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1. Introduction

In this paper, we are interested in the following semilinear elliptic system on R
2:

�u = 2q

(
−N + s − 1 − eu

1 + eu

)
+ 4π

l1∑
j=1

n jδp j − 4π

l2∑
j=1

m jδq j ,

�N = −κ2q2
(

−N + s − 1 − eu

1 + eu

)
+ q

4eu

(1 + eu)2
N. (1.1)

Here, P = {p1, . . . , pl1 } and Q = {q1, . . . ,ql2 } are disjoint sets of distinct points in R
2. The points

in P are called the vortex points, while the points in Q anti-vortex points. The numbers n j and m j
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are positive integers representing multiplicities of vortex or anti-vortex points. The unknowns are
u : R

2\(P ∪ Q) → R and N : R
2 → R. Moreover, κ , q are positive constants and −1 < s < 1. The

system (1.1) comes from the self-dual equations arising in the Maxwell–Chern–Simons gauged O (3)

sigma model (or equivalently CP(1) model) [15]. For the background of this model and the derivation
of (1.1), one can refer to [10].

We note that if (u, N) is a solution pair of (1.1) and (1.2) of 0 � s < 1, then (−u,−N) is also a
solution for −s with the change of roles of p j ’s and q j ’s. Therefore, throughout this paper, we assume
that 0 � s < 1. There are two kinds of boundary conditions for (1.1): either

u → ln
1 − s

1 + s
, N → 0, (1.2)

or

u → −∞, N → s − 1. (1.3)

The former is called topological and the latter nontopological. See [10] for further discussion. In this
paper, we consider the topological condition (1.2). For the existence of solutions of (1.1) and (1.2), we
have the following result in [10].

Theorem 1.1. (See [10].) There exists a constant κ0 satisfying that for each 0 < κ < κ0 , there is a constant
qκ > 0 such that (1.1) and (1.2) admit a solution (u, N) ∈ C∞(R2\(P ∪ Q)) × C∞(R2) for all q > qκ . More-
over, the functions u2, N2, |∇u|2, |∇N|2 decay exponentially at the infinity.

The restrictions on the constants κ and q in Theorem 1.1 are due to the method of finding
topological solutions. In fact, the authors used the monotone iteration technique with explicit su-
per/subsolutions, and the conditions on κ and q come from the iteration scheme and the construction
of appropriate super- and subsolution pairs. It is still open to show the existence of topological so-
lutions for arbitrary κ and q. In this paper, we improve Theorem 1.1 when there appear only vortex
points. In other words, for any κ and q, we prove the existence of solutions of the following equation
with the topological boundary condition:

�u = 2q

(
−N + s − 1 − eu

1 + eu

)
+ 4π

l∑
j=1

n jδp j ,

�N = −κ2q2
(

−N + s − 1 − eu

1 + eu

)
+ q

4eu

(1 + eu)2
N. (1.4)

Here, we put l = l1. The number d = n1 + · · · + nl is called the total vortex number. The first main
result is

Theorem 1.2 (Existence). For any κ,q > 0, there exists a solution of (1.2) and (1.4).

In the rest of this paper, we continue to study Eqs. (1.2) and (1.4). One of the main features
of (1.4) is that it unifies both the Maxwell gauged O (3) sigma model and the Chern–Simons gauged
O (3) sigma model as suggested in [15]. Indeed, if we set κ = 0 and N ≡ 0, then (1.4) becomes

�u = 2q

(
s − 1 − eu

1 + eu

)
+ 4π

l∑
j=1

n jδp j , (1.5)
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which corresponds to the self-dual equation for the Maxwell gauged O (3) sigma model [20,22]. Since
the right-hand side of (1.5) is monotonically increasing for u, (1.5) allows only one solution. On the
other hand, if we take the limit q → ∞, then (1.4) is changed into

�u = 8eu

κ2(1 + eu)2

(
s − 1 − eu

1 + eu

)
+ 4π

l∑
j=1

n jδp j , (1.6)

which corresponds to the self-dual equation for the Chern–Simons gauged O (3) sigma model [5,8,
14,20,22]. These limits are called the Maxwell limit and the Chern–Simons limit, respectively. In this
paper, we study these limits for (1.2) and (1.4) in a mathematically rigorous way as follows:

Theorem 1.3 (Maxwell limit). For a fixed q > 0, let (uκ , Nκ ) be a solution pair of (1.2) and (1.4) obtained by
Theorem 1.2 corresponding to κ . Then, there exists a function u∗ such that

∥∥uκ − u∗∥∥
Hk(R2)

, ‖Nκ‖Hk(R2) → 0

for any nonnegative integer k as κ → 0. Furthermore, u∗ is the unique solution of (1.5).

Theorem 1.4 (Chern–Simons Limit). Let κ > 0 be fixed. Given q > 0, let (uq, Nq) be a solution pair of (1.2)
and (1.4) obtained by Theorem 1.2. Then, as q → ∞, there exist a subsequence, still denoted by (uq, Nq), and
a pair of functions (u∗, N∗) such that

‖uq − u∗‖Ck(K ), ‖Nq − N∗‖Ck(K ) → 0

for any nonnegative integer k and compact sets K ⊂ R
2 . Moreover, we have

N∗ = s − 1 − eu∗

1 + eu∗

and u∗ is a solution of (1.6).

Before proceeding further, we make some remarks on Theorems 1.3 and 1.4. First, in (2 + 1)

Maxwell–Chern–Simons gauge field theories, it has been an interesting subject to verify these limits
by mathematical arguments. The simplest Maxwell–Chern–Simons model is the U (1) gauged model
introduced in [16]. The self-dual equations for this model is given by

�u = 2q
(
eu − 1 + κN

) + 4π

l∑
j=1

n jδp j ,

�N = κq2(eu − 1 + κN
) + 2qeu N. (1.7)

There are three kinds of boundary conditions for (1.7):

topological: (u, N) → (0,0) as |x| → ∞,

nontopological: (u, N) → (−∞,1/κ) as |x| → ∞,

’t Hooft type: periodic on a lattice cell.
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If we take the Maxwell limit, i.e., κ = 0 and N ≡ 0, then we have the classical Abelian–Higgs
model [13]

�u = 2q
(
eu − 1

) + 4π

l∑
j=1

n jδp j .

