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Abstract

We present a simple and physically compelling boundary condition regularization scheme in the framework of effective field
theory as applied to nucleon—nucleon interaction. It is free of off-shell ambiguities and ultraviolet divergences and provides
finite results at any step of the calculation. Low-energy constants and their non-perturbative evolution can directly be obtained
from experimental threshold parameters in a completely unique, one-valued and model independent way when the long range
explicit pion effects are removed. This allows to compute scattering phase shifts which are, by construction consistent with
effective range expansion to a given order in the CM momentum and are free from finite cut-off artifacts. We illustrate how the
method works in théSo channel for the one pion exchange potential.
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1. Introduction renormalizedS-matrix [6,7] which has also been pur-
sued [8]. Both Weinberg and Kaplan—Savage—Wise
schemes can be understood as perturbative expansions
about infrared fixed points [9] (see also Ref. [10]). In
any case, convergence improves under certain condi-
tions [11]. According to Ref. [12] a hybrid counting
involving also the chiral limit should be invoked (see
also Ref. [13]). For a recent and more complete review
on these and related issues see, e.g., Ref. [14] and ref-
erences therein.

Much theoretical insight has been gained by analy-
sing how short and long distance physics separate for
the one pion exchange (OPE) interaction in the sin-
glet 1So channel where the scattering lengthy, =
"~ E-mail addressesnpavon@ugr.es (M. Pavén Valderrama), —23.7 fm, is much larger than the size of the potential
earriola@ugr.es (E. Ruiz Arriola). 1/mz = 1.4 fm. The non-perturbative renormalization

Effective field theories (EFT) have been success-
fully investigated in recent years in the context of
hadronic and nuclear physics. Their main ingredient
has to do with the occurrence of scale separation be-
tween long and short distance physics, making the
development of a systematic power counting possi-
ble. Since the original proposal of Weinberg’s [1] to
make a power counting in the potential many works
have followed implementing such a counting [2-5]
with finite cut-offs or proposing a counting in the
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of NN-interaction in this channel has been studied sev- at the origin in coordinate space for the Schrédinger
eral times in the literature. In Ref. [15] an elegant sub- equation. If a long range OPE potential is added
traction method has been developed to construct a fi- we will show below that due to the short distance
nite T matrix for contact, i.e., zero range, interactions Coulomb nature of this potential the origin must be
added to OPE. Renormalization is indeed achieved by reached continuously from abowe— 0, R > O (i.e.,
taking the subtraction scale to be much larger than excluding the pointR = 0), in harmony with known
any other mass scale and checking for independencetheorems on self-adjoint extensions of Schrddinger
of results in this limit. The resulting description of operators [25].
the 1So phase-shift is only valid to very low ener- In this Letter we analyze precisely how the en-
gies, requiring for inclusion of derivative terms. Un- ergy dependent boundary condition must change as we
fortunately, the method cannot be easily extended in move the boundary radius for fixed energy to achieve
that case. These derivative interactions can be includedindependence of physical observables such as scat-
within dimensional regularization in the minimal sub- tering phase shifts. By doing so we are effectively
traction scheme both in coordinate [16] or momen- changing the Hilbert space since the wave function
tum [17] spaces. In this latter case a three-parameterin the outer region is defined only from the bound-
fit can be achieved with no explicit two pion exchange ary to infinity. An advantage of this procedure is that
contribution. A cut-off regularization has also been we never need to invoke off-shellness explicitly; at
introduced in Refs. [18,19]. For the pionless theory, any step we are dealing with an on-shell problem. In
though, the inconsistency between both regularization addition, we work directly with finite quantities and
methods after renormalization has been pointed out no divergences appear at any step of the calculation
for a truncated bare potential [20]. To our knowledge, when the boundary radius is taken to zero from above.
there is no calculation of OPE where both the effec- Our approach provides a non-perturbative regulariza-
tive range expansion is reproduced at a given order in tion scheme which, in principle, should be able to ac-
the momentum and finite cut-off artifacts are removed. commodate any of the counting schemes proposed in
Momentum space treatments based on the Lippmann-the literature. Rather than making a specific choice, we
Schwinger equation appear more natural from a dia- prefer instead to make a low-energy expansion of the
grammatic point of view within a Lagrangian frame- boundary condition at the origin to prove the feasibil-
work and allow explicit consideration of non-local po- ity of the approach.
tentials. In practice, however, in the long range poten-
tials used in NN-scattering are local, and for those the
analysis of renormalization in coordinate space may 2. Variable phase equation with boundary
be simpler. In addition, the Schrédinger equation is a conditions
second order operator and boundary conditions define
a complete solution of the problem in the whole space  The reduced Schrodinger equation for including
both inside and outside the boundary. This is equiva- OPE in thelSg channel for NN-scattering with CM
lent to a sharp separation between the interior and ex- momentumk reads
terior region. This property is naturally formulated in
coordinate space for a local potential. —u}(r) + U(rue(r) = Kug (r), 1)
Although the idea of using boundary conditions for et er with the asymptotic condition at infinity
NN-scattering is a rather old one (see, e.g., Ref. [21]
and references therein), there have been recent worksy (r) — sin(kr + §(k)). @)
in this regard motivated by the developments within o
EFT [22-24]. Actually, it has been shown [24] that The OPE potential in th&So channel reads
in the absence of long range forces a low-momentum @2m2 My e="s"
expansion of the potential within EFT framework U(r):—LZN—
for the Lippmann-Schwinger equation is completely 16nfe 7
equivalent to an effective range expansion and also to WhereMy is the nucleon mass;,, the pion massf;
an energy expansion of a generic boundary condition the pion weak decay constant agidthe nucleon axial

