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1. INTRODUCTION 

Let n > 5 and let Al,, denote the double cover of the alternating group A,,. 

THEOREM A. Let G = A”, or 2, and let H be the center of G. There exist 
infinitely mcnql Galois extensions E, of Q with Galois group G such that the 
.&fields L, corresponding to H are pairrvise nonisomorphic. 

This result is a consequence of Theorems 9.6 and 12.2. The proof is an 
application of a theorem of Serre [ 121; see Section 3 for a statement. Cer- 
tain generalized Laguerre polynomials are constructed whose splitting 
fields E, have the property that Gal(E,/Q) = A,, for n = 5 or 7 such that the 
quadratic form Tr,,,Q(x2) has Witt invariant equal to 1 at every completion 
of Q and so Serre’s theorem applies. 

It is a simple consequence of Theorem A that A, and A”, are Galois 
groups over every number field. In fact a slightly more general result is 
proved in Section 7, see Theorem 7.3. 

The following related result is proved in Section 6. 

THEOREM B. Let n = 3 (mod 4). There exists a Galois extension M,, qf Q 
with Gal(M,/Q) r Al,,. 

The major difficulty in the proofs of Theorems A and B concerns the 
computation of certain Witt invariants. This is done in Section 5. 
Lemma 5.5 which is essential for the proof may be of independent interest. 

Added in proof T. Orloff has pointed out that an alternative proof of 
Lemma 5.5 can be given by using the fact that if p(x) is a polynomial of 
degree at most m - 1 then XT-0 ( - 1 )“(T) p(k) = 0. See, e.g., R. P. Stanley 
(MAA Studies in Mathematics 17, p. 115). Then Lemma 5.5 follows directly 
from (5.4), as it can be shown that the coefficient of JJ”~ ’ in /I,,,(Y) is of the 
form p(k) for some polynomial p of degree 2d. 

* The work in this paper was partly supported by NSF Grant DMS-8512904. 
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Sonn [ 131 proved that 2, is a Galois group over Q. He also used a 
generalized Laguerre polynomial. I am indebted to John McKay who first 
drew my attention to Sonn’s paper, which suggested the relevance of these 
polynomials for the proof of Theorem A. 

Vila [14-161 has shown that A,, is a Galois group over every number 
field if n = 0 or 1 (mod 8) n = 2 (mod 8) and n is a sum of 2 squares, or 
n = 3 (mod 8) and satisfies another condition (which may always be true.) 
She has also shown that if K is a number field which contains fi then 
I,, is a Galois group over K for all n. Her method of proof is quite different 
from that given in this paper. She uses Hilbert’s irreducibility theorem in 
conjunction with Serre’s theorem. The fields constructed in this paper are 
totally real, while those constructed by Vila are never totally real. In con- 
trast to her results, the following has not yet been answered. 

PROBLEM 1. Let t be an indeterminate. Does there exist a Galois exten- 
sion M of Q(t) in which Q is algebraically closed such that 
Gal(M/Q(t)) = as or a,? 

SL,(S) = 2, is a Galois group over every number field by Theorem A. 

PROBLEM 2. Let q > 5 be an odd prime power. Let K be a number field. 
Show the existence of a Galois extension A4 of K with Gal(M/K) = SL,(q). 
Find such an extension for K = Q. 

PROBLEM 3. Let q > 5 be an odd prime power. Show the existence of a 
totally real field L which is a Galois extension of Q with 
Gal(L/Q) = PSL,(q). 

Since S&(q) has a unique involution, it follows that if M is a Galois 
extension of Q with Gal(M/Q) E S&(q) then the subfield of M 
corresponding to the center of S&(q) is totally real. Thus an affirmative 
answer to Problem 2 would imply an affirmative answer to Problem 3. The 
converse is of course not true. For instance by using generalized Laguerre 
polynomials it is easy to construct totally real fields L which are Galois 
extensions of Q with Gal(L/Q) rr A, 2 PSL,(9). However, none of these 
can be embedded in Galois extensions M of Ci? with Gal(M/Q) = S-&(9). 

In handling the case G N 1, in Theorem A it is necessary to use some 
basic properties of elliptic curves. Also at one point Faltings’ theorem is 
quoted. I am greatly indebted to D. Zagier, with whom I had several 
illuminating discussions on these topics. 

In Sections 13 and 14 the fields constructed in Section 9 are used to show 
that ,4, and A5 are K-admissible for certain number fields. (K-admissibility 
is defined in Section 13.) 

After seeing an earlier version of this paper, H. Matzat informed me that 
his student A. Zeh-Marschke has found totally real fields with Galois 
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groups P&5,(7) over Q, by specializing some of the polynomials defined by 
LaMacchia, Comm. Algebra 8 (1980), 983-992. This answered a question I 
had asked. Possibly some of these may lead to fields with Galois groups 
Z,(7) over Q. 

In view of Vila’s results and Theorem A it follows that d, and A,, for 
7 d n d 11 are Galois groups over all number fields. In an earlier version of 
this paper I raised the obvious question about lb. Seire showed this to 
J.-F. Mestre and Mestre has now shown that a6 also satisfies the con- 
clusion of Theorem A. His method is similar to that used in this paper. He 
uses a different set of orthogonal polynomials, the Jacobi polynomials, and 
is also led to the study of an elliptic curve. 

Finally, I wish to thank J.-P. Serre who made several suggestions which 
provided insight and led to some clarifications and reformulations of the 
results in this paper. 

The notation used in this paper is quite standard. The following should 
be mentioned: 

If p is a prime then vp denotes the exponential p-adic valuation nor- 
malized so that v,(p) = 1. 

If a, h E Q x ,then a N h means that ah = cz for some I’ E K@. 

2. THE QUADRATIC FORM Q(E) 

Let F be a field and let J‘(X) be a manic polynomial in F[x]. Then 
F[.u]/(f(x)) ‘v E, where E is an algebra over F. If F(x) has degree n then E 
is an n-dimensional vector space over F. 

Multiplication by an element y of E defines a linear transformation on E. 
Let T(y) denote the trace of this linear transformation. Then “J + 7’(y’) 
defines a quadratic form on E. Denote this form by Q(E) or Q(.f(x)). 

Observe that E is a field if and only iff(.u) is irreducible in F[x]. Con- 
versely if E is a separable extension of F then E = F(0) for some 0 E E. 
Hence E = F[x]/(,f(x)), where ,f(x) is th e irreducible manic polynomial in 
F[x] with .f(0) = 0. 

There exists an element 0 in E with E = F[O]. Let ,f(x) = n;=, (.u - 0,) 
in an algebraic closure of F. If E is a field we can identify 0 with 0 = 8,. In 
any case T(0’) = x;= , 0;. Furthermore the discriminant of Q(E) is the dis- 
criminant of f(x). Thus in particular Q(E) is nondegenerate if and only if 
f’(x) has distinct roots. 

Suppose that char F# 2. Let B(E) be the bilinear form corresponding to 
Q(E). Then B(E)(Y~, YJ = VY,Y~). 

For any nonnegative integer m define 

(2.1) 
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For 16tdn define the fxn matrix A, by 

A,=A,(E)=(tl--‘), 1 <id& 1 djdn. 

(We use the convention that 0’ = 1.) Define 

D, = D,(E) = ‘4,/i;, 

(2.2) 

(2.3) 

where ’ denotes the transpose. It follows directly from (2.1), (2.2) (2.3) that 

D,=(s;+,-2). (2.4) 

Define 
d,=d,(E)=detD,. (2.5) 

THEOREM 2.1. Suppose thut ,for some 8, (x - 0)” + ‘If(x). Then for 
l<t<n, 

rank of D, d n - k. 

Pro@ There are at most n -k distinct columns in A ,. Hence A, has 
rank at most n - k. The result follows from (2.3). 1 

THEOREM 2.2. Suppose that A, # 0 for 1 d t d n. Then Q(E) is equivalent 
over F to the,form a, XT + ... +a,,xf, where a,=A,=n and 

a,=A,/Ar I ,for 2 < t d n. 

