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Abstract

In this paper we review the exact algorithms based on the branch and bound approach proposed
in the last years for the solution of the basic version of the vehicle routing problem (VRP),
where only the vehicle capacity constraints are considered. These algorithms have considerably
increased the size of VRPs that can be solved with respect to earlier approaches. Moreover, at
least for the case in which the cost matrix is asymmetric, branch and bound algorithms still
represent the state-of-the-art with respect to the exact solution. Computational results comparing
the performance of di3erent relaxations and algorithms on a set of benchmark instances are
presented. We conclude by examining possible future directions of research in this 6eld. ? 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

The vehicle routing problem (VRP) is one of the most studied among the combina-
torial optimization problems, due both to its practical relevance and to its considerable
di9culty.
The VRP is concerned with the determination of the optimal routes used by a :eet

of vehicles, based at one or more depots, to serve a set of customers. Many additional
requirements and operational constraints are imposed on the route construction in prac-
tical applications of the VRP. For example, the service may involve both deliveries
and collections, the load along each route must not exceed the given capacity of the
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vehicles, the total length of each route must not be greater than a prescribed limit,
the service of the customers must occur within given time windows, the :eet may
contain heterogeneous vehicles, precedence relations may exist between the customers,
the customer demands may not be completely known in advance, the service of a cus-
tomer may be split among di3erent vehicles, and some problem characteristics, as the
demands or the travel times, may vary dynamically.
We consider the static and deterministic basic version of the problem, known as the

capacitated VRP (CVRP). In the CVRP all the customers correspond to deliveries,
the demands are deterministic, known in advance and may not be split, the vehicles
are identical and are based at a single central depot, only the capacity restrictions
for the vehicles are imposed, and the objective is to minimize the total cost (i.e., the
number of routes and=or their length or travel time) needed to serve all the customers.
Generally, the travel cost between each pair of customer locations is the same in both
directions, i.e., the resulting cost matrix is symmetric, whereas in some applications,
as the distribution in urban areas with one-way directions imposed on the roads, the
cost matrix is asymmetric.

The CVRP has been extensively studied since the early sixties and in the last years
many new heuristic and exact approaches were presented. The largest problems which
can be consistently solved by the most e3ective exact algorithms proposed so far con-
tain about 50 customers, whereas larger instances may be solved only in particular
cases. So instances with hundreds of customers, as those arising in practical applica-
tions, may only be tackled with heuristic methods.
The CVRP extends the well-known Traveling Salesman Problem (TSP), calling for

the determination of the circuit with associated minimum cost, visiting exactly once a
given set of points. Therefore, many exact approaches for the CVRP were inherited
from the huge and successful work done for the exact solution of the TSP.
Laporte and Nobert [32] presented an extensive survey which was entirely devoted

to exact methods for the VRP and gave a complete and detailed analysis of the state of
the art up to the late eighties. The aim of the present work is to provide an update of
that survey, describing the algorithms recently proposed for the exact solution of CVRP
both for the case with symmetric and asymmetric cost matrices. Up to the end of the
last decade the most e3ective exact approaches for the CVRP were mainly branch and
bound algorithms using basic relaxations, as the assignment problem and the shortest
spanning tree. Recently, more sophisticated bounds were proposed, as those based on
Lagrangian relaxations or on the additive approach, which increased the size of the
problems that can be solved to optimality by branch and bound. Moreover, following
the success obtained by branch and cut methods for the TSP, encouraging results were
obtained by using these algorithms for the CVRP.
In this work we treat separately problems with symmetric and asymmetric cost ma-

trices. In fact, although the symmetric problems are special cases of the asymmetric
ones, the latter were much less studied in the literature and the exact methods de-
veloped for them have in general a poor performance when applied to symmetric in-
stances. Analogously, not all the approaches proposed for symmetric problems may be
directly adapted to solve also asymmetric ones. In the following, we will denote with
SCVRP and ACVRP the symmetric and asymmetric CVRP, respectively. Moreover,
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when the explicit distinction between the two versions is not needed, we simply use
CVRP.
Other surveys covering exact algorithms, but often mainly devoted to heuristic meth-

ods, were presented by Christo6des et al. [10], Magnanti [37], Bodin et al. [4],
Christo6des [7], Laporte [29], Fisher [22], Toth and Vigo [45] and Golden et al. [25].
An annotated bibliography was recently proposed by Laporte [30], whereas an exten-
sive bibliography was presented by Laporte and Osman [34]. A book on the subject
was edited by Golden and Assad [24].
The work is organized as follows. In Section 2 we give a detailed description of

CVRP as a graph theoretic problem, and introduce the corresponding notation. In Sec-
tion 3 we consider the more general case of ACVRP, where the cost matrix is asym-
metric, illustrating the branch and bound algorithms proposed by Laporte et al. [31]
and by Fischetti et al. [18]. In Section 4 we examine the exact methods proposed for
the more widely studied SCVRP. In particular, we discuss the basic relaxations based
on K-tree and b-matching and their strengthening in a Lagrangian fashion proposed by
Fisher [20] and Miller [40], respectively. We also brie:y discuss the set-partitioning
based relaxations used by Hadjcostantinou et al. [26]. Computational results compar-
ing the performance of di3erent relaxations and algorithms on a set of benchmark
instances are presented. Finally, in Section 5, we draw some conclusions and discuss
future directions of research.
The information about the performance, expressed in M:ops, of the computers used

for testing the algorithms presented are taken (when available) from Dongarra [15].
Moreover, all the computational results reported in this paper are performed by using
well-known test instances from the literature. As proposed in Vigo [48], the instances
are identi6ed with a name whose 6rst character denotes the problem type (A, E and S
for asymmetric, Euclidean and other symmetric problems, respectively), then the name
includes the number of vertices, depot included, and the number of available vehicles,
and the last letter indicates the source of the instance. For example, E051-05e is the
famous 50 customers problem Euclidean described in Christo6des and Eilon [8].

2. Problem de�nition and notation

The CVRP may be de6ned as the following graph theoretic problem. Let G=(V; A)
be a complete graph where V={0; : : : ; n} is the vertex set and A is the arc set. Vertices
j=1; : : : ; n correspond to the customers, each with a known nonnegative demand, dj, to
be delivered, whereas vertex 0 corresponds to the depot (with a 6ctitious demand d0 =
0). Given a customer set S ⊆ V , let d(S)=

∑
j∈S dj denote the total demand of the set.

A nonnegative cost, cij is associated with each arc (i; j)∈A and represents the travel
cost spent to go from vertex i to vertex j. Generally, the use of the loop arcs, (i; i),
is not allowed and this is imposed by de6ning cii = +∞ for all i∈V . If the cost
matrix is asymmetric, A is a set of directed arcs and the corresponding problem is
called asymmetric CVRP (ACVRP). Otherwise, i.e., when cij = cji for all i; j∈V , the
problem is called symmetric CVRP (SCVRP) and the arc set A is often replaced by
a set of undirected edges, E. In the following, we denote the undirected edge set of
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graph G by A when edges are indicated by means of their endpoints (i; j); i; j∈V , and
by E when edges are indicated through a single index e. Given a vertex set S ⊂ V , let
�(S) and �(S) denote the set of edges e∈E (or arcs (i; j)∈A) which have only one or
both endpoints in S, respectively. As usual, when single vertices i∈V are considered,
we write �(i) rather than �({i}).
Graph G is generally assumed to be complete (i.e., it includes the arcs connecting all

the vertex pairs, possibly with the exception of loops) since this simpli6es the notation.
If this is not the case, a complete graph may be easily obtained by assigning an in6nite
cost value to nonexisting arcs.
In several practical situations the cost matrix satis6es the triangle inequality, cik +

