Discrete Mathematics 101 (1992) 203-212 North-Holland

T-colorings of graphs

Daphne Der-Fen Liu

Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

Received 27 December 1990

Abstract

Liu, D. D.-F., T-colorings of graphs, Discrete Mathematics 101 (1992) 203-212.

Given a finite set T of positive integers containing {0}, a T-coloring of a simple graph G is a nonnegative integer function f defined on the vertex set of G, such that if $\{u, v\} \in E(G)$ then $|f(u) - f(v)| \notin T$. The T-span of a T-coloring is defined as the difference of the largest and smallest colors used; the T-span of G, $\operatorname{sp}_T(G)$, is the minimum span over all T-colorings of G. It is known that the T-span of G satisfies $\operatorname{sp}_T(K_{\omega(G)}) \leq \operatorname{sp}_T(K_{\Sigma(G)})$. When T is an r-initial set (Cozzens and Roberts, 1982), or a k multiple of s set (A. Raychaudhuri, 1985), then $\operatorname{sp}_T(G) = \operatorname{sp}_T(K_{\chi(G)})$ for all graphs G. Using graph homomorphisms and a special family of graphs, we characterize those T's with equality $\operatorname{sp}_T(G) = \operatorname{sp}_T(K_{\chi(G)})$ for all graphs G. We discover new T's with the same result. Furthermore, we get a necessary and sufficient condition of equality $\operatorname{sp}_T(G) = \operatorname{sp}_T(K_m)$ for all graphs G with $\chi(G) = m$.

1. Introduction

Given a finite set T of positive integers containing $\{0\}$, a T-coloring of a simple graph G is a nonnegative integer function f defined on the vertex set of G, such that if $\{u, v\} \in E(G)$ then $|f(u) - f(v)| \notin T$. T-colorings of graphs arose from the channel assignment problem. Hale [1] formulated it in graph theory language. Tis the interference set. That is, if we want to assign channels to a pair of adjacent cities or radio stations, then the difference of those two channels used has to avoid the set T. For example, $T = \{0, 7, 14, 15\}$ is the interference set for UHF-television stations. If the set T is $\{0\}$ then T-coloring is the same as proper coloring. The T-span of a T-coloring f, denoted by $sp_T(f)$, is defined as the difference of the maximum and minimum channels used; and the T-span of a graph G, denoted by $sp_T(G)$, is the minimum span over all T-colorings of G. It is known that $\operatorname{sp}_{T}(K_{\omega(G)}) \leq \operatorname{sp}_{T}(G) \leq \operatorname{sp}_{T}(K_{\gamma(G)})$ for any T-set T and any graph G, where $\omega(G)$ is the maximum clique size of G (Cozzens and Roberts [2]). When T is an r-initial set, i.e., $T = \{0, 1, 2, ..., r\} \cup S$, where S contains no multiple of r+1 (Cozzens and Roberts [2]); and when T is a k multiple of s set, i.e., $T = \{0, s, 2s, \dots, ks\} \cup S$, where $S \subseteq \{s + 1, s + 2, \dots, ks - 1\}$ (Raychaudhuri

0012-365X/92/\$05.00 © 1992 --- Elsevier Science Publishers B.V. All rights reserved

[4]), then

$$\operatorname{sp}_T(G) = \operatorname{sp}_T(K_{\chi(G)})$$
 for all graphs G. (*)

In this paper, we first introduce a special family of graphs, called *T*-graphs. A graph *G* is weakly perfect if $\chi(G) = \omega(G)$. Using graph homomorphisms and the weak perfectness of the *T*-graphs, we get a necessary and sufficient condition in Section 3 to characterize the sets *T*. This leads to short proof that (*) holds for the two families above, and new families with this property are presented. In Section 4, we characterize the equality

$$\operatorname{sp}_T(G) = \operatorname{sp}_T(K_m)$$
 for all graphs G with $\chi(G) = m$.

2. T-graphs and graph homomorphisms

For a given set T, the T-graph, denoted by G_T , is defined by the following:

$$V(G_T) = \mathbb{Z}^+ \cup \{0\} \text{ and } \{x, y\} \in E(G_T) \text{ iff } |x - y| \notin T.$$

The T-graph of order n is the subgraph of G_T induced by the vertices $\{0, 1, 2, \ldots, n-1\}$ of G_T , and is denoted by G_T^n . Since the ordering of the vertices of G_T^n is a T-coloring itself, one has $\operatorname{sp}_T(G_T^n) \leq n-1$ for any n. Given two graphs G and H, a graph homomorphism from G to H is a function $f:V(G) \to V(H)$ such that if $\{u, v\} \in E(G)$ then $\{f(u), f(v)\} \in E(H)$. We say that G is homomorphic to H, if there is a graph homomorphism from G to H, denoted by $G \to H$. If $G \to H$ then $\chi(G) \leq \chi(H)$; if $\chi(G) \leq m$ then $G \to K_m$; and if $K_m \to G$ then $\omega(G) \geq m$. For related work on graph homomorphisms, see [7-8]. From the definitions, we can get the following properties.

Properties. (i) if $G \rightarrow H$ then $\operatorname{sp}_T(G) \leq \operatorname{sp}_T(H)$.