Furthermore A,, is a discriminant sf Q(E). 

Proof. { 1, O,..., 0” ’ ) is a basis of E and B( E)(@, 0’) = si+ ,, where 
Go= 1. Thus A, = n, AZ ,..., A,, are the principal minors of D,,. 1 

For convenience we state here Newton’s identities. 

THEOREM 2.3. Let .f(x) = x” - p, x” ’ + . + ( - 1 )“p,. Define p, = 0 
for j > n. Then 

,for any natural number k. 

3. SERRE'S THEOREM 

The main results of this paper depend on a theorem of Serre [12]. 
Before stating what is needed we will give the necessary background, which 
can for instance be found in [ 11, Chap. III] or [4, Chap. 91. 
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Let p = co or a prime. Let Q, denote the completion of &p at p. For 
a, b E 0; let (a, b) = (a, b), = + 1 denote the Hilbert symbol. This has the 
following properties: 

(a, b) = (b, a). 

(a, bc) = (a, b)(a, cl. 

(a, -a)= 1. 

Ifub#Oandu+h=l then(u,b)=l. 

Furthermore 

ifu<Oandb<O, 

otherwise. 

If p is an odd prime and U, u are p-adic units then 

(4 u),, = 1, (u, PI’ ; 
0 

(the Legendre symbol). 

Finally, if a, b E CI ’ then 

n (0, b),, = 1. 
P 

This last statement is equivalent to the quadratic reciprocity law. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

The properties (3.1))(3.6) make it possible to evaluate (a, b)P for p # 2 
and u, b E C!?; . For the evaluation of (a, b), with u, b E CP; see, for instance 
[ 11, p. 393. This will not be needed here. However, by using (3.7) together 
with (3.1)-(3.6) it is possible to evaluate (u, b)z for a, b E Q )(. 

Let Q be a nondegenerate quadratic form with coefficients in Q,. Sup- 
pose that Q is equivalent to the diagonal form a, XT + ... + a,,$ over CJ,,. 
Define 

E,,(Q)= n (a,, u,),r 
I cre,<n 

It is known that a,,(Q) does not depend on the choice of diagonal form 
equivalent to Q; EJQ) is variously known as the Hasse, Witt, or 
HasseeWitt invariant. 

Let F= &p and let Q(E) be defined as in Section 2. We will write 

E,,(E) = ~~(.f(x)) = &,(Q(W) for all p. 
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THEOREM 3.1. Let F= Q. Let Q(E) he defined as in Section 2. Let 
A,(E) = 1. Suppose that Q(E) is nondegenerate and A,(E) # 0 ,for 1 <j < n. 
Then 

&p(E)= fi (dj- l(E), ‘j(E)), 
i I( 

-1, “fi’ d,(E) 
j= I ,= I ) P 

for all p. 

Proof The definition of cp(E) and Theorem 2.2 imply that 

&p(E)= fi (Ai- ,(Eh dj(E)ld,- ,(E))p 
j=2 

= fi (A, -- I(E), dj(E))p fi (dj- l(E), A,- j(E)),. 

By (3.2) and (3.3)jz2 
j=2 

&p(E)= fi (A,-~ l(E), d,(E)), -1, fi dj- l(E) . 
j=2 ( ,=2 > P 

The result follows as A,(E) = 1. 1 

Let n > 5. Let A,, denote the alternating group on n letters. Let d, denote 
the double cover of A,. In other words A”, is the group (unique up to 
isomorphism) such that there exists a nonsplit exact sequence 

l+Z++A,+l 

with IZ( = 2. If G is a subgroup of A, let c denote the inverse image of G 
in A,. 

THEOREM 3.2. (Serre [ 121). Let E he a ,finite extension qf Q and let l? 
denote its Galois closure in some algebraic closure. Assume that i? has square 
discriminant. Thus G = Gal(&Q) z A,,, where n = [E:C?]. Suppose that C? is 
a nonsplit extension of G. Then the following are equivalent. 

(i) There exists a quadratic extension,field M ofB which is a Galois 
extension of 6J with Gal(M/Q) ‘v c?. 

(ii) e,,(E) = 1 ,for p = n3 or a prime. 

4. GENERALIZED LAGUERRE POLYNOMIALS 

Let 2, p be indeterminates over Cl!. For any integer j let c, = A + jp. 
Define 

F,(x,A,u)=xn-nc,x”-‘+(;)c,c, ,x”-‘+ ... +(-l)nc,~,~l...~, 

(4.1) 
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Observe that if K # 0 then 

In particular if CL = A/p then 

F,(x, 1, PL) = PL”F,(XIP> 4 1). (4.2) 

Polya and Szego [8, p. 2741 defined the polynomials F,Jx, a, 1) and 
called them generalized Laguerre polynomials. The case CI = 0 yields the 
classical Laguerre polynomials. Schur studied the polynomials F,(x, %, pu) 
and showed that if d,(I, I*) denotes the discriminant of F,,(x, I, p) then 

d,(A PI = P n(,z- l)lZn! i (ic;)‘- 1. (4.3) 
i= I 

See [lo, p. 2291. 
Ify,,y2EQ(1,p)X writey, -yz ifY,j)j-’ is a square in Q(I.,p). It follows 

directly from (4.3) that 

(1+2i) fi (A+2ip) if n= 2k, 
!=I 

(1+2i) fj (A+2ip) if n=2k+l. 
i=l 

In particular we see that 

d,(~,~)-l5(~+2~)(~.+4~). 

A,(& p) - 15p(A + 2p)(l+ 4p)(n + 6~)). 

AT(A, p) - 105p(n + 2,~)(i + 4~)(2 + 6~). 

A,(& PL) - A,(& p) ‘v 105(lv + 2p)(A + 4p)(L + 6p)(i + 8~). 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

These formulas of course remain valid if i and ,U are specialized to 
rational values. Hence we get 

if n is odd, 
if n is even. (4.9) 

Moreover Schur, [lo, p. 2271, has shown that F,(x, 1, 1) is irreducible over 
Q with Galois group A, or the symmetric group Z, according to whether 
d,(l, 1) is a square in Q or not. 

Among other things, the polynomials F,,(x, 1, p) satisfy the following 
recursion formula for n 2 2. See [ 10, p. 2291: 
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F&, 1, PL) = {x - nc,, + (n - 1) c, , } F,, ,(x, 4 CL) 

- (n - 1) PC,, ~ , 6, Ax, Iv, P) 

={x-c~-(n-l)p}F,, ,(~~,E,,~)-(n-l)~(~,,-~)F 

Let f(x) = F,,(x, A, p). Let E = CJ!(l, p)[x]/(,f(x)). Define 

A,,.,(j-, P) = AA-Q 

D,,.,(j”, PI = D,(E)> 

~,,,,(j-, P) = d,(E), 

II 2 

(4.10) 

(.? 4 PI. 

(4.11) 

(4.12) 

(4.13) 

where A,(E), D,(E), d,(E) are defined by (2.2) (2.3) (2.5). We will also 
write 

A,,,(j.) = A,,,(k 113 (4.14) 

D,,,,(~) = ~,,.,(L 113 (4.15) 

4,V) = 4Jk 1). (4.16) 

LEMMA 4.1. For 1 dtdn, A,,,,(j.,@)=~“‘~ “d,,,,(A/~). 

Proof: By (4.2) #s,(,?/p, 1) =.sk(A, p). Thus in the expansion of 
A,,,,(& FL) as the determinant of o,,,,(A, p), each term is p2” + +’ ” = 
,u’(‘~” times the corresponding term in d,,,,(A/p). i 

5. THE COMPUTATION OF 4,,.,(J) 

The object of this section is to prove the following result. 

THEOREM 5.1. Let 1 < t <n. Then 

d,.,(A)=n’(n-1)’ ‘.~~(n+l-t)c:,~‘C:, ;...c,,+> , 

= fj j(jc,)i-ol-I+ll 
j=n-I+ I 

where c, = J. + j. 