ckj¿ cij for all i; j; k ∈V . In this case, it is not convenient to deviate from the direct
link between two vertices i and j. The respect of the triangle inequality is sometimes
required by the algorithms for CVRP. In such case, if the original instance does not
satisfy the triangle inequality, and equivalent instance may be obtained in an immediate
way by adding a suitably large positive quantity M to the cost of each arc. However,
the drastic distortion of the metric induced by this operation may produce very bad
solutions with respect to the original costs, mainly for what concerns the e3ectiveness
of heuristic algorithms. If G is strongly connected but not complete, it is possible to
obtain a complete graph where the cost of each arc (i; j) is de6ned as the cost of
the shortest path from i to j, computed on the original graph. Note that in this case
the complete graph satis6es the triangle inequality, therefore this may be seen also
as a method for “triangularizing” complete graphs. Moreover, in some instances the
vertices are associated with points of the plane with given coordinates and the cost
cij, for all the arcs (i; j)∈A, is de6ned as the Euclidean distance between the two
points corresponding to vertices i and j. In this case the cost matrix is symmetric and
satis6es the triangle inequality, and the resulting problem is often called Euclidean
CVRP. Observe that the frequently performed rounding to the nearest integer of the
real-valued Euclidean arc costs may cause a violation of the triangular inequality,
whereas this does not happen if the costs are rounded up.
A set of K identical vehicles, each with capacity C, is available at the depot. Each

vehicle may perform at most one route, and we assume that K is not smaller than Kmin,
where Kmin is the minimum number of vehicles needed to serve all the customers.
The value of Kmin may be determined by solving the bin packing problem (BPP)
associated with the CVRP, calling for the determination of the minimum number of
bins, each with capacity C, required to load all the n items, each with nonnegative
weight dj; j = 1; : : : ; n. In spite of the fact that BPP is NP-hard in the strong sense,
instances with hundreds of items can be optimally solved very e3ectively (see, e.g.,
Martello and Toth [38]). In the following, given a set S ⊆ V \ {0}, we denote by
�(S) the minimum number of vehicles needed to serve all the customers in S, i.e.,
the optimal solution value of the BPP with item set S. Note that �(V \ {0}) = Kmin.
Often �(S) is replaced by the so-called continuous lower bound for BPP: �d(S)=C	.
Moreover, to ensure feasibility we assume that dj6C for each j = 1; : : : ; n.
The CVRP consists of 6nding a collection of K simple circuits (corresponding

to vehicle routes) with minimum cost, de6ned as the sum of the costs of the arcs
belonging to the circuits, and such that:
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(i) each circuit visits vertex 0, i.e., the depot vertex;
(ii) each vertex j∈V \ {0} is visited by exactly one circuit;
(iii) the sum of the demand of the vertices visited by a circuit does not exceed the

vehicle capacity, C.

Several variants of the basic versions of CVRP have been considered in the literature.
First of all, when the number K of available vehicles is greater than Kmin, it may be
possible to leave some vehicle unused, thus requiring to determine at most K circuits.
In this case, 6xed costs are often associated with the use of the vehicles. This may
be included in the CVRP by adding the constant value representing the 6xed cost
associated with the use of a vehicle, to the cost of the arcs leaving the depot.
In practical situations the additional objective requiring the minimization of the num-

ber of used circuits (i.e., vehicles) is frequently present. Normally, the algorithms pro-
posed in the literature do not consider this objective explicitly, however, depending
on the characteristics of the algorithm used, there are di3erent ways to take it into
account. When the algorithm allows for the determination of solutions using a number
of circuits smaller than K , this objective may be easily included by adding a large
constant value to the cost of the arcs leaving the depot. Thus, the optimal solution 6rst
minimizes the number of arcs leaving the depot (hence the number of circuits), then
the cost of the other used arcs. If, as normally happens, the algorithm determines only
solutions using all the K available vehicles, there are two possibilities. The 6rst one
is to compute Kmin by solving the BPP associated with CVRP, and then to apply the
algorithm with K =Kmin. The second possibility is to de6ne an extended instance with
a complete graph OG= ( OV ; OA) obtained from G by adding K −Kmin dummy vertices to
V, each with demand dj = 0. Let W = {n + 1; : : : ; n + K − Kmin} be the set of these
dummy vertices, the cost Ocij of the arcs (i; j)∈ OA is de6ned as

Ocij:=




cij for i; j∈V ;
0 for i = 0; j∈W ;

0 for i∈W; j = 0;

c0j for i∈W; j∈V \ {0};
M for i∈V \ {0}; j∈W ;

M for i∈W; j∈W ;

(1)

where M is a very large positive number. The optimal solution of the CVRP computed
on the extended instance may contain “empty” routes made up by single dummy ver-
tices. Note that by adding a large constant to Oc0j; j∈W , the number of empty routes
is maximized, i.e., the number of used vehicles is minimized.
Note that, even in the case for which the triangle inequality holds, the minimization

of the number of used circuits does not correspond, in general, to the minimization
of the total cost of the circuits. On the other hand, solutions forced to use exactly K
circuits (with K ¿Kmin) do not lead, in general, to the minimum total cost.
The CVRP is known to be NP-hard (in the strong sense), and generalizes the

well-known Traveling Salesman Problem, arising when C¿d(V ) and K = Kmin = 1.
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Therefore, all the relaxations proposed for the TSP are valid for the CVRP. As already
mentioned, the CVRP is also related to the bin packing problem.

3. The asymmetric CVRP

In this section we examine the CVRP with asymmetric cost matrix (ACVRP). Two
di3erent basic modeling approaches have been proposed for the VRP in the literature.
The models of the 6rst type, known as vehicle 7ow formulations, use integer variables,
associated with each arc or edge of the graph, which count the number of times that
the arc or edge is traversed by a vehicle. These are the most frequently used models for
the basic versions of VRP. The linear programming relaxation of vehicle :ow models
can be very weak when the capacity constraints are tight.
The models of the second type have an exponential number of binary variables, each

associated with a di3erent feasible circuit. The VRP is then formulated as a set par-
titioning problem (SPP) calling for the determination of a collection of circuits with
minimum cost, which serves each customer once. The corresponding linear program-
ming relaxation is typically much tighter than in the previous models. Note, however,
that these models generally require dealing with a very large number of variables. An
example of SPP-based model for SCVRP is given in Section 4.4.
The integer linear programming model we describe for ACVRP is a two-index ve-

hicle :ow formulation which uses O(n2) binary variables x, to indicate if a vehicle
traverses or not an arc in the optimal solution. In other words, variable xij takes value
1 if arc (i; j)∈A belongs to the optimal solution, and value 0 otherwise.

(VRP1) min
∑
i∈V

∑
j∈V

cijxij (2)

s:t:
∑
i∈V

xij = 1 for all j∈V \ {0} (3)

∑
j∈V

xij = 1 for all i∈V \ {0} (4)

∑
i∈V

xi0 = K (5)

∑
j∈V

x0j = K (6)

∑
i �∈S

∑
j∈S

xij¿ �(S) for all S ⊆ V \ {0}; S �= ∅ (7)

xij ∈{0; 1} for all i; j ∈V: (8)

The indegree and outdegree constraints (3) and (4) impose that exactly one arc enters
and leaves each vertex associated with a customer, respectively. Analogously, con-
straints (5) and (6) impose the degree requirements for the depot vertex. Note that one
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arbitrary constraint among the 2|V | constraints (3)–(6) is actually implied by the
remaining 2|V |−1 ones, hence it can be removed. The so-called capacity-cut constraints
(7) impose both the connectivity of the solution and the vehicle capacity requirements.
In fact, they stipulate that each cut (V \ S; S) de6ned by a vertex set S is crossed
by a number of arcs not smaller than �(S) (minimum number of vehicles needed to
serve set S). The capacity-cut constraints remain valid also if �(S) is replaced by the
continuous lower bound for BPP (see, e.g., [12]).
Observe that, when |S|=1 or S=V \{0} the capacity-cut constraints (7) are weakened

versions of the corresponding degree constraints (3)–(6). Note also that, because of
the degree constraints (3)–(6), we have∑

i �∈S

∑
j∈S

xij =
∑
i∈S

∑
j �∈S

xij for all S ⊆ V \ {0}; S �= ∅; (9)

in other words, each cut (V \ S; S) is crossed in both directions the same number of
times. From (9) we may also re-state (7) as∑

i �∈S

∑
j∈S

xij¿ �(V \ S) for all S ⊂ V; {0}∈ S: (10)