3
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coupling constant. In the numerical calculations below
we take My = 93892 MeV, f; = 93 MeV, m, =
138 MeV andgs = 1.25. Our lack of knowledge of
the interaction below a certain distance sc&eis
parameterized in terms of a boundary condition at the
matching point = R,

uy(R) — L(k, Ryur(R) =0. (4)

In general, this boundary condition depends both
on the boundary radiug and the momentunt.
The value ofR separates the whole space into two

disjoint regions, an outer region where we assume the

interaction to be given by OPE potential, and an inner
region where interaction is regarded as unknown.

The boundary condition &, Eq. (4) has a simple
physical interpretation. If we switch off the long range
pieceU (r) above the scal®, then the phase shift due
to the short distance physics below the saals given

by

uj (R)
5
uk(R) ©)

It is interesting to see what kind of equation satisfies
the short distance phase shiftk, R), as we steadily
move the boundary radiug for a fixed momentura.
Using Schrédinger’s equation at the boundarg R

we get the variable phase equation,

ds(k,R)
TAR ©

The obvious condition, liM_ 3k, R) = 8(k), at
infinity must be satisfied. Thus, Eq. (6) describes
the evolution of the phase shift as we go down to
lower distances, assuming thadth the long distance
potential and the physical phase shift are known.
Regardless of whether or not the potential we are
considering is realistic at very short distantese can
extrapolate the long distance potential to the origin and
define the zero range OPE-extrapolated phase shift

("

Being able to take this limit in practice is essen-
tial for it means removing any finite cut-off arti-

= L(k, R) =kcot(kR + 8(k, R)).

—%U(R)sinz(kR—i—S(k, R)).

Ss(k) = lim 3(k, R).
—

1 Two Pion Exchange becomes comparable to OPE at about the
distance ofr = 1.5 fm. So, any extrapolation of Eq. (6) with OPE
below 15 fm should not be considered realistic.
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facts in the long distance force. Actually, the pre-
cise manner how this limit is built depends specifi-
cally on the OPE potential, Eq. (3), and will be ana-
lyzed below. Eq. (6) is well known in potential scat-
tering (for a review see, e.g., Ref. [26]), but it has al-
ways been used assuming the trivial initial condition
8s(k) =limg_0d8(k, R) =0.