It we take the Chern–Simons limit q → ∞, then (1.7) becomes the Abelian–Chern–Simons–Higgs vor-
tex equation [11,12]

�u = 4

κ2
eu(

eu − 1
) + 4π

l∑
j=1

n jδp j .

Regarding the Maxwell limit and the Chern–Simons limit for solutions of (1.7), one can refer to [2–4]
for topological solutions, to [9] for nontopological solutions, to [17,19] for periodic solutions. For the
O (3) sigma model treated in this paper, such limits have been studied for only periodic solutions
in [6,7,17,18]. So, as far as we know, Theorems 1.3 and 1.4 are the first results for mathematical proof
of the Maxwell limit and the Chern–Simons limit for topological solutions of (1.1).

Second, we point out that the method of the proof for Theorems 1.3 and 1.4 is quite different from
the argument used in [2–4] to verify the Maxwell limit and the Chern–Simons limit for topological
solutions of (1.7). Eqs. (1.1) and (1.7) share a similar structure. In fact, as shown in the next section,
(1.1) can be changed into (2.1) and (2.2) which also corresponds to (1.7) by setting f (t) = t − 1
and replacing N by −κN . In this point of view, (1.1) can be regarded as a variation of (1.7) with
more complicated nonlinearity and it is natural to extend theories for (1.7) to (1.1). However, the
nonlinearity arising in (1.1) makes it difficult to use the methods developed for (1.7) in the same
way when we study the existence and asymptotic behavior of solutions such as the Maxwell and
the Chern–Simons limits. In [3], in order to prove the Maxwell limit for (1.7), the authors used an
iteration technique together with a monotonicity of the functional F about the iteration. As studied
in [10], it is required to put some constraints on the parameter κ and q to make the iteration process
successful in our model. Indeed, as κ → 0, we have q → ∞ and hence such a restriction on κ and
q is not suitable for the Maxwell limit. Similarly, the method in [2–4] proving the Chern–Simons
limit for (1.7) cannot be applied to (1.1). In [2–4], the authors used a monotonicity property for the
maximal solutions, vq � vq′ for q � q′ , to verify the Chern–Simons limit for maximal solutions. As
already pointed out before, such a monotonicity comes from an iteration technique which is not valid
for more complicated equations as ours. While the argument in this paper does not rely on iteration
technique, the argument utilizes various kinds of maximum principle structures. Our method is also
suitable for (1.7) and also expected to be applicable for other self-dual Maxwell–Chern–Simons models
which have maximum principle structures as used widely in this paper.

Third, in Theorem 1.3 and Theorem 1.4, we prove the Maxwell limit and the Chern–Simons limit
for the variational solutions given by Theorem 1.2. So, it remains open to show both limits for any
solutions of (1.2) and (1.4).

Here is an outline of this paper. In Section 2, we prove Theorem 1.2 by a variational argument.
We make two equations of (1.4) into a single equation of fourth order for u, and find an appropriate
functional for it. In Section 3, we prove Theorem 1.3. In Section 4, we prove Theorem 1.4. For a
regularized solution vq := uq − v0 + ln a defined in Section 4, the uniform bound of vq in H1(R2) is
obtained by the estimates in the proof of Theorem 1.2. One of the remarkable things in the self-dual
Maxwell–Chern–Simons models is that they allow various kinds of maximum principle structures. We
apply the maximum principle to some auxiliary equations to get uniform bounds of solutions, from
which the convergence follows.
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2. Existence of solutions

In this section we prove Theorem 1.2 by a variational method. We make the system (1.4) into a
single equation of fourth order for u and find a suitable functional to use a variational argument as
in the pure Maxwell–Chern–Simons model [3]. Throughout this paper, we use the notation ‖ · ‖2 =
‖ · ‖L2(R2) . For simplicity, we define some notations as follows:

a = 1 + s

1 − s
∈ [1,∞), w = u + ln a, f (t) = t − a

t + a
+ s = 2a(t − 1)

(a + 1)(t + a)
.

Then, we can rewrite (1.2) and (1.4) as

�w = 2q
(−N + f

(
ew)) + 4π

l∑
j=1

n jδp j , (2.1)

�N = −κ2q2(−N + f
(
ew)) + 2qf ′(ew)

ew N (2.2)

with

w, N → 0 as |x| → ∞. (2.3)

To remove the singular terms of (2.1), we introduce a reference function

v0,μ(x) =
l∑

j=1

n j ln

( |x − p j|2
μ + |x − p j|2

)
.

Here, μ � 1 is a positive constant to be determined later. A short computation implies that

�v0,μ = −gμ + 4π

l∑
j=1

n jδp j ,

where

gμ(x) =
l∑

j=1

4μn j

(μ + |x − p j|2)2
.

If we set v = w − v0,μ , then (2.1)–(2.3) are changed into the following system of equations

�v = 2q
(−N + f

(
ev0,μ+v)) + gμ, (2.4)

�N = −κ2q2(−N + f
(
ev0,μ+v)) + 2qf ′(ev0,μ+v)

ev0,μ+v N, (2.5)

with the boundary conditions

v, N → 0 as |x| → ∞. (2.6)
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Solving for N from (2.4), we obtain

N = − 1

2q
�v + f

(
ev0,μ+v) + 1

2q
gμ. (2.7)

Then substituting (2.7) into (2.5), we have a fourth order equation

⎧⎪⎨
⎪⎩

�2 v − κ2q2�v + 4q2 f
(
ev0,μ+v)

f ′(ev0,μ+v)
ev0,μ+v − 2q� f

(
ev0,μ+v)

− 2qf ′(ev0,μ+v)
ev0,μ+v(�v − gμ) + (

κ2q2 gμ − �gμ

) = 0,

v → 0 as |x| → ∞.