In case t = n the formula in Theorem 5.1 reduces to (4.3) for ,u = 1. Thus 
Theorem 5.1 may be viewed as a generalization of Schur’s formula (4.3). 

The proof of Theorem 5.1 will be given in a series of lemmas. 
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LEMMA 5.2. sk is a polynomial in 1 for all k and A,,,(I) is a polynomial 
in 1. 

Proof Each coefficient of F,(x, A, 1) is a polynomial in %. Hence by 
Newton’s identities, Theorem 2.3, each sk is a polynomial in %, which 
implies the result. 1 

Define the polynomials 17,(y) as follows: 

U,(Y) = 13 Z7,(y)=y(p l)...(y-k+ 1). 

Thus 17, is a polynomial of degree k. By definition 

(5.1) 

f,(x)=F,,(x,i, l)= i (-l)~(;r)z7&,,)x” k. 
k=O 

Define 

g,(x) =fr,(-x + c,,). 

Then 

g.,(X)=k~o(-l)k(;)Z7k(C,.)‘1~k(.’;k)X~C::-k-~ 
, = 0 

=,~~~x’t:(-l)k(:)(~7,~)~~~ k ‘Uk(C,,) 

= i (:‘,.r”~‘(-l)“(“,‘,c::~~k~~~n,(c,,). 
,=o k=O 

Therefore 

g,,(-xl= i (:I) h,,- ,(c,,) x’, 
/=O 

(5.2) 

(5.3) 

where 

k,(Y) = i ( - 1 Y(rkn) Y” knk(Y). 
k=O 

(5.4) 

LEMMA 5.3. For n 3 2, 

g,,(O) = - (n - 1) g,,- ,( 1) - (n - 1 )(cII - 1) g,, A2). 

Proof: BY (4.10), fn(c,)= -(n- l)f,,~-,(c,)-(n- l)(c,,- l)fnp2(c,,). 
The result follows from (5.2). 1 
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LEMMA 5.4. For n B 2, 

,I ~ I 
h,,(y)= -(n-l) C (“,‘)h,(~-1) 

,=O 
II ~ 2 

-(n-l)(y-1) C (“;2)h,(y-2)2” ’ ‘. (5.5) 
,=O 

Proof: Let y = c,, = i + n. The equation is a direct consequence of (5.3) 
and Lemma 5.3. 1 

LEMMA 5.5. For n 30 h,,(y) is a polynomial of degree at most [n/2]. 
Furthermore, h,(c,) is a polynomial of degree at most [n/2] in L 

Proof The second statement is an immediate consequence of the first. 
The first statement will be proved by induction. Direct computation from 
(5.4) yields that h,(y) = 1 and h,(y) = 0. Suppose that n 3 2. Induction 
implies that the right-hand side of (5.5) has degree at most the larger of 
[(n- 1)/2] and [(n-2)/2] + 1. Since both of these are at most [n/2] the 
result follows from (5.5). 1 

Remark. By comparing (5.4) and Lemma 5.5 one sees that the 
vanishing of the coefficients of y’ in h,(y) for each j > [n/2] yields many 
identities involving binomial coefficients. These are presumably well known 
but they do not appear to be obvious. For n # 1, h,,(y) probably has degree 
[n/2] but this is not necessary for the results of this paper. Here are the 
polynomials for the first few values of n: 

ho(y) = 1, h,(y) = 0, h,(y)= -Y, 

My) = - 2~3 k,(y) = 3y2 - 6~2 

h,(y) = 20y2- 24y, h,(y) = - 15y3 + 13Oy* + 12Oy, 

h,(y) = - 210~” + 924~~ - 72Oy, 

h,(y)= 105y4-2380y3+7308y2-504Oy, 

h,(y)=2520y4-26432y3+64224y2-40320y. 

Also it follows easily from (5.4) that h,( 1) = - (n - 1) for all n. 
Let f,(x) = n;= 1 (x - ej). Let gj = Oi - c,. Then g,,(x) = n;=, (x - 8,). 

Let S, = c;=, 87 as in (2.1). Define 

A”,=@; ‘), a, =&A:, d”,,,(i) = det fi, 

for 1 < t< n as in (2.2), (2.3), and (2.5). Then b, = (.?i+ j *) as in (2.4). 
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LEMMA 5.6. J,,(l) = A,,(i) for 1 < t 6 n. 

Proof Since iJ7 = CT! 0 (T)( - 1)‘0,” - icL it follows that A”, = XA,, where 
X is a lower triangular matrix with each diagonal entry equal to 1. Thus 
a, = XD,X’ and det A’= 1. u 

LEMMA 5.7. For 1 d t d n, A,,,(i) is a polynomial in ‘I. of degree at most 
t(t- 1)/2. 

Proof We will first show by induction on m that S,, is a polynomial in 
A of degree at most [m/2]. This is clear for m = 1 as S, = n. If 1 <k < m 
then induction and Lemma 5.5 imply that 

degree ofh,(,..,S--~~[~i+[~]~[~]. 

Thus (5.3) and Newton’s identities, Theorem 2.3, imply that the degree of 
S, is at most [m/2]. 

When the determinant a,,(A) of 6, is expanded, it is a sum of terms of 
the form n::A Si+O(ij, where CJ is a permutation of {O,..., t - 1). By the 
previous paragraph such a term is a polynomial in A of degree at most 

Hence d,,,(A) is a polynomial in A of degree at most t(t - 1)/2. The result 
follows from Lemma 5.6. 1 

LEMMA 5.8. For 1 d t 6 n, 

A,,,(i)=C fi c/-(“-‘+‘) 
,=,z-IfI 

for some constant CE Q. 

Proof By Lemma 5.2, D, is a matrix whose entries are in the principal 
domain Q[A]. Let 1 <k<n. By (4.1), f,(x) =x&e(x) (mod ck) for some 
polynomial e(x)E Q[A][x]. Let 6, denote the image of D, in OIA]/(ck). 
By Theorem 2.1 the rank of 6, is at most n-k + 1. Hence at least 
t - (n -k + 1) elementary divisors of D, are divisible by ck. Thus if k 3 
n-t+ 1 then c~~(“~‘+‘)lA,J~). Therefore 

A,,(l)=C(A) fi c;~‘“+‘+” 
,=n--r+ I 

for some polynomial C(A) E Q [A]. 
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By Lemma 5.7, 

i (j-G-t+ l))=‘~‘i=~~degreeof&,(r.). 
/=n-1-t I i=l 

Hence C(A)=CEQ. m 

LEMMA 5.9. Let 1 d t d n. Then 

d~~,(;i)~n’(n-l)‘~‘~~~(n-t+l)(t-l)’~’(t-2)’~*~~~2*(modc,, ) r+1 

Proqf: By definition c,-j--n-t++) (mode+,+,). Thus (4.1) 
implies that 

f,(x)-x”-n(t- 1)x”-‘+(;)(t- l)(t-2)x”-*... 

+(-l)‘--‘(,“,)(t-l)!x” ‘+I 

-x)l--(t-l)x” ‘+(‘;‘)n(n-1)x” *... 

+(-1)‘p’n(n-l)...(n-t+2)x”p’+’ 

=xnPr+‘F,- ,(x,n-t+l, l)(mod~,~,+,). 

Let F,- ,(x, n-t + 1, 1) = nj:: (x-q.,). Then 

1 )...) 1) l,..., 1 

A L v.1 >...1 rlr I > 

0 0 
f 

_ 

. tmoa~,,-,+~h 

v: 4 ,..., r:-;, o,...,o 

Define the t x t matrix A: by 

0 

Then 

D =A A’=AvAy’ (mode,- ,+,). I I, 

Therefore 

d,,,(A) = (det A:)* (mod c,- ,+ ,). (5.6) 
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By definition, 

Thus (5.6) implies that 

d,.,(A)=(n-t+l) * {det(vjP1)}2 (mode+,+,). (5.7) 

By definition, 

1-l 

JJ 7, = * n(n - 1). . + (n - t + 2). 
j=l 

BY (4.3), 

I-1 

det($‘)2=(t-1)! fl (i(n-t+l+i))’ ’ 
,= I 

=n~~*(n-1)~~3...(,-t+3)(r-1)‘~‘(t-2)’~*...2*. 