An alternative formulation may be obtained by transforming the capacity-cut constraints
(7), by means of the degree constraints (3)–(6), into the well-known generalized
subtour elimination constraints (GSEC):∑

i∈S

∑
j∈S

xij6 |S| − �(S) for all S ⊆ V \ {0}; S �= ∅; (11)

which impose that at least �(S) arcs leave each vertex set S.
Both families of constraints (7) and (11) have a cardinality growing exponentially

with n. A possible way to partially overcome this drawback is to consider only a
limited subset of these constraints. This can be done by relaxing them in a Lagrangian
fashion as done in [20] and in [40] (see Section 4.3) or by explicitly including them
in the linear programming relaxation as done in branch and cut approaches.
Alternatively, an equivalent family of constraints with polynomial cardinality may

be obtained by considering the subtour elimination constraints proposed for the TSP
by Miller et al. [39], and extending them to CVRP (see, e.g., [10] and [28]):

ui − uj + Cxij6C − dj for all i; j∈V \ {0}; i �= j; s:t: di + dj6C; (12)

di6 ui6C for all i∈V \ {0}; (13)

where ui; i∈V \ {0}, is an additional continuous variable representing the load of the
vehicle after visiting customer i. It is easy to see that constraints (12)–(13) impose
the capacity requirements of CVRP. In fact, when xij =0 the constraint is not binding
since ui6C and uj¿dj, whereas when xij = 1 they impose that uj¿ ui + dj. These
constraints may be strengthened by lifting some coe9cients as illustrated by Desrochers
and Laporte [13].
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Two exact algorithms, both based on the branch and bound approach were proposed
for ACVRP so far. The algorithm described by Laporte et al. [31] uses a lower bound
based on the Assignment Problem (AP) relaxation of ACVRP. The algorithm proposed
by Fischetti et al. [18] combines, according to the so-called additive approach, the AP
lower bound with a lower bound based on disjunction and one based on a min-cost
:ow relaxation. These bounds are brie:y described in this section.
Other bounds for the ACVRP may be derived by generalizing the methods proposed

for the symmetric case. For example, Fisher [20] proposed a way to extend to ACVRP
the bounds based on K-tree he derived for the SCVRP (described in Sections 4.1
and 4.3). In this extension the Lagrangian problem calls for the determination of an
undirected K-tree on the undirected graph obtained by replacing each pair of directed
arcs (i; j) and (j; i) with a single edge (i; j) with cost c′ij = min{cij; cji}. No compu-
tational testing for this bound was presented in Fisher [20]. Possibly better bounds
may be obtained by explicitly considering the asymmetry of the problem, i.e., by using
K-arborescences rather than K-trees and by strengthening the bound in a Lagrangian
fashion as proposed by Fisher for the CVRP (see [43,44] for an application to the
capacitated shortest spanning arborescence problem, and to the VRP with backhauls,
respectively).

3.1. The assignment lower bound

Carpaneto and Toth [6], and Laporte et al. [31] proposed to relax model VRP1 by
dropping the capacity-cut constraints (7). The resulting relaxation, i.e. (2)–(6) and
(8), is a transportation problem (TP), calling for a min-cost collection of circuits of
G visiting once all the vertices in V \ {0}, and K times vertex 0. This solution can be
infeasible for ACVRP since:

(i) the total customer demand on a circuit can exceed the vehicle capacity;
(ii) there may exist circuits not visiting vertex 0.

The solution of TP requires O(n3) time through a transportation algorithm. In practice,
it is more e3ective to transform the problem into an assignment problem (AP) de6ned
on the extended complete digraph G′ = (V ′; A′), where V ′:=V ∪ W ′ and W ′ = {n +
1; : : : ; n+K − 1} contains K − 1 additional copies of vertex 0, and the cost c′ij of each
arc in A′ is de6ned as follows:

c′ij:=




cij for i; j∈V \ {0};
ci0 for i∈V \ {0}; j∈W ′;
c0j for i∈W ′; j∈V \ {0};
� for i; j∈W ′;

(14)

where �=M�1. After this transformation, constraint (5) may be replaced by K con-
straints of type (3), one for each copy of the depot. Analogously, constraint (6) may
be replaced by K constraints of type (4). This extension was originally proposed by
Lenstra and Rinnooy Kan [35], to transform into an ordinary TSP the m-TSP, which
calls for the determination of a collection of m circuits visiting m times a distinguished
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vertex (i.e., the depot) and once all the remaining vertices. Observe that by de6ning �
in a di3erent way we obtain an alternative transformation, with respect to that presented
in Section 2, to obtain solutions using less than K vehicles. In particular, de6ning �=0
leads to the determination of the min-cost set of at most K routes, whereas de6ning
�=−M leads to the determination of the min-cost set of Kmin routes.

3.2. The bounds based on arborescences

In analogy with what is done for the SCVRP (see Section 4.1) another basic relax-
ation is that based on the solution of degree-constrained spanning arborescences. This
relaxation may be obtained from model VRP1 by:

(i) removing the outdegree constraints (4) for all the customer vertices;
(ii) weakening the capacity-cut constraints (7) so as to impose only the connectivity

of the solution, i.e. by replacing the right-hand side with 1.

The resulting relaxed problem, called K-shortest spanning arborescence problem
(KSSA) is de6ned by

(KSSA) min
∑
i∈V

∑
j∈V

cijxij (15)

s:t:
∑
i∈V

xij = 1 for all j∈V \ {0}; (16)

∑
i∈V

xi0 = K; (17)

∑
j∈V

x0j = K; (18)

∑
i �∈S

∑
j∈S

xij¿ 1 for all S ⊆ V \ {0}; S �= ∅; (19)

xij ∈{0; 1} for all i; j∈V: (20)

The KSSA can be e3ectively solved by considering two separate subproblems:

(i) the determination of a min-cost spanning arborescence with outdegree K at the
depot vertex, de6ned by (15), (16), (18)–(20), with variables xij for i∈V; j∈V \
{0}, and

(ii) the determination of a set of K min-cost arcs entering the depot, de6ned by (15),
(17), and (20), with variables x0i for i∈V .

The KSSA can be determined in O(n2) since the 6rst subproblem can be solved in
O(n2) time (see, [23,43]), while the second subproblem clearly requires O(n) time.
The above described lower bound was never used within branch and bound algo-

rithms and the preliminary computational results discussed in Section 3.5 show that
its quality is generally poor and inferior to that of the AP lower bound. However, it
should be mentioned that for a problem closely related to the CVRP, as the VRP with
backhauls, Toth and Vigo [44] successfully used a Lagrangian relaxation based on the
solution of KSSAs, solving problems with up to 100 customers.
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3.3. The disjunctive lower bound

The following two bounds were proposed by Fischetti et al. [18]. The 6rst bound is
based on a disjunction on infeasible arc subsets, whereas the second bound is based
on a min-cost :ow relaxation.
A given arc subset B ⊂ A is called infeasible if no feasible solution to ACVRP can

use all its arcs, i.e., when

∑
(a;b)∈B

xab6 |B| − 1 (21)

is a valid inequality for ACVRP. For any given (minimal) infeasible arc subset B ⊂ A,
the following logical disjunction holds for each x∈F , where F is the set of all the
ACVRP feasible solutions:

∨
(a;b)∈B

(x∈Qab:={x∈RA: xab = 0}): (22)

Then |B| restricted problems are de6ned, each denoted as RPab and including the
additional condition xab = 0 imposed for a di3erent (a; b)∈B. For each RPab, a valid
lower bound, #ab, is computed through the AP relaxation of the previous section (with
cab:= +∞ to impose xab = 0). The disjunctive bound

LD:=min{#ab: (a; b)∈B}; (23)

clearly dominates the AP lower bound, LAP, since #ab¿LAP for all (a; b)∈B.
A possible way to determine infeasible arc subsets B is the following. First solve

the AP relaxation with no additional constraints, and store the corresponding optimal
solution (x∗ij: i; j∈V ). If x∗ is feasible for ACVRP, then clearly the lower bound LAP
cannot be improved. Otherwise, try to improve it by using a disjunction on a suitable
infeasible arc subset B. Note that imposing xab =0 for any (a; b)∈A such that x∗ab =0
would produce #ab=LAP, hence a disjunctive bound LD=LAP. Therefore, B is chosen as
a subset of A∗:={(i; j)∈A: x∗ij=1}, if any, corresponding to one of the following cases:

(i) a circuit which is disconnected from the depot vertex,
(ii) a path such that the total demand of the associated customer vertices exceeds C,
(iii) a feasible circuit which leaves uncovered a set of customers, S, whose total de-

mand cannot be served by the remaining K−1 vehicles, i.e., such that �(S)¿K−1.