3. Low energy expansion of the boundary
condition

The former variable phase equation, Eq. (6) can be
cast in a more convenient form by defining the variable
K-matrix,

K (k, R) =kcots(k, R), (8)
yielding
dK(k,R) _ SinkR 2

At low energies, however, it can be conveniently
parameterized as an effective range expansion, which
carries over to the variable phase

kcots(k, R) ! +1 (R)k? + va(R)k* +
s = —— —7 v
aoR) " 2'° 2
(10)
one has
— —U(R)(ao— R 11
IR U(R)(ao )%, (11)
drg 2 R ro R
— =2U(RR?*|(1-—)[—=+—-1), (2
dR ) ( ao)(R+3ao ) (12)
dvo 4 1/ro R 2
—C=RUB{:(=+—-1
e = r v (R e )
R 1ro v2
21-=)[-==+-=
+ ( ao)( 12R+R3
L R + 1 (13)
120ag ' 24) |

These equations have to be supplemented with some
initial conditionsxg(Ro), ro(Ro) andv2(Rp) at a given
boundary radiusRg. If we take the initial boundary
radius,Ro = O the set of equations, (11), (12) and (13)
express the evolution of the low-energy parameters
at short-distances when the long distance potential is
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switched on up to the scale< R. Conversely, if the can be easily solved in two cases, << R andag >
initial boundary radius is taken to infinity they offera  R. In the first case we get
possibility to determine the short-distance low-energy
parameters from the experimental ones by downwards N, 2 2
evolution in the variableR when the long distance @0(R) = ao(Ro) — 3272 (R°~Rp). ao<R.
potential is adiabatically switched off for > R. (15)
Notice the very appealing and natural hierarchy in o
the previous equations: while the distance evolution of Where the limitRo — 0 can be taken. In the second
the scattering length is autonomous, the remaining €€ One solution behaves as
low-energy parametersy, vz, etc. depend on the ® ao(Ro)

revious ones. To see the connection with more &0 = 2
Eonventional approaches [6,9], mainly carried out in 1+ ao(Ro)gimiz M /(167 /2) log(R/ Ro)
momentum space, let us consider the regiorg 167 f2 1
R « 1/k, where the potential vanishes, and define the g gf\m%MN log(R/Ro)’
dimensionless logarithmic derivative at zero energy
Co(R) = 1 — Rujp(R)/uo(R) = ao(R)/(@o(R) — R) whereR < Ro < 1/m,. As we seepg(R) goes to

gimaM

ap > R, (16)

fulfilling the equation zero very slowly and withw (R) — —oo at short dis-
tances, which in momentum space corresponds to the

RCH(R) = —Co(R)(1— Co(R)) (14) ultraviolet limit. Eq. (16) agrees with the perturbative

deduced from Eq. (11). Identifying 1/& p or A analysis in momentum space of Ref. [6]. It is easy to