(2.8)

Conversely, if we find a solution of (2.8), then we can construct a solution (v, N) of (2.4)–(2.6)
by (2.7). It is easy to verify that Eq. (2.8) is a variational equation of the following functional

Fμ(v) =
∫
R2

1

2
|�v|2 + 1

2
κ2q2|∇v|2 + 2q2 f 2(ev0,μ+v)

+ 2qf ′(ev0,μ+v)
ev0,μ+v

∣∣∇(v0,μ + v)
∣∣2 + (

κ2q2 gμ − �gμ

)
v (2.9)

defined on H2(R2) whose norm is given by ‖v‖2
H2(R2)

= ‖�v‖2
L2(R2)

+ ‖v‖2
L2(R2)

. We note that Fμ

is well defined on H2(R2) because f (ev0,μ+v) ∈ L2 by the argument of Proposition 3.3 (Chapter III)
in [13] and

f ′(ev0,μ+v)
ev0,μ+v

∣∣∇(v0,μ + v)
∣∣2 = 2aev0,μ+v

(ev0,μ+v + a)2

∣∣∇(v0,μ + v)
∣∣2 ∈ L1(

R
2).

Theorem 1.2 is a consequence of the following proposition.

Proposition 2.1. There exists μ0 such that Fμ has a minimizer on H2(R2) for all μ > μ0 . Here, μ0 is inde-
pendent of κ and q.

Proof. It is not difficult to see that Fμ is weakly lower semi-continuous. Thus, in order to show the
existence of a global minimizer of Fμ in H2(R2), it suffices to prove that Fμ is coercive. First, let us
define

Ω1,μ = {
x ∈ R

2: e2v0,μ < λ
}
, Ω2,μ = {

x ∈ R
2: e2v0,μ � λ

}
,

where λ > 0 is a constant such that 2λ1/(2d) < 1/2. Since v0,μ → 0 as |x| → ∞, Ω1,μ is bounded.
Since f ′ > 0, we have

Fμ(v) �
∫
R2

1

2
|�v|2 + 1

2
κ2q2|∇v|2 + 2q2 f 2(ev0,μ+v) + (

κ2q2 gμ − �gμ

)
v. (2.10)

Let us consider the term 2
∫

R2 f 2(ev0+v ). We see that
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2
∫
R2

4a2

(a + 1)2

(
ev0,μ+v − 1

ev0,μ+v + a

)2

� c1

∫
R2

e2v0,μ (ev − 1)2

2(ev0,μ+v + a)2
− c1

∫
R2

(ev0,μ − 1)2

(ev0,μ+v + a)2

� c1

∫
R2

e2v0,μ (ev − 1)2

2(ev0,μ+v + a)2
− c0,μ, (2.11)

where

c1 := 8a2

(a + 1)2
, c0,μ := c1

a2

∫
R2

(
ev0,μ − 1

)2
.

Since ev0,μ − 1 = O (|x|−2) near ∞, we deduce that ev0,μ − 1 ∈ L2(R2) and hence c0,μ is well defined.
Let T > 1 be a number such that t � (1 + a) ln t + 1 for all t � T . Then, (t − 1)/(t + a) � ln t/(1 + ln t)
for all t � T . Since ev0,μ � 1, using the inequality |et −1| � |t|/(1+|t|) for t ∈ R, we derive from (2.11)
that

2
∫
R2

f 2(ev0,μ+v)
� c1

2

∫
{v�ln T }

e2v0,μ (ev − 1)2

(T + a)2
+ c1

2

∫
{v�ln T }

e2v0,μ (ev − 1)2

(ev + a)2
− c0,μ

� c1

2(T + a)2

∫
{v�ln T }

v2e2v0,μ

(1 + |v|)2
+ c1

2

∫
{v�ln T }

v2e2v0,μ

(1 + |v|)2
− c0,μ

� c2

∫
R2

v2e2v0,μ

(1 + |v|)2
− c0,μ

� c2

( ∫
Ω1,μ

v2e2v0,μ

(1 + |v|)2
+ λ

∫
Ω2,μ

v2

(1 + |v|)2

)
− c0,μ, (2.12)

where c2 = c1/2(T + a)2.
Choose δ and R satisfying 0 < δ < mini �= j{|pi − p j |/2,1} and R > max j{|p j | + 1}. Define

Ωδ =
l⋃

j=1

Bδ(p j). (2.13)

If x ∈ Ω1,μ and |x|2 > 2R2, then

λ >

l∏
j=1

( |x − p j|2
μ + |x − p j|2

)2n j

�
l∏

j=1

( 1
2 |x|2 − R2

μ + 2|x|2 + 2R2

)2n j

=
( 1

2 |x|2 − R2

μ + 2|x|2 + 2R2

)2d

,

which implies that

(
1

2
− 2λ

1
2d

)
|x|2 � λ

1
2d

(
μ + 2R2) + R2.
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Hence, by the choice of λ, if we choose μ > 2R2, then there exists a constant c3 > 0 such that
|x|2 � c3(μ + 1) for all x ∈ Ω1,μ .

We observe that for x ∈ Bδ(p j),

e−2v0,μ =
l∏

k=1

(
μ + |x − pk|2

|x − pk|2
)2nk

� (2μ)2d

δ4d−4n j
· 1

|x − p j|4n j
� c4μ

2d

|x − p j|4d
,

where c4 = max j{22dδ−4d+4n j }. Hence, if we choose a number α ∈ (0,1/(2d + 1)) such that 4dα/

(1 − α) < 2, then

∫
Ωδ

e−2v0,μ
α

1−α �
l∑

j=1

c
α

1−α

4 μ
2dα
1−α

∫
Bδ(p j)

|x − p j|− 4dα
1−α � c5μ

2dα
1−α ,

where

c5 = lc
α

1−α

4

∫
|x|�δ

|x|− 4dα
1−α < ∞.