Di3erent choices of the infeasible arc subset B lead to di3erent lower bounds. Therefore,
Fischetti, Toth and Vigo [18] used an overall bounding procedure, called ADD DISJ,
based on the additive approach which considers, in sequence, di3erent infeasible arc
subsets so as to produce a possibly better overall lower bound.
The additive approach was proposed by Fischetti and Toth [16] and allows for

the combination of di3erent lower bounding procedures, each exploiting di3erent sub-
structures of the considered problem. When applied to a minimization problem, each
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procedure returns a lower bound % and a residual cost matrix, c̃, such that:

c̃¿ 0

%+ c̃x6 cx for all x∈F:
The entries of c̃ represent lower bounds on the increment of the optimal solution value
if the corresponding arc is imposed in the solution. The di3erent bounding procedures
are applied in sequence, and each of them uses as input costs the residual cost matrix
given as output by the previous procedure (obviously, the 6rst procedure starts with
the original cost matrix). The overall additive lower bound is given by the sum of the
lower bounds obtained by each procedure. It can be easily shown that if the lower
bounding procedures are based on linear programming relaxations, as those previously
described for ACVRP, the reduced costs are valid residual costs. For further details
see [18,17].
Procedure ADD DISJ starts by solving the AP relaxation with no additional con-

straints, and de6nes the initial lower bound LB as the optimal AP solution value,
and the arc set A∗ as the arcs used in the optimal AP solution. Then iteratively an
infeasible subset B, if any, is chosen from A∗ and used for the computation of the
disjunctive lower bound, returning a lower bound LD and the corresponding residual
cost matrix. The current LB is increased by LD, the set A∗ is updated by remov-
ing from it all the arcs whose corresponding variables are not equal to 1 in the
current optimal solution of the disjunctive bound. The process is iterated until A∗

does not contain further infeasible arc subsets. Procedure ADD DISJ can be imple-
mented, through parametric techniques, so as to have an overall time complexity equal
to O(n4).

3.4. The lower bound based on min-cost 7ow

Let {S1; : : : ; Sm} be a given partition of V with 0∈ S1, and de6ne

A1:=
m⋃
h=1

{(i; j)∈A: i; j∈ Sh}

A2:=A \ A1:
In other words, A is partitioned into {A1; A2}, where A1 contains the arcs “internal” to
the subsets Sh, and A2 those connecting vertices belonging to di3erent Sh’s.

In the following, a lower bound LP based on projection is described. The bound is
given by LP:=#1 + #2, where #t; t = 1; 2, is a lower bound on

∑
(cij: (i; j)∈A∗ ∩ At)

for every (optimal) ACVRP solution A∗ ⊂ A.
The contribution to LP of the arcs internal to the given subsets Sh is initially ne-

glected, i.e., #1 is set equal to 0. The rationale of this choice is clari6ed later. As to
#2, this is computed by solving the following linear programming relaxation, called
R1, obtained from model VRP1 by
(i) weakening degree equations (3)–(6) into inequalities, to take into account the

removal of the arcs in A1;
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(ii) imposing the capacity-cut constraints (7) and (10) only for the m subsets Sh’s .
The model of R1 is

(R1) #2 = min
∑

(i; j)∈A2
cijxij (24)

s:t:
∑

i∈V :(i; j)∈A2
xij6

{
1 for all j∈V \ {0};
K for j = 0;

(25)

∑
j∈V :(i; j)∈A2

xij6

{
1 for all i∈V \ {0};
K for i = 0;

(26)

∑
i �∈Sh

∑
j∈Sh

xij =
∑
i∈Sh

∑
j �∈Sh

xij¿

{
�(V \ Sh) for h= 1;

�(Sh) for h= 2; : : : ; m;
(27)

xij ∈{0; 1} for all (i; j)∈A2: (28)

This model can be solved e9ciently, since it can be viewed as an instance of a min-cost
:ow problem on an auxiliary layered network. The network contains 2(n + m + 2)
vertices, namely:

• two vertices, say i+ and i−, for all i∈V ;
• two vertices, say ah and bh, for all h= 1; : : : ; m;
• a source vertex, s, and a sink vertex, t.

The arcs in the network, and the associated capacities and costs, are:

• for all (i; j)∈A2: arc (i+; j−) with cost cij and capacity 1;
• for all h=1; : : : ; m: arcs (ah; i+) and (i−; bh) for all i∈ Sh, with cost 0 and capacity
1 (if i �=0) or K (if i = 0);

• for all h=1; : : : ; m: arc (ah; bh) with cost 0 and capacity |Sh| − �(Sh) (if h �=1) or
|S1|+ K − 1− �(V \ S1) (if h= 1);

• for all h= 1; : : : ; m: arcs (s; ah) and (bh; t), both with cost 0 and capacity |Sh| (if
h �=1) or |S1|+ K − 1 (if h= 1).

It can be easily seen that 6nding the min-cost s-t :ow of value n+K on this network
actually solves relaxation R1. The worst-case time complexity for the computation of
#2, and of the corresponding residual costs, is O(n3) by using a specialized algorithm
based on successive shortest path computations.
Di3erent choices of the vertex partition {S1; : : : ; Sm} lead to di3erent lower bounds.

Note that choosing Sh = {h} for all h∈V , produces a relaxation R1 that coincides
with the AP relaxation of Section 3.1. When, on the other hand, non-singleton Sh’s
are present, relaxation R1 is capable of taking into account the associated capacity-cut
constraints (that are, instead, neglected by AP), while loosing a possible contribution
to the lower bound of the arcs inside Sh (which belong to A1), and weakening the
degree constraints of the vertices in Sh. Fischetti et al. [18] used, in sequence, di3erent
partitions obtaining an overall additive procedure, called ADD FLOW.
The procedure is initialized with the partition Sh = {h} for all h = 1; : : : ; m = n

(i.e., with the AP relaxation). At each iteration of the additive scheme, relaxation
R1 is solved, the current lower bound is increased, and the current costs are reduced
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accordingly. Then a convenient collection of subsets Sh1 ; : : : ; Shr (with r¿ 2) belonging
to the current partition is selected and the subsets are replaced with their union, say
S∗. The choice of this collection is made so as to produce an infeasible set S∗, i.e.,
a vertex set whose associated capacity-cut constraint is violated by the solution of the
current relaxation R1. This hopefully produces an increase of the additive lower bound
in the next iteration. The additive scheme ends when either m=1, or no infeasible S∗

is detected.
Procedure ADD FLOW takes O(n4) time and the resulting additive lower bound

clearly dominates the AP bound, which is used to initialize it. On the other hand
no dominance relation exists between ADD FLOW and procedure ADD DISJ of the
previous section. Therefore, Fischetti, Toth and Vigo proposed to apply ADD DISJ and
ADD FLOW in sequence, again in an additive fashion. To reduce the average overall
computing time, procedure ADD FLOW was stopped when no increase of the current
lower bound LB was observed for 6ve consecutive iterations.