Thus (5.7) yields that 

d,,,,(E,)~n’(n-l)‘~‘~~~(n-r+l)(t-1)’~’~~~2’ (mode,,+,+,) 

as required. 1 

Proqf qf Theorem 5.1. Define e(A) E Q [A] by 

Thus 

By Lemma 5.8, 

A,,,(+e(l)= C- fi jip(npr+l) 

i 

i c/-(n-f+l), 

,=“-!+I , = n -- , + 1 

By Lemma5.9, d,,,(A)-e(E,)~O(modc,,~,+,). Hence 

C- fi jj-(n-l+UEO 

(mode,,-,+,) 

j=n-t+ I 
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c- fi j’ (n-O=0 

j=n-I+1 

as it is a constant. Thus d,,,(A) = e(A) as required. 1 

6. THE PROOF OF THEOREM B 

Let n be a natural number and let p be a prime or CO. Define 

q7(n) = EJFn;l(-T 1, 1)). 

THEOREM 6.1. &,(4m + 3) = 1 for m = 0, l,.... 

Proqfi For 1 6 t 6 n let d(n, t) = A,!.,( 1). By Theorem 5.1 

d(n, t) - (n + I)‘- ‘(n + 1 - t). 

Let n = 4m + 3. Then 

II 1 

,F, d(n,t)=(n+1)‘“~1”“~2”2n!-(n+1)!, (6.1) 

d(n,2k-l)d(n,2k+l)-(n-2k)(n+2-2k), (6.2) 

d(n, 2k) N (n + l)(n + 1 - 2k). (6.3) 

BY (6.21, 

2m+l 2m+ I 

n d(n, 2k- l)d(n, 2k+ l)- c (n-2k)(n+2-2k)-n. (6.4) 
k=l k=l 

Therefore (6.2), (6.3), and (6.4) imply that 

j=l 

2m+ I 

= fl (d(n,2k- l)d(n, 2k+ l), d(n, 2k)), 
k=l 

2m+ 1 

= (n, n + 1 I,, n ((n - 2k)(n + 2 - 2k), (n + 1 - 2k)), 
k=l 

2m+l 

= (n, n+ lip n ((2k- 1)(2k + I), 2k)),. (6.5) 
k=l 
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By (3.2) and (3.4) 

(n,n+l),=(-l,n+l),(-n,n+l),=(-l,n+l),. 

Hence Theorem 3.1, (6.1) and (6.5) imply that 

2mi I 

&p(n)=(-l,n!)p fl ((2k- 1)(2k+ 1),2k),. 
&=I 

(6.6) 

The result will now be proved by induction on m. Suppose that m = 0. 
Then (6.6) yields that 

s/,(3) = (- 1,6),(3, 2)P. 

Thus s,,(3) = 1 if pf2 or 3 by (3.5) and (3.6). By (3.6), (- 1, 6)3 = 
(3, 2)3= - 1 and so s3(3)= 1. Hence by (3.7), s,,(3)= 1 for all p. 

BY (6.61, 

E/)(n) Ep(n + 4) = (- 1, (n + 4)(n + 3)(n + 2)(n + l)), 

x((n+4)(n+2),n+3),((n+2)n,n+l), 

=(-1, (n+4)@+3)(n+2)(n+ I)),(-(n+4),n+3), 

x(-(n+2),n+3),(-(n+2),n+ l),(-n,n+ l)p. 

By (3.4) (-a, a+ l),= 1. Hence 

Qn) E&n + 4) = (- 1, (n + 4)(n + 3)(n + 2)(n + l)), 

x(-(n+2),n+l),(-(n+4),n+3), 

= (- 1, (n + 4)(n + 2)),(n + 2, n + 1 ),(n + 4, n + 3), 

=(n+4, -(n+3)),@+2, -(n+ l)),= I. 

Hence s,,(n +4)=&,(n) and the result is proved by induction. 1 

Theorem B is now a direct consequence of Theorem 3.2 and the fact that 
F,(x, 1, 1) is irreducible over Q with A,, as Galois group. See (4.9) and the 
remark following it. 

7. A PROPERTY OF GALOIS GROUPS 

We will be concerned with finite groups G which have the following 
properties: 

(7.1) G = G’ # (1) and G contains a unique maximal normal sub- 
group H. 
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(7.2) Let Q he an algebraic closure of Q. There exists infinitely 
many Galois extensions E, of Q in Q such that Gal(E,/Q) = G, and tf L, is 
the subfield qf E, corresponding to H then L, # Li for i # j. 

Clearly the groups 2, for n 3 5 satisfy (7.1). It will be shown below, 
Theorems 9.6 and 12.2, that 2, and 2, also satisfy (7.2) 

THEOREM 7.3. Let K be an algebraic number field. Suppose that for 
j= l,..., k, G, satisfies (7.1) and (7.2). Then there exists a Galois extension M 
qf K with Gal( M/K) ‘v G, x x G, . 

Proof Let K be the Galois closure of K in Q. It suffices to show the 
existence of a Galois extension N of Q in 0 with Nn I?= Q and 
Gal(N/Q) ‘v G, x . x G,, because in that case M = NK has the required 
properties. 

The existence of N will be proved by induction on k. If k = 0 let N = Q. 
Suppose that k > 0. By induction there exists a Galois extension N, of Q in 
0 with N,nK=Q and Gal(N,/Q)=G, x ... xGk ,. 

Suppose that E is a Galois extension of Q in &e with Gal(E/Q) 2: G. Let 
L be the subfield of E corresponding to H. Since N,k has only a finite 
number of sublields, (7.2) implies the existence of such an E so that 
L P N,k Since L n N,I? is a Galois extension of Q! and G/H is simple, it 
follows that Ln N,k= Q. Thus En N,l?= Q, since L is the unique 
minimal Galois subfield of E. This implies that En N, = Q and 

[EN&Q] = [E:Q][N,K:Q] = [E:Q][N,:Q][K:Q] 

= [EN,:Q][K:Q]. 

Thus EN, n l?= Q. Therefore N = EN,, has the required poperties. 1 

8. SOME PROPERTIES OF NUMBER FIELDS 

LEMMA 8.1. There exists a prime ideal T in H[,/%] with (2) = T2. 
Furthermore tf I is any,fractional ideal in O(A) then exactly one of I or 
TI is principal. 

Proof The discriminant of Q(&)/Q is 60 and so (2) = T’ ramifies. 
Suppose that T= (a) is principal. Let a = a fi + b with a, b E L. Then 

+2 = N,(fi,,& ,/‘%+b)= -15a2+b2 

and so b2 = f 2 (mod 5) which is not the case. Hence T is not principal. 
The result follows from the fact that Q(a) has class number 2. See, e.g., 
cl, P. 4221. I 
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THEOREM 8.2. Let 5 < p, < ... < pk, where k > 1 and each p, is a prime 
with (15/p,)= 1. Let m=nf=, p,. Then there exists E= F 1 or +2 and 
integers a, b with (15a, b) = 1 such that Em = 15a2 - b2. Furthermore exact1.v 
one of the following holds. 

(i) m-3 (mod4), m-1 (mod3), m= fl (mod5), e=l. 

(ii) m-3 (mod4), m=l (mod3), m- f2 (‘mod5), s=2. 

(iii) m-1 (mod4),m=l (mod3),m=fl (mod5),&=-1. 

(iv) m-1 (mod4),m--1 (mod3),m=f2(mod5),s=-2. 

Proof: Let 1 d id k. By assumption (p,) = P,Q, for prime ideals Pi # Q, 
of Z[fi]. Let I= nf=, P,. By Lemma 8.1 either I= (LX) or TZ= (LX) for 
some z~Z[fi]. Thus N,CVl~,,o(~)=~m for E= k 1 or +2. Since no 
rational prime divides c( it follows that (15a, b) = 1. 