On the other hand, if x ∈ Ω1,μ\Ωδ , then

e−2v0,μ �
(

μ + 2c3(μ + 1) + 2R2

δ

)4d

� c6
(
μ4d + 1

)

for some c6 > 0. Therefore,

∫
Ω1,μ\Ωδ

e−2v0,μ
α

1−α �
∫

|x|2�c3(μ+1)

[
c6

(
μ4d + 1

)] α
1−α � c7

(
μ1+ 4dα

1−α + 1
)

for some c7 > 0. As a consequence,

∫
Ω1,μ

e−2v0,μ
α

1−α =
∫
Ωδ

e−2v0,μ
α

1−α +
∫

Ω1,μ\Ωδ

e−2v0,μ
α

1−α � c8
(
μ1+ 4dα

1−α + 1
)

for some c8 > 0.
Now it follows from the Hölder inequality that

∫
Ω1,μ

v2

(1 + |v|)2
�

∫
Ω1,μ

(
v2

(1 + |v|)2

)α

�
( ∫

Ω1,μ

e−2v0,μ
α

1−α

)1−α( ∫
Ω1,μ

e2v0,μ v2

(1 + |v|)2

)α

� c8
(
μ1+ 4dα

1−α + 1
) +

∫
Ω1,μ

e2v0,μ v2

(1 + |v|)2
.
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Therefore, (2.12) becomes

2
∫
R2

f 2(ev0,μ+v)
� c2

( ∫
Ω1,μ

v2

(1 + |v|)2
+ λ

∫
Ω2,μ

v2

(1 + |v|)2

)
− c0,μ − c2c8

(
μ1+ 4dα

1−α + 1
)

� c2λ

∫
R2

v2

(1 + |v|)2
− c0,μ − c2c8

(
μ1+ 4dα

1−α + 1
)
. (2.14)

Now let us consider other terms in Fμ(v). First, a direct computation yields that

‖gμ‖2
2 � l

∫
R2

(4μd)2

(μ + |x|2)4
dx = 16π ld2

3μ
=: c2

9

μ
.

Hence,

∫
R2

(
κ2q2 gμ − �gμ

)
v � −κ2q2‖v‖2‖gμ‖2 − ‖�v‖2‖gμ‖2

� −c9κ
2q2

√
μ

‖v‖2 − 1

4
‖�v‖2

2 − c2
9

μ
. (2.15)

We also recall the following inequality from [21];

‖v‖2 � 2 +
∫
R2

v2

(1 + |v|)2
+ 2

∫
R2

|∇v|2. (2.16)

Now using (2.14) and (2.15) together with (2.16), we deduce from (2.10) that

Fμ(v) � 1

4
‖�v‖2

2 + κ2q2
(

1

2
− 2c9√

μ

)
‖∇v‖2

2 + q2
(

λc2 − c9κ
2

√
μ

)∫
R2

v2

(1 + |v|)2

− q2
(

c0,μ + c2c8
(
μ1+ 4dα

1−α + 1
) + 2c9κ

2

√
μ

)
− c2

9

μ
. (2.17)

We take μ > 0 large enough such that

√
μ >

√
μ0 := max

{
4c9,

κ2c9

λc2
,
√

2R

}
. (2.18)

Then we have

Fμ(v) � 1

4
‖�v‖2

2 + C1

(
‖∇v‖2

2 +
∫
R2

v2

(1 + |v|)2

)
− C2

for some constants C1 and C2 which are dependent on κ and q. This together with (2.16) implies that
Fμ is coercive, which completes the proof. �
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3. Maxwell limit

In this section we prove Theorem 1.3. First, we recall the following lemma from [10].

Lemma 3.1. If (w, N) is a solution of (2.1)–(2.3), then we have

w � 0 in R
2\P and N � 0, −N + f

(
ew)

� 0 in R
2. (3.1)

As an immediate consequence of (3.1), we get

ew � 1, 0 � N � f
(
ew) = 2a(ew − 1)

(a + 1)(ew + a)
� −2a

a(a + 1)
= − 2

a + 1
. (3.2)

Lemma 3.1 can be proved by the maximum principle and this gives a great deal of pointwise estimates
when we consider some asymptotic problems as the Maxwell and the Chern–Simons limits.

For a fixed q > 0, we take μ > μ0 and write v0 = v0,μ , g = gμ , F = Fμ . We may assume by (2.18)
that μ is independently chosen for all small κ . Letting v = u − v0 + ln a, we can rewrite (1.5) as

�v = 2qf
(
ev0+v) + g, (3.3)

which has a unique solution v∗ satisfying v0 + v∗ � 0. For a given κ > 0, let (vκ , Nκ ) be a varia-
tional solution pair of (2.4)–(2.6) obtained by Theorem 1.2. Then Theorem 1.3 is a consequence of the
following proposition.

Proposition 3.2. As κ → 0, we have

‖Nκ‖Hk(R2), ‖vκ − v∗‖Hk(R2) → 0 (3.4)

for any nonnegative integer k.

Proof. The proof is divided into four steps. In this proof, the letter C denotes a generic constant which
is independent of κ , and it is occasionally numbered for clarity.

Step 1: We have

‖vκ‖H2(R2) � C, (3.5)

where C is independent of κ .

