis was performed as described above.

RT-PCR

RNA was isolated from adult rat sciatic nerves using the RNeasy Lipid

Tissue Minikit (QIAGEN) and reverse transcribed to cDNA with the Om-

niscript Reverse Transcriptase Kit (QIAGEN). RT-PCR was performed

using the HotStarTaq PCR Kit (QIAGEN). Primers used were as follows:

NgR1, F-50 AATGAGCCCAAGGTCACAACAAGC-30, R-50GTTGCCAT

GCAGAAAGAGATGCGT-30; Peptidylprolyl Isomerase A (PPIA), F-

50ATTCCAGGATTCATGTGCCAGGT-30, R-50-CAAAGACCACATGCT

TGCCATCCA-30. PCR was performed as described previously (Jeong

and David, 2003) with annealing temperatures of 61�C for 30 cycles

(NgR1) and 62.5�C for 23 cycles (PPIA). PPIA, also known as cyclophi-

lin A, was used as the internal control, since it shows less variability in

expression than GAPDH in inflamed tissue (Feroze-Merzoug et al.,

2002).

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/53/5/649/DC1/.
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