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Abstract 

Springs of Ash Meadows and Furnace Creek (near or in Death Valley, CA) have nearly constant flow, temperature, chemistry, and 
similar δ2H and δ18O signatures. These factors indicate shared water sources and/or analogous geochemical reactions along similar flow 
paths. DNA-based (16S rRNA gene) microbial diversity assessments further illuminate these relationships. Whereas, all Ash Meadows 
springs share related archaeal populations, variations in carbon-14 (Crystal Spring) and strontium isotopes, Na+, SO4

2-, and methane 
concentrations (Big Spring), correspond with microbial differences within and between the two discharge areas. Similar geochemical 
signatures linking Ash Meadows and Furnace Creek springs appear to support a distinct end member at Big Spring in Ash Meadows, 
which is also supported by coincident enrichment in microbial methanogens and methanotrophs. Conversely, DNA libraries from a deep 
carbonate well (878 m) located between Ash Meadows and Furnace Creek (BLM-1), indicate no shared microbial diversity between 
Ash Meadows or Furnace Creek springs.  
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1. Introduction 

The Death Valley Flow System (DVFS) consists of highly fractured mostly carbonate-rock aquifers that form a 
regional groundwater flow system covering hundreds of square km and extending from inferred recharge areas associated 
with Central Nevada Uplands and the Spring Mountains to large discharge springs in Amargosa Valley and the Furnace 
Creek area of Death Valley. Groundwater flows north and west from the Spring Mountains recharge area and southwest 
from Central Nevada Uplands to discharge at Ash Meadows in central Amargosa Valley (Fig. 1). Some groundwater is 
thought to continue to flow beneath Ash Meadows into southern Amargosa Valley and then through the Funeral 
Mountains to the Furnace Creek area of Death Valley (Fig. 1). As groundwater flows from Ash Meadows to Death Valley, 
it also likely combines with other groundwater in Amargosa Valley. For a detailed description of the hydrogeology, water 
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Fig. 2. Archaeal T-RFLP profiles from a subset of Ash Meadows 
springs. Colored arrows are included to help the eye follow specific 
ribotypes (e.g. distinct at ca. genus level) between stacked profiles. This 
profile suggests: 1) relatively simple communities across the springs 
sampled and 2) shared community structure across the sample set. 

chemistry and isotopic data the reader is referred to the following references [1-12]. To date, published microbiological 
characterizations of these systems have been limited to cultivation-based studies performed in the 1980s on the springs at 
Ash Meadows and volcanic tuffs from the Nevada National Security Site.  

2. Results and Discussion 

The δ2H and δ18O values of groundwater 
discharging from springs in the Furnace Creek 
and Ash Meadows discharge areas of the DVFS 
vary little over time and are similar (Table 1), 
indicating that both spring discharge areas likely 
receive most of their water from the same 
recharge areas. Additionally, numerous springs 
in both discharge areas have nearly constant 
spring flow, water temperature, and major ion 
chemistries over time, indicating the presence of 
a stable and deep groundwater flow system. 
Most of the major ion concentrations are similar 
among the different springs (Table 1), indicating 
that the water chemistry is derived from the 
same geochemical reactions along geologically 
similar flow paths in the aquifer. However, there 
are water chemistry, δ87Sr, and microbial 
community differences among springs in Ash 

Meadows and between the Ash Meadows springs and Death Valley springs and especially a well (BLM-1) located 
between these two spring discharge areas (Fig. 1). These differences indicate that flow paths are not the same for all 
springs in a common spring discharge area and between spring discharge areas. In the Ash Meadows spring complex, 
significant variations in Na+, SO4

2-, and dissolved methane concentrations are observed in Big Spring (Fig. 1; Table 1) 
[3,5,8,10]. These differences likely result from slightly different flow paths that encounter non-carbonate and/or carbonate 

rock enriched in Na+ and SO4
2- as compared to most 

aquifer rock, or the entrainment of an end member 
containing higher Na+, SO4

2-, and methane. Previous 
studies have also shown that the largest discharging spring 
in Ash Meadows, Crystal Spring (also referred to as 
Crystal Pool Spring), has a significantly higher carbon-14 
value than any other spring [3] and that the three 
southernmost springs in the discharge area (Big Spring 
being the largest) have anomalous strontium isotopic 
values (Table 1) [8, 14].  