Since (15/p,) = 1, the quadratic reciprocity theorem implies that each pi 
must satisfy one of the sets of congruences (i)-(iv). These sets of con- 
gruence form a group under multiplication. Hence m must satisfy one of 
(i)-(iv). By considering 15a’- b’ modulo 8, 3, and 5 it can be seen that c 
must have the value listed in each case. 1 

THEOREM 8.3. Let m he a square,free integer bcith m = 15ai - hi with a,, 
b,, E Z. Then there exist integers a, b such that m = 15a’ - b’ and 

15a2+b’ f 0, fl (mod7) (8.1) 

45a’-h’ f 0, fl (mod 11). (8.2) 

Proof Let N denote the norm N,,\ E,~~. Let o = fi+ 4. As 
N(w) = 1 it follows that N(oy) = N(y) for ‘J E O(G). For any integer i let 
ctw’=a,fi+h,. Then WI = -N(zto’) = - N(Y). By definition a, = 
4a,+ b,, and b, = 15a,,+4h,,. Observe that W’ E - 1 (mod 7) and us= 
- 1 (mod 11). 

Suppose that 15s’ + J’ = 0 or + 1 (mod 7). Then 

4.~’ + ~1~ = + 1 (mod 7). (8.3) 

The only solutions of (8.3) are the following where E = ? 1: 

(0, IbY 1 ), ( f 1, 01, (2&, +21, (26 k3), (3s, +2). (8.4) 

Thus if (x, y)= (a,,, b,) and (x, y)= (a,, b,), both satisfy (8.3) then 
(a,, h,) = (2s, -3s) or (38, -2s). In neither of these cases does (a,, b,) 
satisfy (8.3). Therefore there exists i with 1 6 id 2 such that m = N(ao’) = 
1.5~’ -b’ and (8.1) holds. 

Suppose that 45x2 - y2 E 0 or + 1 (mod 11). Then 

x2 - )I* 3 0 or + 1 (mod 11). (8.5) 



248 WALTER FEIT 

The only solutions of (8.5) are the following where E = + 1: 

t&X, +X), (0, ?I), (8, 01, (2E, +4), (26 f5), (4G +2), (56 +2). 
(8.6) 

Suppose that (x, y) = (a,,, b,) and (x, y) = (a,, 6,) both satisfy (8.5). Since 
m is square free, not both a, and b, can be divisible by 11. Thus (a,, b,) # 
(0, 0) for all i. Hence the only possibilities for (a,, b,) are the following: 

(3s~ 3s)~ (46, -4s)~ (E, o), (2s, 5&), (46, 2E), (4E, -2E), (5E, 2E). 

Suppose that also (a,, b2) satisfies (8.5). Then (a,, 6,) = (4~,2~) or (5~,2e). 
In neither of these case does (a,, b,) satisfy (8.5). Therefore there exists j 
with O<j<3 such that m=N(cd)= 15u*- b* and (8.2) holds. 

Let s = 1Oi + 6j. Then os E f wi (mod 7) and w’) = + o i (mod 11). Then 
m = N(cro”) = 1 5u2 - b2 such that (8.1) and (8.2) hold. 1 

9. THE CASE n = 5 

Let p = co or a prime. Define E,(A, p) = E~(F~(x, A, p)). 

LEMMA 9.1. Let p = cc or a prime. Let 1, p E Q ‘. Then 

Ep(k P) = (3/&, PC,),(W,, 2c,c,),( - 1,6c,c,),. 

Proof: For 1 < i 6 5 let Ai = AJR, p). By Lemma 4.1 and Theorem 5.1 

A , 1-5 

AZ-~5 

A 3”15llQ 

A ‘!-2c3cs, 

A 5 - 15c,c,. 

BY Theorem 3.1, E,,(A pL)= VIA,, A21p(A3A5, A&(-l, A,A,A,A,),,. 
The result follows by substituting the values of Ai for 1 < i < 5. 1 

The following notation will be used in the rest of this section. 
a, b are natural numbers with (15u, b) = 1 and 1 5u2 - b2 > 0, 

15u’-b* 
p= 2 >o, 

A=2b2- 15~~. 

(9.1) 

(9.2) 
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By definition 

c,=b2w 1, 

15a2+b2 
c3 = 

2 ’ 

c4= 15a’- 15, 

45a2 - b2 
c5 = 

2 . 

Thus in particular, 
cj > 0 for 2<j<5. 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

THEOREM 9.2. Ifp is a prime let v,, = v,,( 15a’- b’). 

0) E,(& PL) = 1. 
(ii) Let p be an odd prime such that vp is even. Then &,,(A, p) = 1. 
(iii) Let p be an odd prime such that vp is odd. Then c,,(A, p) = 

(- 10/P). 

Proof. By Lemma 9.1 and (9.3))(9.6), 

~pv~ PI = (5PL, PCJJPL, 2c3c&( - 1, lW,. (9.8) 

Thus (9.7) implies that &,(A, p) = 1. Now let p be an odd prime and write 
( , ) = ( , I,,. BY (3.3), 

(5PL, PC,) = (5K c5)( - 5, PO. 

Repeated application of (3.1), (3.2), and (3.6) to (9.8) yields that 

E/AA PL) = (c,, 5)(c3, -P)(P, -lo), (5, - 1). 

By (3.3) and (9.6), 

(9.9) 

(c,, 5)=(2(45a2-b’), 5)=(-2, 5)(1 -45(a/b)2,45(a/b)2)=(-2, 5). 

Thus (9.9) becomes 

&/?(A P) = (2, 5)(c,, -P)(P, - 10). (9.10) 

By (9.1) and (9.4), c3 = - 1 (mod 3) and CL= 1 (mod 3). Thus (9.10) 
implies that E~(& p) = 1. Also (9.1) and (9.3) imply that c3 = - 2b2 (mod 5) 
and p = 2b2 (mod 5). Thus (9.10) yields that 

c5(A, ,u) = (2, 5)(2, - 10) = (2, -2) = 1. 
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Since v3 = vg = 0 the result is proved for p = 3 or 5. Suppose that p > 5. By 
(9.10) 

q7(A Pu) = (c,, -P)(P, - 10). (9.1 1) 

Suppose that rP(c3) = 1. Then 1 5a2 = - h2 (mod p). Thus p c 
- h2 (mod p) and so v,, = 0. Therefore 

(c,, -cc) = (P, -II) = (b2/P) = 1. 

Thus &,(A, p) = 1 by (9.11). Hence it may be assumed that pjlOc,. Thus 
(9.11) implies that &,(A, p) = 1 if v,, is even. Suppose that v,, is odd. By 
(9.11) 

E/#“, p) = (p, - lOc,) = (p, - lOC,). (9.12) 

By (9.1) and (9.4) c3 = h2 (mod 11). Hence (9.12) implies that 

~/Jv*,Il)=(P, -lO)=(-lO/P). I 

Let E(A, p) denote the splitting field of F,(x, I., p). 

THEOREM 9.3. Suppose that 15a2 -h* is odd, 2c, is not a 5th power end 
2c, is not a cube. Then G = Gal(E(I., p)/Q) ‘v A,. 

Proqf: By (9.4) and (9.6) 2~8, and 2c, are odd. Since (15a, h) = 1, this 
implies that (30, 2c,) = (30, 2c,) = 1. By assumption there exists primes 
p,, pr> 5 so that 3tv,(~,) and 5bvz(c,), where \I,= v,,,. Since r,(p)=0 for 
i-l,2 it follows that v,(c,,)=O for i#3, 1 di<5, and v~(c,)=O for 
1 <i<4. 

Let v, = v,(c~). The Newton polygon of F,(.u, i, p) at p, is the lower con- 
vex envelope of the points 

(0, V,)? (1, VI), (23 VI 13 (3,015 (4, 01, (5, 0). 

See, e.g., [ 17, p. 731. Thus there is a segment from (0, v,) to (3,O) of slope 
- v,/3. Hence 3 divides the ramification index at p, and so 31 / Gj. 