we reproduce the renormalization group evolution ob- S€€ that the first case, Eg. (15), corresponds to select-
tained, e.g., in dimensional regularization [6] or sharp ing the regular solution at the origin, whereas Eqg. (16)
cut-off regularization [9] respectively for the four 1S the generic case, which always contains an admix-
fermion interaction coefficient denoted @. A more  ture of the irregular solution. Obviously, the regular
comprehensive discussion will be carried out in full €ase is exceptional and for that particular situation one
detail elsewhere [28]. We note also that the evolution €an integrate from the origin starting with the trivial
in R deduced from Egs. (11), (12) and (13) is one- initial condition§(k,0) =0 up to mﬂmty. The result
valued, in contrast to the multibranched evolution gen- €orresponds to a pure OPE interaction, with no short-
erated by assuming an energy dependent square weldistance interactions. The important thing to note here
potential in the inner region €@ r < R as a countert- is that no matter what the initial value ap was at
erm [12]2 This multivaluedness is irrelevant at low infinity (except for the exceptional case discussed be-
energies but influences the phaseshifts at higher en-fore), removing one-pion exchange goes into the same
ergies. This is an ambiguity typical of inverse scat- Vvalue at the origin, as implied by Eq. (16). This also
tering problems where knowledge of the amplitude at Means that any small deviation of thg(Ro) at small
low-energies, say in the regime of effective range the- distan(_:es results in hu_ge variations _at infin_ity. Thus,
ory, does not uniquely determine the potential but in- rémoving OPE results in a extreme fine tuning of the
duces a residual dependence of this multivaluedness aloW-energy parameters at short distances.
higher energies than those used to fix the low-energy ~ We analyze now the long distance behavior. Clearly,
parameters (see, e.g., Ref. [25]). when R > 1/m, we haveag(R) =0, Eq. (11), and
Before presenting the numerical results (11), (12) We approach quickly the asymptotic valug(co). For
and (13) we analyze first the short and long distance such long distances we can always use perturbation
behaviour. At short distanceR < 1/m, the OPE theory to solve the equations backwards. For scatter-

potential behaves like the Coulomb potential. Eq. (11) ing lengths which are small, i.exp <« 1/m; we may
neglectxg(R) with respect taR and get

2 |f one assumes the square well potentiak Ug + k2Usp + - - - 00
in the region 0< r < .R and matchgs the logarithmic derivative of ao(R) — ag= — U(R)RZ dR+---. (17)
the regular solution in powers df with Eq. (5) one gets AR —

a(R)) = /Ug(R) cot(,/Ug(R)R) which is multivalued inUg(R). R
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Fig. 1. Evolution of the scattering Iengﬂso NN-threshold parametergy(R) (in fm), rg(R) (in fm) andvy(R) (in fm3) from the asymptotic

values at infinity (which we take in practid®,, = 20 fm) when OPE effects are removed down to the origi= —23.73 fm andrg = 2.68 fm

andvy = —0.48 fmS. Solutions of Egs. (11)—(13) are labelled as “exact”. The extrapolated values at the origin when OPE effects are removed
areago=0,rgg=4.04fm, andvg » = 1.07 fm3. We also show some approximations &gy(R). OPE means one-pion-exchange only and
corresponds to integrate Eq. (11) from the origin to infinity with the boundary conditje®) = 0. SDE means short distance expansion as
given by Eq. (16). LDE correspond to a long distance expansion, Eq. (17) (natural case) and Eq. (18) (unnatural case), respectively.

For unnatural scattering lengthg, > 1/m, we make
the opposite approximation, and get

1 1 v
——=— | UR)dR+---. 18
w0 ® o R/ (R)dR + (18)

The previous Egs. (17) and (18) hold irrespectively of
the strength of the potential, providédis sufficiently
large. Similar approximations for the remaining low-
energy parameters will be discussed elsewhere [28].
The numerical evolution oftxso(R) and rs(R)
starting with the experimental valuegy = —23.739
fm, ro = 2.68 fm andwv, = —0.48 fm® (see Rent-
meester as quoted in Ref. [4]) down to the origin ac-
cording to Egs. (11)—(13) is shown in Fig. @)we

also show the perturbative estimate in the case of large

3 In practice results are insensitive for long distance cut-off of
R =20 fm. In the case of the short distance cut-off we can go
down to Rg = 0.0001 fm without much effort but results are fairly
insensitive to the short distance radius alreadyRgt= 0.1 fm,
where we haverg g = —0.9865 fm,rg g = 3.780 fm andvy g =

and small scattering lengths based on a long distance
expansion Eqg. (17) (natural case) and Eq. (18) (unnat-
ural case), respectively, as well as our short distance
estimate, Eq. (16). In the case @f(R) we observe a
huge change from infinity down to the origin, although
remains unnaturako(R) >> R. Numerically we con-
firm our theoretical expectation thag 0(0) = 0 (see