Let ϕ be a smooth function with compact support. Then, Fκ,q(ϕ) � C as κ → 0. It comes
from (2.17) that

F (ϕ) � F (vκ ) � C

( ∫
R2

|�vκ |2 +
∫
R2

|vκ |2
(1 + |vκ |)2

)
− C . (3.6)

We also have ∫
2

|∇vκ |2 = −
∫

2

vκ�vκ � ε

∫
2

v2
κ + 1

4ε

∫
2

|�vκ |2. (3.7)
R R R R
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Using the following inequality (see [21]),

∫
R2

v2 � 2
∫
R2

v2

(1 + |v|)2
·
(

1 +
∫
R2

|∇v|2
)

,

we infer from (3.6) and (3.7) that ‖vκ‖L2(R2) and ‖�vκ‖L2(R2) are uniformly bounded, which im-
plies that ‖vκ‖H2(R2) � C . By the Sobolev Imbedding Theorem, ‖vκ‖L∞(R2) � C0 for some positive
constant C0 which is independent of κ .

Step 2: As κ → 0,

‖Nκ‖H2(R2) → 0. (3.8)

Let κ j ↘ 0 be any sequence and write (vκ j , Nκ j ) = (v j, N j). Since N j and �N j are uniformly
bounded in L∞(R2), we can extract a subsequence, still denoted by (v j, N j), and a function N0 such
that N j → N0 in C1,γ (K ) for any γ ∈ [0,1) and for any compact sets K . Let us integrate (2.4) and
(2.5) to obtain

2q

∫
R2

(−N j + f
(
ev0+v j

)) = −4πd, (3.9)

2q

∫
R2

f ′(ev0+v j
)
ev0+v j N j = κ2

j q2
∫
R2

(−N j + f
(
ev0+v j

)) = −2πdκ2
j q. (3.10)

Multiplying (2.5) by N j , we deduce from (3.2) and (3.9) that

∫
R2

(|∇N j|2 + 2qf ′(ev0+v j
)
ev0+v j N2

j

) = κ2
j q2

∫
R2

(−N j + f
(
ev0+v j

))
N j �

4πdκ2
j q

a + 1
.

Hence, N0 ≡ 0. Since f ′(t) is a decreasing function for t � 0, we derive from (3.10) that

−πdκ2 <

∫
R2\Ωδ

f ′(ev0+v j
)
ev0+v j N j �

∫
R2\Ωδ

f ′(ev0−C0
)
ev0−C0 N j

� C

∫
R2\Ωδ

N j < 0,

where Ωδ is given by (2.13). Thus, it is seen that

∫
R2

|N j| =
∫
Ωδ

|N j| +
∫

R2\Ωδ

|N j| � ‖N j‖L∞(Ωδ) · |Ωδ| +
∫

R2\Ωδ

|N j| → 0 (3.11)

as κ j → 0. Consequently, ‖N j‖2
2 � ‖N j‖L∞(R2)‖N j‖L1(R2) = o(1). On the other hand, it follows from

(3.9) that
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∫
R2

(−N j + f
(
ev0+v j

))2 �
(‖N j‖L∞(R2) + ‖ f ‖L∞(0,∞)

) ∫
R2

∣∣−N j + f
(
ev0+v j

)∣∣ � C .

Thus, by (2.5)

‖�N j‖2 � Cκ2
j

∥∥−N j + f
(
ev0+v j

)∥∥
2 + C‖N j‖2 = o(1).

Now the Calderon–Zygmund inequality implies that ‖N j‖H2(R2) = o(1) as κ j → 0. Since κ j was arbi-
trary, we conclude that ‖Nκ‖H2(R2) → 0 as κ → 0.

Step 3: As κ → 0, we have

∥∥vκ − v∗∥∥
H2(R2)

= o(1). (3.12)

Subtracting (2.4) from (3.3), we obtain

�
(

v∗ − vκ

) = 2qNκ + 2q
(

f
(
ev0+v∗) − f

(
ev0+vκ

))
. (3.13)

Multiplying this equation by v∗ − vκ and integrating by parts, we are led to

−
∫
R2

Nκ

(
v∗ − vκ

) = 1

2q

∫
R2

∣∣∇(
v∗ − vκ

)∣∣2 +
∫
R2

(
f
(
ev0+v∗) − f

(
ev0+vκ

))(
v∗ − vκ

)
. (3.14)

We note that∫
R2

(
f
(
ev0+v∗) − f

(
ev0+vκ

))(
v∗ − vκ

)

= 2a

∫
R2

ev0+vκ (ev∗−vκ − 1)(v∗ − vκ )

(ev0+v∗ + a)(ev0+vκ + a)
� 2a

(1 + a)2

∫
R2

ev0−C0
(

v∗ − vκ

)2

= 2ae−C0

(1 + a)2

( ∫
Ωδ

ev0
(

v∗ − vκ

)2 +
∫

R2\Ωδ

ev0
(

v∗ − vκ

)2
)

:= 2ae−C0

(1 + a)2
(I + II).

Here, the inequality follows from the fact that v∗ − vκ � 0. Obviously we have

II � inf
R2\Ωδ

ev0 ·
∫

R2\Ωδ

(
v∗ − vκ

)2
.

As in the proof of Proposition 2.1, we obtain that e−v0 � C |x − p j |−2d for x ∈ Bδ(p j). Hence, if we
choose α ∈ (0,1/(d + 1)), then

∫
Ωδ

e−v0
α

1−α � C,

which implies that
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∫
Ωδ

(
v∗ − vκ

)2 � sup
Ωδ

(
v∗ − vκ

)2−2α
∫
Ωδ

(
v∗ − vκ

)2α

� C

( ∫
Ωδ

e−v0
α

1−α

)1−α( ∫
Ωδ

ev0
(

v∗ − vκ

)2
)α

� C

( ∫
Ωδ

ev0
(

v∗ − vκ

)2
)α

= C Iα.