3.5. Branch and bound algorithms for the ACVRP

We now brie:y describe the main ingredients of the branch and bound algorithms
used for the exact solution of the ACVRP proposed by Laporte et al. [31] and by
Fischetti et al. [18]. The two algorithms have the same basic structure, derived from
that of the algorithm for the asymmetric TSP described in Carpaneto and Toth [6] and
based on that proposed in Bellmore and Malone [3]: the 6rst one uses as lower bound
the AP relaxation of Section 3.1, whereas the second uses the two additive bounding
procedures described in Sections 3:3 and 3:4.
The algorithms adopt a best-bound-<rst search strategy, i.e., branching is always

executed on the pending node of the branch-decision tree with the smallest lower
bound value. This rule allows for the minimization of the number of subproblems
solved at the expense of larger memory usage, and computationally proved to be more
e3ective than the depth-<rst strategy, where the branching node is selected according
to a last-in-6rst-out rule.
The branching rules used by both algorithms are related to the subtour elimination

scheme used for the asymmetric TSP, and handle the relaxed constraints imposing the
connectivity and the capacity requirements of the feasible ACVRP solutions. At a node
* of the branch-decision tree, let I* and F* contains the arcs imposed and forbidden in
the current solution, respectively.
Given the set A∗ of arcs corresponding to the optimal solution of the current relax-

ation, a non-imposed arc subset B:={(a1; b1); (a2; b2); : : : ; (ah; bh)} ⊂ A∗ on which to
branch is chosen.
Fischetti et al. de6ned B by considering the subset of A∗ with the minimum number

of non-imposed arcs, de6ning a path or a circuit which is infeasible according to the
conditions of Section 3.3. Note that since the additive bounding procedure alters the
objective function of the problem, an optimal solution of the relaxed problem which
is feasible for ACVRP is not necessarily optimal for it. Therefore, if A∗ de6nes a
feasible ACVRP solution, set B is chosen as the feasible circuit through vertex 0
with the minimum number of non-imposed arcs. Then h = |B| descendant nodes are
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generated. The subproblem associated with node *i; i=1; : : : ; h is de6ned by excluding
the ith arc of B and by imposing the arcs up to i − 1:

I*i :=I* ∪ {(a1; b1); : : : ; (ai−1; bi−1)};
F*i :=F* ∪ {(ai; bi)};

where I*1 :=I*.
Laporte et al. de6ned B as an infeasible subtour according to the conditions of

Section 3.1, and used a more complex branching rule in which at each descendant
node at most r arcs of B are simultaneously excluded, where r:=�d(S)=C	 and S is
the set of vertices spanned by B. In this case, since at most ( |B|r ) descendant nodes
may be generated, the set B is chosen as the one minimizing ( |B|r ).
The performance of the branch and bound algorithms is enhanced by means of sev-

eral additional procedures performing variable 6xing, feasibility checks and dominance
tests. The Fischetti et al. algorithm (FTV) at each node of the branch-decision tree uses
a heuristic algorithm proposed by Vigo [47] which starts from the infeasible solution
associated with the current relaxation and tries to obtain a feasible solution through an
insertion procedure and a post-optimization phase based on arc exchanges.
Laporte et al. used their algorithm (LMN) to solve, on a VAX 11=780 computer

(0.14 M:ops), test instances where demands dj and costs cij were randomly generated
from a uniform distribution in [0, 100], and rounded to the nearest integer. The vehicle
capacity was de6ned as

C:=(1− ,)max
j∈V

{dj}+ ,d(V );

where , is a real parameter chosen in [0,1]. The number of available vehicles was
de6ned as K = Kmin, and computed by using the trivial BPP lower bound. Note that
larger values of , produce larger C, and hence smaller K (when , = 1, ACVRP
reduces to the asymmetric TSP, since K =1). No monotone correlation between , and
the average percentage load of a vehicle, de6ned as 100 d(V )=(KC), can instead be
inferred. Laporte et al. considered , = 0:25, 0.50 and 0.75, producing K = 4; 2 and 2,
respectively.
For each pair (n; ,), 6ve instances were generated and algorithm LMN was run by

imposing a limit on the total available memory. The LMN algorithm was able to solve
instances with up to 90 vertices if ,¿ 0:50 (i.e., with K6 2), although for n¿ 70
and ,¡ 1, only half or less of the instances were actually solved. With ,= 0:25 only
the instances with 10 vertices and one of those with 20 vertices were solved. The
computing times for the most di9cult instances solved were almost 6000 s, whereas
no statistics were reported for the non-solved instances. The algorithm was also tested
on instances of the same type but with K =Kmin + 2 or K =Kmin + 4. These problems
resulted to be much easier than the previous ones: algorithm LMN was able to solve
instances with up to 260 vertices. Finally, randomly generated Euclidean instances were
considered and, as expected, algorithm LMN obtained poor results, being able to solve
only some of the problems with two vehicles and up to 30 vertices.
Fischetti et al. tested their algorithm FTV on the same randomly generated instances

used for LMN with K =Kmin. Algorithm FTV was able to solve all the instances with
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Table 1
Percentage ratios of di3erent ACVRP lower bounds with respect to the optimal solution value on real-world
instances

Problem n K (%) AP (%) KSSA (%) ADD

A034-02v 33 2 85.8 78.7 90.1
A036-03v 35 3 90.9 75.2 93.2
A039-03v 38 3 93.8 77.6 96.7
A045-03v 44 3 93.4 75.6 95.7
A048-03v 47 3 93.6 79.0 97.2
A056-03v 55 3 88.5 75.4 94.3
A065-03v 64 3 92.6 75.6 95.5
A071-03v 70 3 91.7 79.3 94.6

91.3 77.1 94.6

up to 300 vertices and up to 4 vehicles, within 1000 CPU seconds on a DECstation
5000=240 (5:3 M:ops). For n=90, LMN solved one instance (out of 5) with ,=0:50
and two instances with , = 0:75, requiring average CPU times of 5787 and 1162 s,
respectively. For the same values of n and ,, FTV solved all the instances within
CPU times of 15 and 1 s, respectively. On these instances the additive lower bound
considerably improved the AP value.
Algorithm FTV was also tested on a class of more realistic instances where the cost

matrices were obtained from those of the previous class by “triangularizing” the costs,
i.e., by replacing each cij with the cost of the shortest path from i to j. The number of
vehicles K and the average percentage vehicle load, say r, were 6xed and the vehicle
capacity was de6ned as C:=�100d(V )=(rK)	. Instances of this type with up to 300
vertices, 8 vehicles and with r equal to 80 and 90 were solved, those with n¿ 150
being easier than the smaller ones. Algorithm FTV was 6nally used to solve eight
real-world instances with up to 70 vertices and 3 vehicles, coming from pharmaceutical
and herbalists’ product delivery in the center of an urban area with several one-way
restrictions imposed on the roads. These instances resulted to be more di9cult than the
randomly generated ones: the computing time and the number of nodes were higher
than those required for analogous random instances. The maximum CPU time required
by FTV to solve the instances was about 30 minutes. Table 1 report the percentage
ratios of the di3erent lower bounds described in Sections 3.1–3.4, with respect to the
optimal solution value, when applied to these real-world instances. In particular the
table contains the ratios corresponding to AP, KSSA, and the overall additive bound
(ADD). The average gap, over the eight instances, of the additive bound with respect
to the optimal solution value was about 5.4% (that of AP being 8.7% and that of KSSA
22.9%) whereas on random instances the gap was normally much smaller (1–2% for
the additive bound and 2–5% for the AP).
We recently applied algorithm FTV to some Euclidean SCVRP instances from the

literature. The results we obtained show that SCVRP instances with up to 25–30 ver-
tices may be consistently solved by this algorithm (see Table 3). Moreover, the largest
instance we solved includes 47 customers.
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4. The symmetric CVRP