Eqg. (16)). This simply means that the bare contact in-
teraction becomes arbitrarily small as the OPE poten-
tial is switched off. This is, however, not the case for
the bare derivative interaction, as expected from our
estimate, Eq. (16). Our numerical values extrapolated
to the origin are

as.0= ag(0M) =0, rs.o= ro(0") = 4.04 fm,

vs.2 = v2(0") = 1.07 fm?. (19)

0.994 fmP. For shorter distances Eq. (16) provides an accurate
estimate forxg(R). Taking larger values oRg builds in finite cut-

off effects. ActuallyRg > 1/m5 corresponds exactly to effective
range expansion.
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This is the initial condition which, in principle, hasto the intermediate energy region is precluded. Actually,
be supplemented in Egs. (11)—(13) in order to get the our procedure would coincide with the standard one, if
experimental results (see also discussion below). Thethe fit was carried out in the region where an effective

work of Ref. [27] uses a two Yukawa model to extract

the short-distance low-energy parameters. This is done

by fitting the data and then switching off the OPE con-
tribution, yieldingas o = —1.72 fm, rs o = 1.60 fm
and vs 2 = —0.024 fn?. In Ref. [12] an attempt to

range expansion holds & 60 MeV if v; is included).
Due to the fact that the origin is a fixed point

for the running scattering length, i.e(R) — 0 for

R — 0 regardless of the value ofy = ag(R = 00),

Eg. (16), one must integrate the equations from very

determine the short-distance parameters based on thesmall distances upwards, using the valueogfR)

three Yukawa model yieldss g = —3.38 fm, rs0 =
2.60 fm andvs, = 0.313 fne. The short-distance
scales in that calculation aR, = 2/m, = 0.80 fm
and R, = 2/m, = 0.46 fm. For that range we get
aso=—36,—-221fm,rso=2.7,3.1fm andvs 2 =
0.59,0.74 fm?, respectively, in qualitative agreement
with Refs. [12,27]. Note, however, that our way of

determining the short-distance low-energy parame-
ters does not require any specific model at short dis-

tances.

4, 1§g-phase shift

at that distance. It is important to realize that a tiny
mismatch in the value afg close to the origin results
in a complete different value afg and also of the
phase shift at infinity.

In Fig. (2) we show the results for the phase shift
depending on the number of terms kept in the low-
energy expansion at short distances (LO first term,
NLO first two terms and so on in Eq. (20)). Our results
exhibit a good convergence rate. For comparison
we also depict the effective range expansion results
without explicit pions, which is expected to work at
low energies only, and corresponds to make— oo
in our approach. As we see, the effect of introducing
pions always improves the results. This can be fully

Once the short distance parameters are known appreciated at NNLO, where ER does a poor job above
one may compute the phase shifts to any order of CM momenta~ 100 MeV, but explicit OPE effects

the approximation in &?2 expansion of the initial
conditionwithout any additional parameter fittinigy
integrating Eq. (9) upwards with a suitable initial
condition at a short distance initial value radidks=
Rs,

Ks(k) = kcotés(k)
1

+ — 2+ + .
ro Sk V2 Sk Tt
“Svo 2

The standard way of proceeding is to determine
the low-energy constants or equivalently the short
distance parameters directly from a fit to the data
in a given energy window and then recompute the

(20)

enlarge the energy range up to abeufl40 MeV ~
m, Where we expect explicit two pion exchange
contributions to start playing a role.