Prior to this study, almost nothing was known about 
the indigenous microbial populations of any subsurface or 
spring habitat in the Southern US Great Basin. DNA-
based (16S rRNA gene) assessments of microbial 
diversity developed for this study show that Ash 
Meadows spring waters contain exceptional bacterial 
diversity at both shallow (species-level) and deep 
(phylum-level) measures of genetic relatedness. Among 
our bacterial gene libraries, with the exception of one 
highly dominant betaproteobacterial lineage in Big Spring 
(an inferred methanotroph, 46 of 72 library clones), very 
few multiple occurrences were noted within or between 

 
 
Fig. 1. Location of study area with spring and well locations.  
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springs (375 distinct predicted species from 407 total sequences).  
Unlike for the bacteria, however, as evidenced by complementary DNA-based approaches (gene libraries, T-RFLP 

fingerprinting), all Ash Meadows springs share relatively simple (134 predicted species from 376 total sequences) and 
closely affiliated (Fig. 2) archaeal populations. In our gene libraries, this shared signal is dominated by the subdomains, 
Crenarcheota (57/376), Euryarcheota (23/376), and especially Thaumarchaeota (292/376). The crenarchaeotes and 
thaumarchaeaotes are uniformly distributed across the entire sample dataset, with multiple examples of nearly identical 
sequences appearing in most or all of the samples. The striking degree of similarity in archaeal diversity profiles (Fig. 2) is 
consistent with a shared water source, flowing along similar flow paths, providing the majority of flow to Ash Meadows 
springs. Although the ecological role of the Thaumarchaeota remains unknown, the confluence of archaeal methanogens, 
inferred bacterial methanotrophs and relatively high concentrations of methane in Big Spring (Table 1) suggests methane 
cycling in the chemically and isotopically inferred Death Valley end member. Unfortunately, no archaeal DNA has been 
detected by our methods in the Nevares Spring Deep Well water and Travertine Spring has yet to be analyzed. This 
comparison would have afforded an opportunity to track the most relevant domain of microorganisms that may link the 
Death Valley end member with south Ash Meadows springs (Big Spring being the main southern spring).  

Archaea were detected in the BLM-1 well, but our analysis of 21,794 partial rRNA gene sequences generated by 
pyrotag analysis showed that groundwater from this deep source (878 m) revealed absolutely no overlap at the species 
level with archaeal sequences from any of the Ash Meadows springs. Thus, patterns of archaeal diversity indicate that 
deep groundwater in BLM-1 well is not groundwater flowing along flow paths that supply Ash Meadows springs, even 
though δ2H and δ18O data indicate that they have the same recharge area sources. Likewise, bacterial libraries for the 
BLM-1 well and the well at Nevares Spring, while being dominated by functionally similar populations (e.g. Firmicute 
predicted sulfate reducers and Nitrospirae), do not share a single overlapping lineage at the species level. Thus, microbial 
data fail to support a hydrologic connection across the Funeral Mountains between the BLM-1 well and the Furnace Creek 
springs (the waters are not along the same flow path), even though a large fault system connects BLM-1 with the springs. 
Rather, consistent with BLM-1 well’s high temperature (58oC) and anaerobic condition, this water is more likely derived 
from a heretofore unrecognized, isolated deep flow path. Thus, although the δ2H and δ18O data show that the Ash 
Meadows and Furnace Creek springs have the same recharge sources, our microbial data indicate that they do not follow 
the same flow paths in the deep carbonate aquifer system. To the best of our knowledge, this study represents the first 
systematic application of a combined microbial/biogeochemical/isotopic approach for inferring subsurface fluid flow at 
the regional scale.  

 
 
Table 1. Water chemistry and isotopic data for springs and wells in the Death Valley flow system. Water chemistry and isotopic data include data 
collected for this report and historical data [3, 5, 8, 10, 13, and 14]. 

Site Name Temp 
oC 

Cond 

μS/s 

Ca 

mg/L 

Mg 

mg/L 

Na 

mg/L 

K 

mg/L 

HCO3 

mg/L 

SO4 

mg/L 

Cl 

mg/L 

CH4 

μM 

δ2H 

permil 

δ18O 

permil 

δ87Sr 

permil 

Ash Meadows Discharge area 
Fairbanks Spring 27 690 48 21 69 8.0 310 82 21 8.8 -103 -13.8 4.99 
Indian South Spring 30 NA 50 20 70 8.9 NA 80 22 <1 NA NA NA 
Devils Hole 33 690 49 21 67 7.9 290 80 21 NA -103 -13.4 4..46 
Kings Spring 32 NA 49 21 68 7.8 310 80 21 17.4 -102 -13.6 4.57 
Crystal Spring 31 700 47 21 73 9.4 310 85 23 18.3 -102 -13.7 4.60 
Big Spring 27 770 44 19 96 9.2 310 108 24 65.3 -102 -13.4 11.05 

Death Valley Furnace Creek Discharge area 
Nevares Deep Well 42 NA 44 21 160 11 NA 170 36 <1 -103 -13.4 NA 
Nevares Spring 42 1030 44 21 160 11 340 170 36 NA -102 -13.5 10.70 
Travertine Spring 35 1000 36 19 140 10  340 160 40 NA -102 -13.5 11.48 

Amargosa Valley-Funeral Mountain area well 
BLM-1 Well 58 NA 36 16 250 19 NA 160 43 NA -103 -13.5 NA 
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