As a consequence,

∫
R2

(
f
(
ev0+v∗) − f

(
ev0+vκ

))(
v∗ − vκ

)
� C1

[( ∫
Ωδ

(
v∗ − vκ

)2
) 1

α

+
∫

R2\Ωδ

(
v∗ − vκ

)2
]

(3.15)

for some constant C1 > 0. On the other hand, since ‖Nκ‖2 = o(1), we see that

−
∫
R2

Nκ

(
v∗ − vκ

)

�
( ∫

Ωδ

|Nκ |2
) 1

2
( ∫

Ωδ

(
v∗ − vκ

)2
) 1

2

+
( ∫

R2\Ωδ

|Nκ |2
) 1

2
( ∫

R2\Ωδ

(
v∗ − vκ

)2
) 1

2

� C1

2

{( ∫
Ωδ

(
v∗ − vκ

)2
) 1

α

+
∫

R2\Ωδ

(
v∗ − vκ

)2
}

+ C

{( ∫
Ωδ

|Nκ |2
) 1

2−α

+
∫

R2\Ωδ

|Nκ |2
}

� C1

2

{( ∫
Ωδ

(
v∗ − vκ

)2
) 1

α

+
∫

R2\Ωδ

(
v∗ − vκ

)2
}

+ o(1).

Thus, we conclude from (3.14) and (3.15) that

1

2q

∫
R2

∣∣∇(
v∗ − vκ

)∣∣2 + C1

2

{( ∫
Ωδ

(
v∗ − vκ

)2
) 1

α

+
∫

R2\Ωδ

(
v∗ − vκ

)2
}

� o(1).

In the sequel,

∥∥v∗ − vκ

∥∥
2 = o(1).

Moreover, by (3.13) and the mean value theorem,

∥∥�
(

v∗ − vκ

)∥∥
2 � C

(‖Nκ‖2 + ∥∥v∗ − vκ

∥∥
2

) = o(1).

This enables us to arrive at (3.12) by the Calderon–Zygmund inequality.
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Step 4: It remains to show that (3.4) holds for k � 3. This can be achieved by induction. For example
consider k = 3. It comes from (3.13) that

�∂ j
(

v∗ − vκ

)
= 2q∂ j Nκ + 2qf ′(Uev∗)

∂ j Uev∗ − 2qf ′(Uevκ
)
∂ j Uevκ

+ 2qU f ′(Uev∗)
ev∗

∂ j v∗ − 2qU f ′(Uevκ
)
evκ ∂ j vκ

≡ 2q∂ j Nκ + ∂ j U F1(ϕ1,ϕ2) − ∂ j U F1(ψκ1,ψκ2) + U
(

F2(ϕ1,ϕ2,ϕ3) − F2(ψκ1,ψκ2,ψκ3)
)
,

where U = ev0 is a smooth bounded function and

F1(t1, t2) = 2qt1t2, F2(t1, t2, t3) = 2qt1t2t3,

ϕ1 = f ′(Uev∗)
, ϕ2 = ev∗

, ϕ3 = ∂ j v∗,

ψκ1 = f ′(Uevκ
)
, ψκ2 = evκ , ψκ3 = ∂ j vκ .

Since �∂ j(v∗ − vκ ) ∈ L2(R2) uniformly by induction, we have ∂ j(v∗ − vκ ) ∈ H2(R2) uniformly. In
particular, ‖∂ j(v∗ − vκ )‖L∞(R2) � C . By induction, it is obvious that for each j = 1,2,3,

‖∂ j Nκ‖2, ‖ϕ j − ψκ j‖2 → 0.

Hence,

∥∥F2(ϕ1,ϕ2,ϕ3) − F2(ψκ1,ψκ2,ψκ3)
∥∥

2

�
∥∥F2(ϕ1,ϕ2,ϕ3) − F2(ψκ1,ϕ2,ϕ3)

∥∥
2 + ∥∥F2(ψκ1,ϕ2,ϕ3) − F2(ψκ1,ψκ2,ϕ3)

∥∥
2

+ ∥∥F2(ψκ1,ψκ2,ϕ3) − F2(ψκ1,ψκ2,ψκ3)
∥∥

2

� C
(‖ϕ1 − ψκ1‖2 + ‖ϕ2 − ψκ2‖2 + ‖ϕ3 − ψκ3‖2

) → 0.

Similarly, ‖F1(ϕ1,ϕ2)− F1(ψκ1,ψκ2)‖2 → 0. As a consequence, we obtain that ‖∂ j(v∗ − vκ )‖H2(R2) →
0, which proves the estimate for v∗ − vκ when k = 3. A similar argument gives the estimate for Nκ

when k = 3. The convergence in higher norms is computed in a similar way and we omit the de-
tail. �
4. Chern–Simons limit

In this section, we prove Theorem 1.4. Although (2.1) and (2.2) form a system of equations, they
have various types of maximum principle structures which will be the main tool for the proof of
the Chern–Simons limits in this section. Throughout this section, let κ > 0 and μ > μ0 be fixed. We
write v0 = v0,μ and F = Fμ . Given q > 0, let (vq, Nq) be a pair of solutions of (2.4)–(2.6) given by
Theorem 1.2. Setting v = u − v0 + ln a, we can rewrite (1.6) as

�v = 4

κ2
ev0+v f

(
ev0+v)

f ′(ev0+v) + g. (4.1)

Theorem 1.4 is a consequence of the following proposition.
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Proposition 4.1. There is a subsequence, still denoted by (vq, Nq), and a pair of functions (v∗, N∗) such that

(vq, Nq) → (v∗, N∗) in Ck
loc

(
R

2) × Ck
loc

(
R

2)
for any nonnegative integer k. Furthermore, v∗ is a solution of (4.1) and N∗ = f (ev0+v∗ ).

Hereafter, Br denotes the ball of radius r centered at the origin. In order to prove the above
proposition, we often use the following interior gradient estimate (see [1]).