An interesting point to note at this stage is that
if «s.0 =0 with other short-distance low-energy pa-
rameters fixed, we would inevitably ges(k) =
nr, as deduced, for instance, from Eq. (20). If we
solve the variable phase equation with that condi-
tion at R =0 up to R= Ry > 1/m,; we get
the result (also shown in Fig. (2) for comparison)
corresponding to a regular OPE with the regular
boundary conditioni; (0) = 0 instead of the mixed
boundary condition of Eq. (4) aR = 0. The puz-

threshold parameters. This builds in some systematic zle is resolved by realizing that the limiting proce-
error, unless the energy window is small enough as to dure in the boundary condition and the solution do
make this uncertainty comparable to the experimental not commute; the limitR — 0" implies §’(k, R) —

error. An advantage of avoiding a fit is that one can
prevent spurious and/or multiple minima; our solution
is essentially unique. Moreover, since by construction
at a given order in th&? expansion the low-energy

oo whereas starting ak = 0 requiress (k, R) ~ R?
producing instead a bound derivatié&k, R) ~ R
(see Eq. (6)). This discontinuous dependence of the
boundary condition on the boundary radiuskat 0

behavior of the phase shift is reproduced up to the agrees with rigorous theorems on self-adjoint exten-

same order ink?, the possibility of getting even
slightly different threshold parameters due to a fit in

sions of Schrodinger operators (see, e.g., Appendix D
of Ref. [25]).
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Fig. 2. Predicted phase shifts according to Eq. (9) when OPE potential is switched on and the initial condition is a low-energy expansion of
the K -matrix at short distances (see Eq. (20) in the main text). LO means keepin@nly, NLO keepingx s o andrg ¢ and NNLO keeping

ag,0, 70,5 andvy g. The short range parameters are directly determined by evolving the low-energy parameters from their experimental values
ag = —23.73 fm andrg = 2.68 fm andvp, = —0.48 fm3. ER-LO, ER-NLO and ER-NNLO corresponds to a pure effective range expansion
keepingag only, as o andrg, ag, ro andvy, respectively. OPE-only corresponds to OPE without short-distance contributions. No further fit is
involved. Data are the PWA from Ref. [29].

5. Conclusions other determinations based on specific models for the
short-distance interaction. As we get closer to the ori-
In the present Letter we have analyzed the renor- gin we find a fixed point structure, triggered by the
malization of the OPE interaction in the presence of non-vanishing contribution of the irregular solution.
contact and derivative interactions of any order for NN  This requires a fine tuning of the short-distance low-
scattering. In order to do that we have derived an equa- energy parameters. After that we integrate the running
tion for the evolution of an energy dependent bound- phase shift upwards and determine without any addi-
ary condition in coordinate space as a function of the tional fit the 1Sy phase shift. The OPE plus contact
boundary radius. The resulting equation shares many and derivative interactions to NNLO is able to describe
properties with renormalization group equations and the 1S phase shift up to C.M. momentum of about
can be interpreted in terms of the phase shift produced 140 MeV, which coincides with the opening of the two
by eliminating OPE from infinity to the boundary ra- pion exchange left cut channel. Above that momentum
dius, which eventually is taken to zero. Two advan- explicit two pion exchange effects should set in.
tages can be deduced from this framework: no diver-  As suggested by Weinberg [1], one of the most in-
gences appear and there is no need to consider off-teresting aspects of the EFT chiral approach to nuclear
shell extrapolations. This allows to set up equations phenomena concerns the study of reactions suata/as
for the running low-energy parameters as a function scattering, and the possibility of making model inde-
of the boundary radius. Using the experimental val- pendent predictions. An indispensable prerequisite for
ues for the low-energy parameters, which correspond this, in any EFT scheme, is a good knowledge of NN-
to an infinity boundary radius, we extract in a unique interaction. Although nothing prevents from extend-
and model independent way the corresponding short-ing our framework for other processes beyond NN-
distance parameters. Our numerical values agree withscattering, it remains to be seen whether the approach
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presented here can successfully tackle these reactions.
The results presented in this Letter are very encourag-
ing and suggest several improvements and extensions

still within the NN-sector. Explicit two pion exchange
effects are expected to contribute significantly at about
1.5-2 fm, so our results should not be considered real-
istic below that scale, or equivalently above CM mo-
menta of about 100-150 MeV, as it seems to be the
case. In addition, our description should be enlarged to
include all partial waves. Work along these lines will
be presented elsewhere [28].
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