In this section we examine the branch and bound algorithms for the symmetric
version of CVRP proposed by Fisher [20] and Miller [40]. We 6rst give a general
model for SCVRP and describe the basic relaxations based on spanning trees and on
b-matching. The strengthening of these basic relaxations in a Lagrangian fashion is
then discussed and the overall branch and bound algorithms are described. The exact
algorithm proposed by Hadjconstantinou, Christo6des and Mingozzi [26], will be also
brie:y presented.
In the following we assume that single-customer routes are allowed.
The model we consider is obtained, as proposed in Laporte et al. [33], by adapting

to SCVRP the two-index vehicle :ow formulation VRP1 of ACVRP. To this end it
should be noted that in SCVRP the routes are not oriented (i.e., the customers along
a route may be visited indi3erently clockwise or counter-clockwise). Therefore, it is
not necessary to know in which direction edges are covered by the vehicles, and for
each undirected edge e∈E one integer variable xe is used to indicate how many times
the edge is covered in the optimal solution. In particular, if e �∈ �(0) then xe ∈{0; 1},
whereas if e∈ �(0) then xe ∈{0; 1; 2}. The case xe = 2 indicates that the endpoint
customer of edge e, say j, is contained into the single-customer route 0 → j → 0. The
model reads:

(VRP2) min
∑
e∈E

cexe (29)

s:t:
∑
e∈�(i)

xe = 2 for all i∈V \ {0}; (30)

∑
e∈�(0)

xe = 2K; (31)

∑
e∈�(S)

xe¿ 2�(S) for all S ⊆ V \ {0}; S �= ∅; (32)

xe ∈{0; 1; 2} for all e∈ �(0); (33)

xe ∈{0; 1} for all e �∈ �(0): (34)

The degree constraints (30) and (31) impose that exactly two arcs are incident to
each vertex associated with a customer, and 2K arcs are incident to the depot vertex,
respectively. The capacity-cut constraints (32), where �(S) may be replaced by the
trivial BPP lower bound, impose both the connectivity of the solution and the vehicle
capacity requirements, by forcing that a su9cient number of arcs enter each subset
of vertices. Also in this case, due to (30), these constraints may be rewritten as the
generalized subtour elimination constraints (GSECs):∑

e∈�(S)
xe6 |S| − �(S) for all S ⊆ V \ {0}; S �= ∅: (35)

In addition, subtour elimination constraints as those proposed by Miller et al. [39] for
the TSP may be easily extended to SCVRP (see also Section 3).
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4.1. The lower bounds based on trees

Di3erent relaxations based on spanning trees were presented for SCVRP by extending
the well-known 1-tree relaxation proposed by Held and Karp [27] for the symmetric
TSP.
Christo6des et al. [11] proposed a branch and bound algorithm based on the k-degree

center tree (k-DCT) relaxation of SCVRP. Given k, with K6 k6 2K , the k-DCT is
a min-cost spanning tree on G with degree k at the depot vertex. Then, K least cost
arcs not in the tree are added, 2K − k of which are incident to the depot, and the
remaining k − K are not incident to it. The bound was tightened by using Lagrangian
penalties associated with the degree constraints. The branch and bound algorithm was
able to solve problems from the literature with up to 25 vertices within 244 s on a
CDC 7600 (2 M:ops).
Another tree-based relaxation was presented in [20], and requires the determination of

a K-tree, de6ned as a min-cost set of n+ K edges spanning the graph. The approach
used by Fisher is based on formulation VRP2 with the additional assumption that
single-customer routes are not allowed (by imposing xe ∈{0; 1} for e∈ �(0)). However,
as he observed, in some cases this assumption is not constraining. In fact, customer j
can be served alone in a route if and only if on the remaining K − 1 vehicles there is
enough space to load the demand of the other customers, i.e., if �(V \{j})6K−1. By
replacing �(·) with the trivial BPP lower bound we may re-state the above condition
as

dj¿Cmin = d(V )− (K − 1)C: (36)

If, given a CVRP instance, condition (36) is satis6ed by no j∈V , then in any feasible
solution no customer may be served alone in a route (hence the constraint preventing
it is super:uous). We checked the above condition on 65 SCVRP instances from the
literature and it was satis6ed, i.e., single-customer routes cannot be used, in 29 of these
instances.
Fisher modeled the SCVRP as the problem of determining a K-tree with degree

equal to 2K at the depot vertex, with additional constraints imposing: (i) the vehicle
capacity requirements, and (ii) that the degree of each customer vertex must be equal
to 2. These additional constraints are relaxed in a Lagrangian fashion, thus obtaining as
Lagrangian problem the determination of a K-tree with degree 2K at the depot, which
can be computed in O(n3) time (see [21]). This degree constrained K-tree relaxation
may be easily obtained by considering formulation VRP2 and:

(i) removing the degree constraints (30);
(ii) weakening the capacity-cut constraints (32) into connectivity constraints by re-

placing the right-hand side with 1.

It can be easily seen that a K-tree solution may be infeasible for SCVRP because
some vertices have degree di3erent than two. Moreover, the demand associated with
the branches leaving the depot may exceed the vehicle capacity.
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Table 2
Percentage ratios of di3erent basic SCVRP lower bounds with respect to the best known solution value of
Euclidean instances

Problem n K % b-matching % K-treea % KSSA % AP % ADD

E045-04f 44 4 71.4 62.6 62.2 57.4 70.3
E051-05e 50 5 87.9 84.9 79.4 80.9 87.5
E072-04f 71 4 80.9 77.7 72.0 69.8 77.9
E076-10e 75 10 76.7 76.2 69.2 71.0 76.1
E101-08e 100 8 86.4 81.5 77.5 80.7 86.1
E101-10c 100 10 70.3 77.6 72.2 66.5 69.6
E135-07f 134 7 63.4 59.2 57.5 47.5 60.3
E151-12c 150 12 80.5 78.4 73.6 68.6 77.6
E200-16c 199 16 72.4 74.1 66.4 64.6 72.2

76.7 74.7 70.0 67.4 75.5
aSingle-customer routes not allowed.

4.2. The lower bound based on matching

The b-matching is a natural relaxation for SCVRP and is the counterpart for the
symmetric version of the assignment relaxation for ACVRP described in Section 3.1.
However, only recently this relaxation came on the scene, due to the work by Miller
[40], after the development of e9cient codes for the b-matching problem (see, e.g.
[41]).
The b-matching relaxation of CVRP may be obtained by considering model VRP2

and removing the capacity-cut constraints (32). The resulting relaxed problem requires
the determination of a subset of arcs covering all the vertices and such that the degree
of each customer vertex is equal to two, while the degree of the depot is equal to
2K . It can be noted that a b-matching solution may be infeasible for SCVRP since:
(i) some connected components (i.e., subtours) may be disconnected from the depot,
and (ii) the demand associated with a subtour may exceed the vehicle capacity. As
for the AP relaxation for ACVRP, it is possible to obtain an equivalent 2-matching
relaxation for SCVRP by adding K−1 copies of the depot and by imposing xe ∈{0; 1}
for e∈ �(0) (see, Section 3.1 for further details, and Pekny and Miller [42] for an
e3ective 2-matching algorithm). As described in the next section, in [40] some of the
GSECs (35) are relaxed in a Lagrangian fashion, obtaining as Lagrangian problem the
determination of a min-cost b-matching.