Lemma 4.2. Suppose that −�u = f in Ω ⊂ R
n. Then,

∣∣∇u(x)
∣∣2 � C‖u‖L∞(Ω)

(
‖ f ‖L∞(Ω) + 1

dist(x, ∂Ω)
‖u‖L∞(Ω)

)

for x ∈ Ω . Here, C depends only on Ω .

Proof of Proposition 4.1. We split the proof into four steps. In this proof, the letter C will denote a
positive generic constant which is independent of q and may vary from line to line.

Step 1: Let us define

{
ϕq = q

(−Nq + f
(
Uevq

))
,

ψq = q
(−κ2ϕq + 2 f ′(Uevq

)
Uevq Nq

)
,

(4.2)

where U = ev0 is a smooth bounded function on R
2 such that ‖∇kU‖L∞(R2) � C(k). Then, it holds

from (2.4) and (2.5) that

�vq = 2ϕq + g, �Nq = ψq. (4.3)

Moreover, a straightforward calculation yields that

1

q
�ϕq = (

κ2q + 2 f ′(Uevq
)
Uevq

)
ϕq + f ′′(Uevq

)
e2vq |∇U + U∇vq|2

+ f ′(Uevq
){−2qUevq Nq + evq �U + 2evq ∇U · ∇vq + Uevq |∇vq|2 + gUevq

}
≡ (

κ2q + 2 f ′(Uevq
)
Uevq

)
ϕq + σq, (4.4)

and

1

q
�ψq = (

κ2q + 2 f ′(Uevq
)
Uevq

)
ψq + 2 f ′′′(Uevq

)
Ue3vq Nq|∇U + U∇vq|2

+ f ′′(Uevq
)
e2vq

{(
4Nq − κ2q

)|∇U + U∇vq|2 + 4U∇Nq · (∇U + U∇vq)

+ 2U Nq
(
�U + 2∇U · ∇vq + 2Uϕq + gU + U |∇vq|2

)}
+ f ′(Uevq

)
evq

{(
4N − 2κ2q

)
Uϕq + 4∇Nq · (∇U + U∇vq)

+ (
2Nq − κ2q

)(
�U + 2∇U · ∇vq + gU + U |∇vq|2

)}
≡ (

κ2q + 2 f ′(Uevq
)
Uevq

)
ψq + ηq. (4.5)
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Step 2: We have

‖vq‖L∞(R2), ‖vq‖H1(R2) < C (4.6)

for any q > 0.

Let ξ be a smooth function with compact support. Then F (ξ) is well defined, and satisfies F (ξ) �
C(1 + q + q2). It comes from (2.17) that

F (vq) � C

(
‖�vq‖2

2 + q2‖∇vq‖2
2 + q2

∫
R2

v2
q

(1 + |vq|)2

)
− Cq2.

Since F (vq) � F (ξ), we deduce that for all large q,

∫
R2

(
|∇vq|2 + v2

q

(1 + |vq|)2

)
� C .

Consequently, ‖vq‖H1(R2) � C by the inequality (2.16).
On the other hand, we derive from (2.4) and (2.5) that

�

(
vq + 2

κ2q
Nq

)
= g + 4

κ2
f ′(ev0+vq

)
ev0+vq Nq.

Given x ∈ R
2, let us define W x,q(y) = (vq + 2

κ2q
Nq)(x + y) for |y| � 1. By (3.2), �W x,q ∈ L∞(R2)

uniformly as q → ∞. Then, it comes from the standard elliptic estimates that for all large q,

‖W x,q‖H2(B1/2) � C
(‖W x,q‖L2(B1) + ‖�W x,q‖L2(B1)

)
� C

(‖vq‖L2(R2) + 1
)
� C,

where C is independent of x and q. Now, the Sobolev Imbedding Theorem implies that |W x,q(0)| �
‖W x,q‖L∞(B1/2) � C . Hence we conclude from (3.2) that ‖vq‖L∞(R2) � C .

Step 3: For any q > 0

‖∇vq‖L∞(R2), ‖∇Nq‖L∞(R2), ‖ϕq‖L∞(R2), ‖ψq‖L∞(R2) � C, (4.7)

where C is independent of q.

Given x ∈ R
2, let us define ρx,q(y) = vq(x + y) for |y| � 1. Then by (2.4),

‖�ρx,q‖L∞(B1) � C(q + 1)

for all large q. Since ρx,q ∈ L∞(B1) uniformly by (4.6), Lemma 4.2 implies that

∣∣∇ρx,q(0)
∣∣2 � C‖ρx,q‖L∞(B1)

(‖�ρx,q‖L∞(B1) + ‖ρx,q‖L∞(B1)

)
� C(q + 1)
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for all large q. Here, C is independent of x and q. As a consequence, ‖∇vq‖2
L∞(R2)

� C(q+1) and hence

‖σq‖L∞(R2) � C(q + 1) for all large q. Now, let zq be the minimum point of ϕq . Since �ϕq(zq) � 0, we
draw from (4.4) that

ϕq(zq) � − σq

κ2q + 2 f ′(Uevq )Uevq

∣∣∣∣
zq

� −C .

Since ϕq � 0 by (3.1), this implies that ‖ϕq‖L∞(R2) � C for all large q. With this estimate, we
can get a better estimate for ∇vq . Indeed, since ‖ϕq‖L∞(R2) � C and ‖vq‖L∞(R2) � C , we obtain
‖∇vq‖L∞(R2) � C applying Lemma 4.2 to (4.3) as above. In the sequel, the first and the third in-
equalities of (4.7) are verified.

On the other hand, since ‖Nq‖L∞(R2) � C and ‖�Nq‖L∞(R2) � Cq by (2.5) and (3.2), we deduce
from Lemma 4.2 that ‖∇Nq‖2

L∞(R2)
� Cq. Hence, ‖ηq‖L∞(R2) � Cq. Applying the maximum principle

to (4.5), we have

‖ψq‖L∞(R2) �
∥∥∥∥ ηq

κ2q + 2 f ′(Uevq )Uevq

∥∥∥∥
L∞(R2)

� C .

