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Abstract
Two important results for the joint probability density function of the Weibull distribution are derived.
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1. Preliminaries

Estimation of the Weibull distribution parameters and its applications were well demonstrated
earlier [1-4. The product of the Weibull density functions and a random variable constructed based
on such products are studied. We prove here two results based on such random variables. When multipl
data sets from skewed distributions are formed then these results could be of help for conceptualization

Let X; be the Weibull random variable with parametess g; for all i = 1,2,3,...,n and
f(x) = (Bi/ai)(Xi/ai)Pi~Lexp—(xi /ai)P1}, wherea;, i > 0. The Laplace transformation for this
function i.e.f5° exp(xixi) f (x)dx; =

oMV B /B - DB/ (B - D). (L1)
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We can easily verify that

eevar [ [ o [ ox /ai)ﬁi—lexp{— 3% o) ] dxidxy - oty = 1.
i1 —00 J—00 —00 i—1

The product of the Weibull density functions is given by

[Tfox)=]]®i/ax /aoﬂilexp{— > (i /ai)P } :
i=1

i=1 i=1
2. Product Weibull density functions
Theorem 2.1. Iimﬁﬁlfzinzl log{ f (xj)}dx; = ( ) — X Z, ( ) — X Z, 1100(ai).

Proof. From (1.2), we have
Y log f(xi) = log {H(ﬁi Jei) (% /m)ﬁi—l} - {— > (i o) }
_Np X i pi
Son-nm(2)-5(2)  Fn(2)
1

=1
i— B1— B2— Bn—1
/ZIOQ( ) dx; =/{|0g<ﬁ> +|og<x2) +...+|og<ﬁ) }dxi
o o1 a2 n
p1-1 p2—1 Bi—1—1
X X
= X; log (a—1> + X log (a—z) +---+ X log <a' i)
|

Bi— i1 Bi+1—-1 Xn Bn—1
+ X Iog(a) + Xi Iog( ) —Bi — DX+ + X Iog(a—>
| n

oi4+1

n N\ Bi
=Xi;log(2—:) ~ (i — Dx

/Z:;(;—:) i = (}%)ﬂlJrX' <a_2>ﬂ2 J;+ 5i)j_1 (%)ﬁl + X (2—:)ﬂn
2 (3) () ()

/ iz:;Iog (5;:) dxj = x; zn: log (5;:) .

i=1

Therefore,

“log f (x)d Slog ()" D ()
DAX = Xi — — (B —Dxi —Xi —
/;og (x;)dx x;og(ai> (Bi — D)X xZ(ai)
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(8t ) )

Hence ag; — 1 the RHS of Aove equation will become the required expressiori]

Remark 2.2. When n variables X1, X2, X3... X follow f(xy), f(X2), f(X3)... f(Xs) then the
n-variable laplace transformation (in this case it can also be called the moment generating function)
can be written usingl(1) as

/ / / eXp(AiXy + A2X2 + - - + AnXn) F(X1) F(X2) - -+ f(Xn)dX1dX2 - - - dXn
0
n
x [ [@)?/ =D/ — DB/ (B — D).
i=1

Let g(Yij) = Hi”:l f(yij) forall j = 1,2,3...m. SupposeYiy, Yiz, Yiz...Yim are the identically
independent random variables with) ~ g(Yjj). LetR = Min(Yjy, Yi2,...,Yim) thenP(R > 2) =

P{Min(Yi1, Yiz. ... Yim) > 2} = P(ﬂ’j“:lvij >2) = [T, P(Yij > 2 = P(Yjj > 2™ Now
P(Yij >2) =[5 g(Yipdyi = [ TTizy f(vip dyi =

i—1
[ JBik/ein) (yik/eir) i exp{ Z(Mk/alk)ﬁ'k} [ [Bix/ai) (vik/ain)fix
k:1

xexp[ Z (y.k/a.k>ﬁ'k}(ﬁ../a..)(l/oe..)ﬁ" 1f yii T exp{—(yii /ei)} dyii.

k=i+1
Therefore,

i—1 i—1 m
POt >2 = (H(ﬁik/“ik)(yik/“ik)ﬂikl H(ﬂik/aik)(Yik/Olik)ﬂikl>
k=1 k]

i—1 n m
x exp{—Z(Yik/aik)ﬁik - Z (Yik/aik)ﬂik} exp(—z/aj; )i

k=i+1

> exp[ —m ZrBII/aII Z(Mk/alk)ﬁ'k —-m ZrBII/aII Z (Mk/alk)ﬁ'k]

k=i+1
= exp{—mzzﬂii/aii Z(yik/aik)ﬁik}/eXp{mzzﬂii/aii Z (Yik/aik)ﬂik} (2.1)
k=1 K=i+1
and
n i—1
m?zBii /aii ) (yik/aik)ﬁik} - eXp{—mZZﬂii/aii I(Z(Yik/aik)ﬁ“‘}
-1

k=i+1

exp{
PRr<2 < (2.2)

exp{mzzﬂii Jeii Y (yik/otik)ﬁik}

k=i+1
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from (2.1) we can write

i1 n
exp| —m?zBii /i Z(Yik/aik)ﬂik} <P®R=>2 eXp{mZZﬂii/aii > (Yik/aik)ﬁik}
kzl

k=i+1

< exp{mzzﬂii/aii > (Yik/aik)ﬂik}- (2.3)

k=i+1
Inequality (2.3) can also be obtained frord.Q).

Theorem 2.3. For agiven R as above, ZL;ll —(Yik/cik) Pk < 3R (Yik/eik)Pik.

Proof. Taking logarithms for 2.3) and through some algebraic manipulations we arrive at the required
inequality. O

The Weibull distribution has been shown to be the best model for life testing problems. Bivariate
and multivariate forms were also explored by the researchers in a classicab§py_fe dicussed
properties of the bivariate distributions of the foiff(x4, X2) = exp{—(ale + ozzxg)“} foraj > 0O,

Xi > 0,i =1,2,8 > 0and 0< u < 1. He further showed that two random variables having
such a distribution function can be represented in terms of independent random variables and are useful
in generating random samples. The Weibull distribution is known for its well known applications in
statistical quality control chartg] and for poblems arising in feability for assessing the importance

of the individual components of a system.
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