4.3. The Lagrangian lower bounds

The relaxations of SCVRP presented in the previous section have in general a poor
quality. Table 2 reports the average percentage ratios of the basic lower bounds cor-
responding to the degree constrained K-tree and the b-matching with respect to the
optimal or the best known solution value, for a set of widely used Euclidean SCVRP
instances from the literature. The K-tree values are those reported in [20] who used
real-valued cost matrices. The best known solution values that we used to compute
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the ratios are those reported in Toth and Vigo [46] which were obtained by using
real-valued cost matrices. The b-matching values were computed with Cplex 6.0 ILP
solver. The table also reports the ratios of the AP, KSSA and of the overall additive
lower bound (ADD) of Fischetti et al. [18]. All these values have been computed by
using integer cost matrices where the arc cost is de6ned as the real cost multiplied
by 10,000 and rounded to the nearest integer. The 6nal value is then scaled down by
dividing it by 10,000. It should be recalled that the problem solved by Fisher in [20]
was slightly di3erent from what we de6ned as CVRP, since the single-customer routes
were not allowed. As a consequence the K-tree values computed by Fisher may by
slightly larger than those which could be obtained in the case in which single-customer
routes are allowed.
By observing Table 2 it can be noted that none of the basic relaxations reaches a

quality su9cient to solve moderate size problems. As an example, we used the Fischetti
et al. code for ACVRP based on the additive bound ADD: the largest SCVRP instance
which it was able to solve included 47 customers (problem E048-04y not included in
the tables), and some problems with 25–30 customers were not solved to optimality.
Therefore, to obtain better bounds both Fisher [20] and Miller [40] strengthened the

basic relaxations by dualizing, in a Lagrangian fashion, some of the relaxed constraints.
In particular, Fisher included in the objective function the degree constraints (30) and
some of the capacity-cut constraints (32), whereas Miller included some of the GSECs
(35). It should be also remembered that Fisher did not allow single-customer routes.
As in related problems, good values for the Lagrangian multipliers associated with
the relaxed constraints are determined by using a standard subgradient optimization
procedure (see, e.g., [19]).
The main di9culty associated with these Lagrangian relaxations is represented by

the exponential cardinality of the set of relaxed constraints (i.e., the capacity-cuts and
the GSECs) which does not allow for the explicit inclusion of all of them in the objec-
tive function. To this end, both authors proposed to include only a limited family F
of relaxed capacity-cut or GSEC constraints and to iteratively add to the Lagrangian
relaxation the constraints which are violated by the current solution of the Lagrangian
problem. In particular, at each iteration of the subgradient optimization procedure, the
arcs incident to the depot in the current Lagrangian solution are removed. Violated
constraints (i.e., capacity-cuts or GSECs, depending on the approach), if any, are de-
tected by examining the connected components obtained in this way. This detection
routine is exact. In other words, if a constraint associated with, say, vertex set S, is
violated by the current Lagrangian solution, then there is a connected component of
that solution spanning all the vertices in S.
The new constraints are added to the Lagrangian problem, i.e., to F, with an associ-

ated multiplier and the process is iterated until no violated constraint is detected (hence
the Lagrangian solution is feasible) or a pre6xed number of subgradient iterations has
been executed. Slack constraints are periodically purged from F.
Fisher [20] initialized F with an explicit set of constraints containing the customer

subsets nested around K+3 seed customers. The seeds were chosen as the K customers
farthest from the depot in the routes corresponding to an initial feasible solution, with
the addition of the three customers maximally distant from the depot and the other
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Table 3
Comparison of percentage ratios of the basic and improved lower bounds for SCVRP with respect to di3erent
test instances. Instances marked with an asterisk were solved to optimality by the corresponding branch and
bound code

K-treea b-matchingb HCMc ADDc

Problem n K % LB % Lagr. % LB % Lagr. % LB % LB

S007-02a 6 2 100:0∗ 73:7∗
S013-04d 12 4 96:8∗ 71:0∗
E016-05m 15 5 97:6∗ 85:9∗
E021-04m 20 4 100:0∗ 84:6∗
E022-04g 21 4 90.1 99:7∗ 82:7∗
E023-03g 22 3 96.5 100:0∗ 93:9∗
E026-08m 25 8 100:0∗ 77.4
E030-03g 29 3 71.7 95:3∗ —
S031-07w 30 7 96:0∗ —
E031-09h 30 9 97:9∗ 72.8
E033-03n 32 3 86.5 98:9∗ —
E036-11h 35 11 99:5∗ 77.1
E041-14h 40 14 98:9∗ 73.0
E045-04f 44 4 62.6 99:6∗ 70.3
E051-05e 50 5 84.9 96.7 92.9 96:9∗ 98:5∗ 87.5
E072-04f 71 4 77.7 98:3∗ 77.9
E076-10e 75 10 76.2 90.5 97.6 76.1
E101-08e 100 8 81.5 95.1 95.9 86.1
E101-10c 100 10 77.6 99:8∗ 69.6
E135-07f 134 7 59.2 97:4 60.3
E151-12c 150 12 78.4 90:7 97.2 77.6
E200-16b 199 16 74.1 84:7 72.2

aReal-valued costs and single-customer routes not allowed.
bRounded integer costs.
cReal costs multiplied by 10 000 and rounded to the nearest integer.

seeds. For each seed, 60 sets were generated by including customers according to in-
creasing distances from the seed. After 50 subgradient iterations, new sets were added
to F by identifying violated capacity-cuts in the current Lagrangian solution as previ-
ously explained. The step size used in the subgradient optimization method was initially
set to 2 and reduced by a factor of 0.75 if the lower bound was not improved in the
last 30 iterations. The number of iterations of the subgradient optimization procedure
performed at the root node of the branch and bound algorithm ranged between 2000
and 3000. The overall Lagrangian bound considerably improved the basic K-tree relax-
ation. Table 3 reports the percentage ratios of the K-tree and of the Lagrangian bound.
We used the K-tree and Lagrangian bound values computed by Fisher [20] by using
real-valued cost matrices and not allowing single-customers routes, and we compared
the bounds with respect to the optimal or the best known solution values determined
by using real-valued cost matrices. Over the nine instances considered by Fisher, the
average ratio of the K-tree is 74.4% while that of the Lagrangian bound is 94.8%.
Miller [40] initialized F as the empty set and at each iteration of the subgra-

dient procedure detected violated GSECs and additional constraints belonging to the
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following two classes. The 6rst type of constraints is given by additional GSECs which
were added when the current Lagrangian solution Ox contains two or more overloaded
routes. The customer set of these new GSECs is the union of the sets S1; : : : ; Sk associ-
ated with the GSECs violated by Ox. This increases the possibility that arcs connecting
customers belonging to the overloaded routes to those in sets S1; : : : ; Sk are selected by
the b-matching solution. The second type of constraints was added when Ox contained
routes which were underloaded, i.e., routes whose associated load was smaller than
the minimum vehicle load Cmin de6ned by (36). In this case for each such set S, with
0∈ S, a constraint of the form∑

e∈�(S)
xe6 |S| − 1; (37)

which breaks the current underloaded route in Ox, was added to F. The procedure was
iterated until no improvement was obtained since 50 subgradient iterations. The step
size was modi6ed in an adaptive way every 6ve subgradient iterations to produce a
slight oscillation in lower bound values during the progress of the subgradient proce-
dure. If the lower bound was monotonically increasing, the step size was increased by
50%; if the oscillation of the lower bound value was greater than 2%, the step size
was reduced by 20%, and when the oscillation was smaller than 0.5% it was increased
by 10%.
As can be seen from Table 3, the 6nal Lagrangian bound of Miller is considerably

tight, being on average 98% of the optimal solution value for the eight problems
with n6 50 solved by Miller by using integer rounded cost matrices. The author also
communicated us some values of the pure b-matching relaxation which are reported in
Table 3 (the corresponding ratio is on average 87.5%).