Let v2 = v,(c,). The Newton polygon of F,(x, A, p) at pz is the lower con- 
vex envelope of the points 

(0, v,), (1, v,), (2, 1’21, (3, V?), (4, v2h (5,O). 

Thus there is a segment from (0, v2) to (5,O) of slope - v,/5. Hence 5 
divides the ramification index at p2 and so 51 1 GI. Thus 15 1 1 G(. By (4.5) 
(9.3), and (9.5) GcA,. Thus G=A,. 1 

Define 
g(x, 2, PL) = FAX + (‘5, API. (9.13) 
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By direct computation or by (5.1) and (5.4) this implies that 

g(x, I, p)=x5- lOpc,x3-20$c5x2+ 15p%,cgx+4p3(5cq-p) c.j. 
(9.14) 

The splitting field E(,I, p) of F,(x, 1, p) is also a splitting field of 
g(x, I, p) over Q. 

THEOREM 9.4. Let p be a prime such that (p, 30ab) = 1 and v,(u) = 1. 
Then g(x, A, u) has a root in [F, and V~(CL) = 4 for the other 4 roots over Qp. 
In particular the ramification index of E(A, u) at p is even. 

Proof: By (9.1) and (9.4)-(9.6) ( vp c3 c5) = 0 = vP( SC, - p). Hence the 
Newton polygon of g(x, A, p) at QP is the lower convex envelope of the 
points 

(0, 3), (1, 21, (2, 21, (3, l), (4, a), (5, 0). 

This consists of a segment of slope - 4 from (1,2) to (5,O) and a segment 
of slope - 1 from (0,3) to (1,2). Thus g(x, A, p) has roots ~1, for 1 6 i< 5 
over Q, such that vJcr,)= 1, v,(c(,)=+ for 2<i< 5. The result follows. 1 

THEOREM 9.5. Let k be an odd natural number. Let 5 < pI < . . . < pk, 
where each pi is a prime such that 

pi= 3 (mod 8), p, = - 1 (mod 3) p, = + 1 (mod 5). (9.15) 

Let m = nf= , p,. Then m = 15a* - b2, where a, b are integers which satisfy 
(8.1) and (8.2). Let 1,~ be defined by (9.1) and (9.2). Then 
Gal(E(L, u)/CP) 2: A, and there exists a quadratic extension M of E(A, u) 
which is a Galois extension of Q such that Gal(M/Q) = 2,. Furthermore the 
index of ramification of pi in E(E., u) is even for 1 < i < k. 

Proof: By (9.14) and quadratic reciprocity ( 15/p ;) = 1 for all i. By (9.14) 
m satisfies Theorem 8.2(i). Thus Theorems 8.2 and 8.3 imply the existence 
of a, b with the required properties. By (X.1) and (9.4), 2c, is not a cube. By 
(8.2) and (9.6), 2c, is not a 5th power. By Theorem 9.3, 
Gal(E(1, p)/Q) ‘Y A,. Since pi > 5 it follows that (p,, 30ab) = 1 for all i. 
Hence by Theorem 9.4, pi has an even ramification index in E(A, p). By 
(9.14) and quadratic reciprocity ( - 10/p) = ( - 2/p)( 5/p) = 1. Thus 
Theorem 9.2 and (3.7) yield that ~~(2, p) = 1 for p = CC or a prime. The 
existence of M now follows from Theorem 3.2. 1 

THEOREM 9.6. The group A”, satisfies (7.1) and (7.2). 

48, ‘104.2-4 
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Proof: Clearly A”, satisfies (7.1). By Dirichlet’s theorem there exist 
infinitely many primes which satisfy (9.15). Theorem 9.4 with k = 1 and 
p = p, yields the result. 1 

10. AN ELLIPTIC CURVE 

We will be concerned with the curve given by the equation 

y2 = 105x(x2 - 4). (10.1) 

If X= 105x, Y=21Oy, then (10.1) is equivalent to 

Y2 = 4X3 - (42O)‘X. (10.2) 

The formulas in [7, p. 121 apply to (10.2) to compute the coordinates of 
sums of points on the curve. Let P correspond to the solution (5, 105) of 
(10.1). By direct computation one gets the following table: 

Point X Y x Y 

P 525 2( 105)2 5 105 

2P 292 29.41 292 29.41 
T- 

- 
4 420 840 

3P 
21(5885)* 5(1177)2 
(1259)2 (1259)2 

(10.3) 

LEMMA 10.1. The point P in (10.3) has infinite order. Thus (10.1) has 
positive rank. 

Proof: This follows from the Lutz-Nagell theorem [7, p. 551 by 
(10.3). 1 

It is well known that (10.1) has positive rank. This is equivalent to the 
fact that 210 is a “congruent” number. See [S]. 

THEOREM 10.2. Let (x, y) be a solution of (10.1) which corresponds to an 
odd multiple of P. Then there exist (x,, x2, x3) E (CD x )’ such that 

(x-2,x,x+2)=(3~:,5~;,7x$). (10.4) 

In particular there exist infinitely many solutions (x, y) of (10.1) such that 
(10.4) holds. 

Proof: By (10.2), (Y/2)2= X(X- 210)(X+ 210). Let Q” be the group 
Q” modulo the squares. The map which sends a point (X, Y/2) 
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corresponding to a multiple of P onto (X- 210, X, X+ 210) defines a 
homomorphism from the rational points on the curve onto a finite sub- 
group of Q”. See [7, pp. lOl-1051. The inverse image S of (315525,735) 
in (a x)3 contains all odd multiples of P by (10.3) and is infinite by 
Lemma 10.1. Any point in S has the property that 

(X-210,X, X+210)= (315x:, 525x;, 735x:) 

for (xl, x2, x3) E (Q x )‘. The result follows as X= 105x. 1 

LEMMA 10.3. Let f(x) E C[x]. Suppose that f(x) has degree n 3 1 and 
f(x) has n distinct roots. Then the genus of the curve given by y* =,f(x) is 
C(n - 1 J/21. 

Proof This is a direct consequence of Hurwitz’s genus formula. See, 
e.g., [I6 P. 251. I 

The proof of the next result requires Faltings’ theorem which asserts that 
an algebraic curve of genus greater than 1 has only finitely many rational 
points. 

THEOREM 10.4. Let r he a prime. Let d he an integer with d # 0, f 2. Let 
B>, 2 he a real number. Let S be the set of solutions (x, y) of (10.1) such 
that if p is a prime with p > B then r 1 v&x - d). Then S is finite. 

ProojY Let Q be the set of all primes q < B. Let C be the set of all non- 
zero rational numbers whose numerator and denominator are products of 
primes in Q such that -r < v,(c) < r for all q E Q. Thus C is finite. 

Let (x, y) E S. Then x - d = cx;, for some c E C and some x0 E Q x. Let 
g(x) = f(cx’ + d), where f(x) = 105x(x* - 4). Then g(x) has degree 3r and 
g(x) has 3r distinct roots. By Lemma 10.3, y* = g(x) has genus 
[(3r - 1)/2] 3 2. Thus by Faltings’ theorem y* = g(x) has only finitely 
many rational solutions. Hence there are only finitely many choices for 
(x,, y) and only finitely choices for (x, y) E S for each c E C. As C is finite 
so is S. 1 

THEOREM 10.5. Let B> 5 be a real number. There exist primes 
p, , p2 > B such that the following holds: 

There exists an ordered triple (x,, x2, x3) E (Q x )’ such that (x, y) is a 
solution of ( 10.1) and 

(x-2,x,x+2)=(3~;,5~;,7x;). (10.5) 

Furthermore 

vp,(x + 1) I=- 0, 5&,(x + 1). (10.6) 

v,,(x+3)>0, 7tv,,(x + 3 ). (10.7) 
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Proof By Theorems 10.2 and 10.4 there exist primes p,, p2 > B and a 
solution of (10.1) such that (10.5) holds and 

(v,(x+d,), lOI= 1, (vz(x+dz), 14)= 1, (10.8) 

where d, = 1, d2 = 3, v, = vP, for i = 1, 2. It remains to show that 
vi(x i- d,) > 0. 