With this estimate and Lemma 4.2, the second equation of (4.3) yields a better estimate
‖∇N‖2

L∞(R2)
� C .

Step 4: It has been verified that vq, Nq, and �vq,�Nq are uniformly bounded in L∞(R2). Hence vq

and Nq are uniformly bounded in W 2,p(K ) for any p > 1 and a compact subset K ⊂ R
2. Then there

exist a subsequence, still denoted by (vq, Nq), and a pair of functions (v∗, N∗) such that

‖vq − v∗‖C1,γ (K ) → 0, ‖Nq − N∗‖C1,γ (K ) → 0 (4.8)

for 0 � γ < 1. Since ‖ϕq‖L∞(R2) � C and ‖ψq‖L∞(R2) � C , we infer that N∗ = f (ev0+v∗ ) and

ϕq → 2

κ2
ev0+v∗ f

(
ev0+v∗) f ′(ev0+v∗).

Multiplying the first equation of (4.3) by a test function ξ ∈ C∞
c (R2) and letting q → ∞, we derive

that

0 =
∫
R2

∇vq · ∇ξ + (2ϕq + g)ξ

→
∫
R2

∇v∗ · ∇ξ + 4

κ2
ev0+v∗ f

(
ev0+v∗) f ′(ev0+v∗)ξ + gξ,

which implies that v∗ is a weak solution of (4.1).
In order to complete the proof of Proposition 4.1, it is enough to show that for every nonnegative

integer k,

∥∥∂kϕq
∥∥ ∞ 2 ,

∥∥∂kψq
∥∥ ∞ 2 ,

∥∥∇∂k vq
∥∥ ∞ 2 ,

∥∥∇∂k Nq
∥∥ ∞ 2 � C . (4.9)
L (R ) L (R ) L (R ) L (R )
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We proceed by induction on k. The case for k = 0 is a consequence of (4.7). Now we suppose that
(4.9) is valid for a nonnegative integer k − 1. It follows from the first equation of (4.3) that

�∂k vq = 2∂kϕq + ∂k g. (4.10)

Since ∂kϕq contains the derivatives of vq and Nq with orders up to k, it comes from the induction
assumption that ‖�∂k vq‖L∞(R2) � Cq and ‖∂k vq‖L∞(R2) � C . Here and in the sequel, C is a generic

constant depending only on k. Given x ∈ R
2, if we set ρ

(k)
x,q(y) = ∂k vq(x + y) for |y| � 1, then by

Lemma 4.2,

∣∣∇∂k vq(x)
∣∣2 = ∣∣∇ρ

(k)
x,q(0)

∣∣2 � C
∥∥ρ(k)

x,q

∥∥
L∞(B1)

(∥∥�ρ
(k)
x,q

∥∥
L∞(B1)

+ ∥∥ρ(k)
x,q

∥∥
L∞(B1)

)
� C

∥∥∂k vq
∥∥

L∞(R2)

(∥∥�∂k vq
∥∥

L∞(R2)
+ ∥∥∂k vq

∥∥
L∞(R2)

)
� Cq

for all large q. As a consequence, ‖∇∂k vq‖2
L∞(R2)

� Cq.

We note from (4.4) that

1

q
�∂kϕq = (

κ2q + 2 f ′(Uevq
)
Uevq

)
∂kϕq + Hk,q + ∂kσq,

where Hk,q contains derivatives of ϕq with orders less than k and derivatives of vq with orders up
to k. Since ‖∂kev0‖L∞(R2) � C , it follows from the induction assumption that ‖Hk,q‖L∞(R2) � C . Since

‖∇∂k vq‖2
L∞(R2)

� Cq, we see from the induction assumption that ‖∂kσq‖L∞(R2) � Cq for all large q.

Therefore, we infer from the maximum principle that

∥∥∂kϕq
∥∥

L∞(R2)
�

∥∥∥∥ Hk,q + ∂kσq

κ2q + 2 f ′(Uevq )Uevq

∥∥∥∥
L∞(R2)

� C . (4.11)

Returning to (4.10), we derive from Lemma 4.2 that ‖∇∂k vq‖2
L∞(R2)

� C . Hence, the first and the third

estimates of (4.9) hold true for k.
It follows from the second equation of (4.3) that

�∂k Nq = ∂kψq. (4.12)

Since ∂kψq contains the derivatives of vq , Nq , and ϕq with orders up to k, we deduce that
‖�∂k Nq‖L∞(R2) � ‖∂kψq‖L∞(R2) � Cq. Since ‖∂k Nq‖L∞(R2) � C by induction assumption, we derive

from Lemma 4.2 that ‖∇∂k Nq‖2
L∞(R2)

� Cq. It comes from (4.5) that

1

q
�∂kψq = (

κ2q + 2 f ′(Uevq
)
Uevq

)
∂kψq + Gk,q + ∂kηq,

where Gk,q contains derivatives of ψq with orders less than k and derivatives of vq with orders
up to k. Furthermore, ∂kηq contains derivatives of vq and Nq with orders up to k + 1. Therefore,
‖Gk,q‖L∞(R2) � C and ‖∂kηq‖L∞(R2) � Cq. Then, the maximum principle yields that for all large q,

∥∥∂kψq
∥∥

L∞(R2)
�

∥∥∥∥ Gk,q + ∂kηq

κ2q + 2 f ′(Uevq )Uevq

∥∥∥∥ ∞ 2
� C .
L (R )
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Going back to (4.12), we infer from this estimate and Lemma 4.2 that ‖∇∂k N‖2
L∞(R2)

� C . Thus, we

have proved the second and the fourth estimates of (4.9), which finishes the proof of proposition. �
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