4.4. Bounds based on set partitioning formulation

Hadjcostantinou et al. [26] proposed a branch and bound algorithm where the lower
bound is computed by heuristically solving the dual of the linear programming relax-
ation of the set partitioning formulation of the CVRP.
The set partitioning (SP) formulation of the VRP was originally proposed by Balin-

sky and Quandt [2] and uses a possibly exponential number of binary variables, each as-
sociated with the di3erent feasible circuit of G. More speci6cally, let H={H1; : : : ; HM}
denote the collection of all the circuits of G each corresponding to a feasible route,
with M = |H|. Each circuit Hj has an associated optimal cost cj, and let aij be a
binary coe9cient which takes value 1 if and only if vertex i is covered (i.e., visited)
by route Hj. The binary variable xj; j = 1; : : : ; M , is equal to 1 if and only if circuit
Hj is selected in the optimal solution. The model is:

(VRP3) min
M∑
j=1

cjxj (38)

s:t:
M∑
j=1

aijxj = 1 i∈V \ {0} (39)
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M∑
j=1

xj = K (40)

xj ∈{0; 1} j = 1; : : : ; M: (41)

Constraints (39) impose that each customer i is covered by exactly one of the selected
circuits, and (40) requires that K circuits are selected.
This is a very general model which may easily take into account several constraints

as, for example, time windows, since route feasibility is implicitly considered in the
de6nition of set H. Agarwal et al. [1] proposed an exact algorithm for CVRP based
on set partitioning approach, whereas several successful applications of this technique
to tightly constrained VRPs are reported in Desrosiers et al. [14]. Moreover, the linear
programming relaxation of this formulation is typically very tight (see also Bramel and
Simchi-Levi [5] which give a detailed probabilistic analysis of the quality of the linear
programming relaxation of the set partitioning formulation).
Hadjcostantinou et al. [26] proposed to obtain a valid lower bound to SCVRP by

considering the dual of the linear relaxation of model VRP3:

(DVRP3) max K/0 +
n∑
i=1

/i (42)

s:t: /0 +
∑
i∈Hj

/i6 cj j = 1; : : : ; M; (43)

/i unrestricted i = 0; : : : ; n: (44)

Where /i; i=1; : : : ; n are the dual variables associated with the partitioning constraints
(39) and /0 is that associated with constraint (40). It is clear that any feasible solution
to problem DVRP3 provides a valid lower bound to SCVRP. Hadjcostantinou et al. [26]
determined the heuristic dual solutions by combining two relaxations of the original
problem: the q-path relaxation proposed in Christo6des et al. [11], and the k-shortest
path relaxation proposed in Christo6des and Mingozzi [9]. The proposed approach
was able to solve randomly generated Euclidean instances with up to 30 vertices and
instances proposed in the literature with up to 50 vertices, within a time limit of 12 h
on a Silicon Grapics Indigo R4000 (12 M:ops). The percentage ratio of the overall
bound (HCM) are reported in Table 3.

4.5. Branching schemes and overall algorithms

Many branching schemes were used for SCVRP and almost all are extensions of
those used for the TSP.
The 6rst scheme we consider, proposed in [11], is known as branching on arcs and

proceeds by extending partial paths, starting from the depot and 6nishing at a given
vertex. At each node of the branch-decision tree an arc (i; j) is selected to extend the
current partial path and two descendant nodes are generated: the 6rst node is associated
with the inclusion of the selected arc in the solution (i.e., xij=1), while in the second
node the arc is excluded (i.e., xij = 0).
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Miller [40] used this branching scheme, where the arc to branch with is selected
by examining the solution obtained by the Lagrangian relaxation based on b-matching
described in Sections 4:3. When a partial path is present in the current subproblem
ending, say, with vertex v, the arc (v; h) belonging to the current Lagrangian solu-
tion is selected. If the current subproblem does not contain a partially 6xed path,
e.g., at the root node or when a route has been closed by the last imposed arc, the
arc connecting the depot with the unrouted customer j with the largest demand is
selected for branching. In this case a third descendant node is also created, by im-
posing x0j = 2, i.e., by considering, if feasible, the route containing only customer
j. The resulting branch and bound algorithm was applied to Euclidean SCVRP in-
stances from the literature, where the edge costs are computed as the Euclidean dis-
tances between the customers and rounded to the nearest integer. The algorithm was
able to solve problems with up to 50 customers within 15; 000 s on a Sun Sparc 2
(4 M:ops).
Fisher [20] used a mixed scheme where branching on arcs is used when no partial

path is present in the current subproblem. In this case the currently unserved customer
i with the largest demand is chosen and the arc (i; j) is used for branching, where j
is the unserved customer closest to i. At the node where arc (i; j) is excluded from
the solution, branching on arcs is again used, whereas at the second node the scheme
known as branching on customers is used. One of the two ending customers, say v,
of the currently imposed sequence of customers is chosen, and branching is performed
by enumerating the customers which may be appended to that end of the sequence. A
subset T of currently unserved customers is selected, e.g., that including the unserved
customers closest to v, and |T | + 1 nodes are generated. Each of the 6rst |T | nodes
corresponds to the inclusion in the solution of a di3erent customer j∈T , while in the
last node all the arcs (v; j); j∈T are excluded.
The performance of this branching scheme may be enhanced by means of a dom-

inance test proposed by Christo6des et al. [11]. A node of the branch-decision tree
where a partial sequence of customers v; : : : ; w is 6xed, can be fathomed if there exists
a lower cost ordering of the customers in the sequence starting with v and ending with
w. The improved ordering may be heuristically determined, e.g., by means of exchange
procedures as those proposed in Lin and Kernighan [36].
The mixed branching scheme with the described dominance rule was used by Fisher

to attempt the solution of Euclidean SCVRP instances with real distances and about
100 customers, but proved unsuccessful. In fact, Fisher observed that in instances where
many small clusters of close customers exist (as in the case of several instances from
the literature) any solution in which these customers are served contiguously in the
same route have almost the same cost. Thus, when the sequence of these customers
have to be determined through branching, unless an extremely tight bound is used,
it would be very di9cult to fathom many of the resulting nodes. Therefore, in [20]
an alternative branching scheme is proposed, aiming at exploiting macro-properties
of the optimal solution whose violation would have a large impact on the cost, thus
allowing the fathoming of the corresponding nodes. To this end a subset T of currently
unserved customers is selected and two descendant nodes are created: at the 6rst node
the additional constraint

∑
e∈�(T ) xe=2�d(T )=C	 is added to the current problem, while
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at the second node the constraint
∑

e∈�(T ) xe¿ 2�d(T )=C	+2 is imposed. Some ways of
identifying suitable subsets as well as additional dominance rules are described in [20].
This second branch and bound algorithm was successfully applied to some Euclidean
SCVRP instances with real distances and with no single customer route allowed. The
largest solved instance included 100 customers and was solved within less than 60; 000 s
on a small Apollo Domain 3000 computer (0.071 M:ops). Note, however, that several
Euclidean instances from the literature were not solved to optimality.

5. Conclusions

In this paper we reviewed the most important branch and bound algorithms proposed
during the last decade for the capacitated vehicle routing problem with either symmetric
or asymmetric cost matrix. The progress made with these algorithms with respect to
those of the previous generation is considerable: the dimension of the largest instances
solved has been increased from about 25 to more than 100 customers. However, the
CVRP is still far from being a closed chapter in the combinatorial optimization book. In
fact some Euclidean problems from the literature with 75 customers are still unsolved
and, in our opinion, the size of the problems which may be actually solved in a
systematic way by the present approaches is limited to few tenths of customers.
Several possible directions of research are still almost uncovered, e.g., Dantzig–

Wolfe decomposition based approaches (also known as branch and price approaches),
but also a more deep investigation and understanding of the capabilities of the available
techniques is strongly needed. As an example, we may mention that a direct computa-
tional evaluation and comparison of the e3ectiveness of the algorithms presented in this
paper for the symmetric case is not possible. In fact, as illustrated in Table 3, each
author either considered a slightly di3erent problem (e.g., in [20] single customers
routes were not allowed, whereas Miller [40] allowed them) or solved a completely
di3erent set of instances. The only instance which has been tackled by almost all the
authors we considered is the 50 customers Euclidean problem described in Christo6des
and Eilon [8]. However, for this instance Fisher [20] used a real-valued cost matrix
with Euclidean distances, Miller [40] used an integer cost matrix with Euclidean dis-
tances rounded to the nearest integer. As to Hadjconstantinou et al. [26], they used a
hybrid solution where the integer cost of each arc is de6ned as the Euclidean distance
between its endpoints multiplied by 104 and then rounded to nearest integer. Another
research issue which may lead to interesting results is represented by the adaptation to
the symmetric CVRP of the exact approaches developed for the asymmetric case, and
vice versa.
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