Suppose on the contrary that v = vi(x + d,) < 0 for i = 1 or 2. Let x + d, = 
a/b, for a pair of relatively prime integers a, b. If k is an integer with jkl < 5 
then x + di + k = (a + bk)/b. As P, > B > 5, p,!(a + bk). Hence 
v,(.Y + dj + k) = v. Therefore (10.1) implies 

2v,(y) = v;(J)*) = v,(x) v;(x + 2) Vi(X - 2) = 3v. 

Hence v,(x + di) = v is even contrary to (10.8). 1 

11. e,(F,(x, & 1)) 

THEOREM 11.1. Let (x, ~1) be a solution qf’ ( 10.1) such that (10.4) holds. 
Let 2=x-4. Then 

A,.,(i) - 1, (I 1.1) 

E/J F,(x, i, 1)) = I ,for p = 02 or p a prime (11.2) 

i+2-3, i” + 4 - 5, 1.+6-7. (11.3) 

Proof: By (4.7) and Theorem 10.2 (11.1) and ( 11.3) hold. It remains to 
verify ( 11.2). Choose p = cc or a prime. Let ( , ) = ( , )P and let 
E=E,,(F,(x, jL, 1)). For 1 <i<7 let di=d7,i(F,(x, I., 1)). By Theorem 3.1, 

By Theorem 5.1, 

A , -7, A z - 6~7, A, - 35c,, A,-6c,c,, 

A 5~ 105c,c,, A,-3c,c,c,, AT- 1. 

Thus 

E = (6c,, 35)(6c,c,, 15)(3c,c,c3, 3)( - 1, 35c,c,). 

By (3.1)-(3.3) this yields that 

E = (CT, -7)(cg, 5)(c,, -3)(7, -6)(5, - 1)(3, 2). 
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By (3.4), (7, -6)= 1. By (3.6) and (3.7), (5, - 1)= 1. Hence 

&=(C,, -7)(c,, 5)(c3, -3)(3,2). 

Since c, = c6 + 1 = 7u2 + 1, (3.4) yields that 

(CT? -7)=(7u2+ 1, -7u2)= 1. 

As c3 = c2 + 1 = 3~’ + 1, (3.4) yields that 

CC,> -3)=(3u2+ 1, -3u’)= 1 

(11.4) 

Hence ( 11.4) becomes 
& = (c,, 5)(3, 2). (11.5) 

Since es = cd + 1 = 5~’ + 1, (3.4) yields that 

(c,, 5)=(52?+ 1,5Uz)=(5u2+ 1, -l)=(cg, -1). (11.6) 

As c5 = c2 + 3 = 3u2 + 3, (11.5) (11.6) and (3.4) now imply that 

e=(3u2+3, -1)(3,2)=(3, -2)(242+1, -1)=(3, -2). 

By (3.5))(3.7) this yields that E= 1. 1 

12. THE CASE n=7 

THEOREM 12.1. Let jV E Q x. Suppose that there exist primes p, , p2 > 7 so 
that 

v,(i + 5) > 0, 5!V,(I + 5) (12.1) 

V,(3” + 7) > 0, 7Jv2(i + 7) (12.2) 

where Y, = vp, for i= 1, 2. Let E be the splitting field of F,(x, 1, 1) over Q. 
Then p, and p2 ramify in E. Furthermore A7 c Gal(E/Q) s Z,. 

Proof: Let ci = j- + j for 1 < j< 7. Since pl, pz > 7 it follows that 
v,(c,)=O for j#5 and v2(cj)=0 for j#7. Let v,=Y,(c~), v2=v2(c,). The 
Newton polygon at p, of F,(x, 1, 1) is the lower convex envelope of the 
points 

(0, VI), (1, v,), (2, v,), (3, v,), (4, v,), t&O), (6,0), (790). 

Thus there is a segment of slope -v ,/5 from (0, v, ) to (5,O). Hence 5 
divides the ramification index at p,. See, e.g., [ 17, p. 731. The Newton 
polygon at p2 of F,(x, I,, 1) is the lower convex envelope of the points 

(0, ~21, (1, ~21, (2, v,), (3, ~21, (4, ~21, (5, ~~21, (6, ~21, (790). 
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Thus there is a segment of slope -v,/7 form (0, v2) to (7,O). Hence 7 
divides the ramification index at pz. 

Therefore Gal(E/Q) is a subgroup of Z, whose order is divisible by 35. 
Thus A, E Gal(E/Q). 1 

THEOREM 12.2 Let B > 7 be a real number. Choose pl, pz, x as in 
Theorem 10.5. Let A= x - 4. Let E be the splitting field of F,(x, 1, 1). Then 
p1 and p2 ramtfy in E and Gal(E/Q) ‘v A,. Furthermore, there exists a 
quadratic extension M of E which is a Galois extension of Q with 
Gal(M/Q) ‘c A”,. Thus in particular the group A”, satisfies (7.1) and (7.2). 

Proof Theorem 10.5 and (10.1) imply that 
i+2-3, i+4-5, j-+6-7 (12.3) 

105(/2 + 2)(2 + 4)(2 + 6) = y2 (12.4) 

for some y E Q x. By Theorem 10.5, (12.1) and (12.2) are satisfied. By (4.7) 
and (12.4) G&A,. Hence G N A: and p, and p2 ramify in E by 
Theorem 12.1. The existence of M follows from Theorems 3.2 and 11.1 and 
(12.3). 1 

13. K-ADMISSIBLE GROUPS 

Let K E L be algebraic number fields. L is K-adequate if L is a maximal 
subfield of a finite dimensional division algebra with center K. 

A finite group G is K-admissible if G % Gal(L/K) for some Galois exten- 
sion L of K which is K-adequate. 

The following basic result is proved in [9]. 

THEOREM 13.1. Let K be a number field and let L be a Galois extension 
of K. Let G = Gal(L/K). The following are equivalent. 

(i) L is K-adequate. 

(ii) If p is any prime and P is a S,-group of G then P E Gal(LK,/K,) 
for at least two completions K, and K, of K. 

The next two results are consequences of Theorem 13.1 

THEOREM 13.2. [9, Theorem 4.11. Zf G is Q-admissible then every 
Sylow group of G is meta-cyclic. 

THEOREM 13.3. [2, Theorem 1.11. If G is K-admissible for every num- 
ber field K then every Sylow group of G is either cyclic or the direct product 
of two cyclic groups. 
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It is conceivable that A, is K-admissible for every number field K It is 
known that A, is K-admissible if fi$K[3]. Also M. Schacher has 
informed me that in unpublished work D. Saltman has shown that As is 
K-admissible if J?E K. In Section 14 we give a class of number fields K 
such that A, is K-admissible. A similar result is also proved for 2,. In [13] 
it is shown that A”, in Q-admissible. 

THEOREM 13.4. Let L c M be Galois extensions of the algebraic number 
field K such that G = Gal( L/K) and G = Gal(M/K). Assume that 

(l)+Z,+&G+ (1) 

is a nonsplit exact sequence. Then if L is K-adequate, so is M. 

Proof Let p be a prime and let P be an S,-group of G. By 
Theorem 13.1 Pg Gal(LKJK;) for at least two completions K, and K, of K. 

Suppose that p # 2. Then P is isomorphic to a S,-group of G. Thus 
Gal( MKJK,) contains a S,-group of G for i = 1, 2. 

Suppose that p = 2. Let T,, be an S,-group of Gal(MK,/K,). Then TO is 
mapped onto a S,-group T of G and TE TO. Since restriction is injective in 
cohomology 

(l)-Z,+%T+(l) 

is nonsplit. Hence TO = p. Thus Theorem 13.1 implies that M is 
K-adequate. 1 

THEOREM 13.5. Let K be an algebraic number field and let KE L z M, 
where L and M are Galois extensions of K with G = Gal(L/K) 21 A, and 
Gal(M/K) N A,. Let T be a Sz-group of G. Suppose that there are two com- 
pletions K, and K, of K so that TE Gal(LK,IK,) for i = 1,2. Then L and M 
are K-adequate. 

Proof If p is an odd prime then a S,-group P of A, or A”, is cyclic. 
Thus the Tchebotarev density theorem implies that PE Gal(LK,/K;) for 
infinitely many completions Ki of K. Thus L is K-adequate by 
Theorem 13.1. Hence M is K-adequate by Theorem 3.4. i 

14. K-ADMISSIBILITY OF A, AND I5 

LEMMA 14.1. Let K be an algebraic number field and let K be the Galois 
closure of K in some algebraic closure. Assume that fi $ K( fi). Let 
5 < pI < pz < p, where each pi is a prime which does not ramtfy in K such 
that the following hold. 
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(i) Let ci denote the Frobenius automorphism corresponding to p,. 
Then 

(al) = (Q=Gal(k(fi, &I?(a)). 

(ii) Let m=p,p,p,. Then (15/p,)= 1 and 

(14.1) 

m z 3 (mod 4) m- - 1 (mod 15). (14.2) 

Then m = 1 5a2 - b2 such that (8.1) and (8.2) hold. Let p, i, be defined by 
(9.1) and (9.2). Then Gal(Z&(& p))/k) ‘v A, and 41 [&,.!I?(& p):I?;] ,for 
i = 1, 2 where 8, is the completion of k at p,. 

Proqf: By ( 14.1) 

J&K. (15/p,)= 1 (14.3) 

for i= 1, 2. By Theorems 8.2 and 8.3, a, b, exist with the required proper- 
ties. By Theorem 9.4, each p, ramifies in E(A, p). By (8.1) and (9.4) 2c, is 
not a cube. By (8.2) and (9.6) 2c, is not a 5th power. Thus Theorem 9.3 
implies that 

Let Gj= Gal(Z?,E(E., p)/ki) for i= 1, 2. By Theorem 9.4, G, c A, and 
2 1 IGil. Thus either 4 I IGil or IGil = 2. 

Suppose that the result is false. Then IGil = 2 for i = 1 or 2. Let Q, = Q,. 
Hence [k,E(A, p):k,] = [E(%, ,u) Qi :Qi] = 2 and so &@A, p) = k,(rc), 
where rr2 = upi for some unit u in Q,. Let g(.x, A, p) = Fs(x + cg, I., p). By 
Theorem 9.4 there exists a unit c’ of E(A, p) Q, such that un is a root of 
g(x, j-9 PL). BY (9.14), 

0 E g(un, i, p) = u%c5 - 10pc,t&r3 + 15p”c3c,v7r (mod p!). (14.4) 

Let ,U = dp,. Thus p = du -‘rr*. Hence (14.4) implies that 

O-~~-lOdu~‘u~c~+15d~~~~c~c~ (modrc). (14.5) 

Since u is a unit in E(A, p) Qi there exists a unit u0 E Q, such that u = u0 
(mod rc). Therefore (14.5) implies that 

u2u4 0 - 10 duuic, + 15 d2c,c, = 0 (mod p,). 

By (9.1), (9.4) and (9.6) 

(14.6) 

c5 = c3 = b 2 (mod p). 
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Hence (14.6) implies that 

u’ut - 10 duuib2 + 15 d2b4 E 0 (mod pi). 

Therefore uui E 5db2 + db2 fi. Hence fin Z?, contrary to (14.3). 1 

THEOREM 14.2. Let K be an algebraic number field and let I? denote its 
Galois closure over Q in some algebraic closure. Jf $64 k(dG) then A, is 
K-admissible. 

Proof: By the Tchebotarev density theorem there exist primes p, and p2 
which satisfy ( 14.1). Thus (15/p, ) = ( 15,‘~~) = 1 and p, , pz satisfy one of 
Theorem 8.2(i))(iv). Hence p, pz satisfies one of these conditions. By 
Dirichlet’s theorem there exists a prime px such that m = pI p2 px satisfies 
Theorem 8.2(i). Hence pi satisfies one of Theorem 8.2(i)-(iv) and so 
(1 5/p3) = 1. The result follows from Theorem 13.1 and Lemma 14.1. 1 

THEOREM 14.3. Let K be an algebraic number field and let k denote its 
Galois closure over Q in some algebraic closure. !f fi $ I?(,/!( 3, &?) 
then 2, is K-admissible. 

Proof: Let F= K(J’?, ,:“;, fi). By the Tchebotarev density theorem 
there exist primes pI for i= 1,2, 3 with 5 -C p, c p2 c px such that p, does 
not ramify in F for i = 1,2,3 and such that if 0, is the Frobenius 
automorphism of F(a) at p, then (0,) = Gal(F(JG)/F). Then 
J-4 = 10 F, FQ!,, where CI!, is the completion of Q at p,. Hence the residue 
class degree of p, in F is odd. Therefore 

(~)=(~)~(~)=l. (Z)= -1. 

Thus 

Hence 

pi E 3 (mod 8), p, E - 1 (mod 3) p, = f I (mod 5). 

By Theorem 13.1 and Lemma 14.1, KE(2, p) is K-adequate and 
Gal(KE(& p)/K) 1: A,. By Theorem 9.5 there exists a Galois extension M 
of Q with E(A, p) E A4 and Gal(M/Q) E A”,. Thus Kn M= 6J and 

Gal(KM/K) ‘v Gal(M/Q) = J5. 

By Theorem 13.5, KM is K-adequate. 1 



260 WALTER FEIT 

REFERENCES 

1. Z. I. BOREVICH AND I. R. SHAFAREVICH, “Number Theory,” Academic Press, New 
York/London, 1966. 

2. B. GORDON AND M. SCHACHER, Quartic coverings of a cubic, in “Number Theory and 
Algebra,” pp. 97-101, Academic Press, New York/London, 1977. 

3. B. GORDON AND M. SCHACHER, The admissibility of A,, Number Theory 11 (1979), 
498-504. 

4. N. JACOBSON, “Basic Algebra II,” Freeman, San Francisco, 1980. 
5. N. KOBLITZ, “Introduction to Elliptic Curves and Modular Forms,” Springer-Verlag, 

Berlin/Heidelberg/New York, 1984. 
6. S. LANG, “Introduction to Algebraic and Abelian Functions,” Addison-Wesley, Reading, 

Mass., 1972. 
7. S. LANG, “Elliptic Curves: Diophantine Analysis,” Springer-Verlag, Berlin/Heidelberg/ 

New York, 1978. 
8. G. POLYA AND G. &EGO, “Problems and Theorems in Analysis II,” Springer-Verlag, 

Berlin/Heidelberg/New York, 1976. 
9. M. SCHACHER, Subfields of division rings I, J. Algebra 9 (1968), 451477. 

10. I. SCHUR, “Collected Works,” Vol. III, Springer-Verlag, Berlin/Heidelberg/New York, 
1973. 

11. J.-P. SERRE, Tours d’Arithm&tique,” Presses Univ. France, Paris, 1970. 
12. J.-P. SERKE. L’invariant de Witt de la forme Tr(.w’), Comment Math. Heh. 59 (1984), 

651-676. 
13. J. SONN, SL(2, 5) and Frobenius Galois groups over Q, Canud. J. Muth. 32 (1980), 

28 l-293. 
14. N. VILA, Sur la resolution d’un problime de plongement, Lecture Notes in Math., 

Vol. 1068, pp. 243-259, Springer-Verlag, New York/Berlin, 1983. 
15. N. VILA, Polynomials over Q solving an embedding problem. Ann. Inst. Fourier 

(Grenoble) 35, 2 (1985) 79-82. 
16. N. VILA, On central extensions of A, as Galois group over Q, Arch. Mafh. (BaseI) 44 

(1985), 424437. 
17. E. WEISS, “Algebraic Number Theory,” Chelsea, New York, 1963. 