- (ii) $\operatorname{sp}_T(G) \leq n-1$ iff $G \to G_T^n$.
- (iii) If n is the minimum number such that $\chi(G_T^n) \ge \chi(G)$, then $\operatorname{sp}_T(G) \ge n-1$.
- (iv) If $\operatorname{sp}_T(G) < n$ then $\chi(G) \leq \chi(G_T^n)$.
- (v) If $\chi(G) \leq \omega(G_T^n)$ then $\operatorname{sp}_T(G) \leq n-1$.

Proof. (i) If f is a homomorphism from G to H, and g is a T-coloring of H, then the composition function $g \circ f$ is a T-coloring of G. Hence $sp_T(G) \leq sp_T(H)$.

(ii) (\Leftarrow) From Property (i), and $\operatorname{sp}_T(G_T^n) \leq n-1$.

(⇒) Suppose f is a T-coloring of G attaining $\operatorname{sp}_T(f) = \operatorname{sp}_T(G) \le n-1$. Without loss of generality, we can assume the colors that f uses are in the set $\{0, 1, \ldots, n-1\}$. If $\{u, v\} \in E(G)$, then $|f(u) - f(v)| \notin T$, i.e. $\{f(u), f(v)\} \in E(G_T^n)$. Hence f is also a homomorphism from G to G_T^n .

(iii) If *n* is the minimum number with $\chi(G_T^n) \ge \chi(G)$ but $\operatorname{sp}_T(G) < n-1$, by (ii) $G \to G_T^{n-1}$, which implies $\chi(G) \le \chi(G_T^{n-1})$. This contradicts the minimality of *n*.

204

(iv) If
$$\operatorname{sp}_T(G) < n$$
, by (ii) $G \to G_T^n$, so $\chi(G) \le G_T^n$
(v) If $\omega(G_T^n) \ge \chi(G)$ then
 $G \to K_{\omega(G_T^n)} \to G_T^n$,

so $G \to G^n_T$, which implies $\operatorname{sp}_T(G) \leq n-1$. \Box

3. Main theorem

The following Lemma 3.1 describes the relation between the minimum span of a complete graph K_m and the clique size of the *T*-graph of size *n*. Then we present the main theorem.

Lemma 3.1. The number n is the minimum such that $\omega(G_T^n) = m$ iff $\operatorname{sp}_T(K_m) = n - 1$.

Proof. (\Rightarrow) Suppose *n* is the minimum such that $\omega(G_T^n) = m$. Therefore $K_m \rightarrow G_T^n$, so $\operatorname{sp}_T(K_m) \leq n-1$. Now if $\operatorname{sp}_T(K_m) < n-1$, by Property (ii), we get $K_m \rightarrow G_T^{n-1}$, so $\omega(G_T^{n-1}) \geq m$. This contradicts the minimality of *n*.

(⇐) If $\operatorname{sp}_T(K_m) = n - 1$, then $K_m \to G_T^n$. Therefore $\omega(G_T^n) \ge m$. If $\omega(G_T^{n-1}) = m$, then by Property (v), we get $\operatorname{sp}_T(K_m) \le n - 2$, which contradicts $\operatorname{sp}_T(K_m) = n - 1$. Hence *n* is the minimum with $\omega(G_T^n) = m$. \Box

Theorem 3.2. Given T, the following are equivalent:

(i) $\operatorname{sp}_T(G) = \operatorname{sp}_T(K_{r(G)})$ for all graphs G,

(ii) $\operatorname{sp}_T(G_T^n) = \operatorname{sp}_T(K_{\alpha(G_T^n)})$ for all n,

(iii) G_T^n is weakly perfect for all n,

(iv) G_T^n is weakly perfect for all n with some graph H such that $sp_T(H) = n - 1$.

Proof. (i) \Rightarrow (ii), (iii) \Rightarrow (iv) are trivial.

(ii) \Rightarrow (iii): It's enough to show that, for any n, $\operatorname{sp}_T(G_T^n) = \operatorname{sp}_T(K_{\chi(G_T^n)})$ implies $\omega(G_T^n) = \chi(G_T^n)$. Suppose $\operatorname{sp}_T(G_T^n) = \operatorname{sp}_T(K_{\chi(G_T^n)}) = n_0 = 1$, since $\operatorname{sp}_T(G_T^n) \le n - 1$, so $n_0 \le n$. Also by Lemma 3.1, n_0 is the minimum such that $\omega(G_T^{n_0}) = \chi(G_T^n)$. Therefore $\omega(G_T^n) \ge \omega(G_T^{n_0}) = \chi(G_T^n)$, so we get $\omega(G_T^n) = \chi(G_T^n)$.

(iv) \Rightarrow (i): Let $\operatorname{sp}_T(G) = n_0 - 1$ and $\operatorname{sp}_T(K_{\chi(G)}) = n - 1$, and suppose $n_0 < n$. Then $G \to G_T^{n_0}$, $\chi(G_T^n) = \omega(G_T^n)$, and $\chi(G_T^{n_0}) = \omega(G_T^{n_0})$. By Lemma 3.1, *n* is the minimum with $\omega(G_T^n) = \chi(G)$. Therefore, $\chi(G_T^{n_0}) = \omega(G_T^{n_0}) < \omega(G_T^n) = \chi(G)$. This contradicts $G \to G_T^{n_0}$. Hence $n_0 = n$. \Box

If G is weakly perfect then $\operatorname{sp}_T(G) = \operatorname{sp}_T(K_{\chi(G)}) = \operatorname{sp}_T(K_{\omega(G)})$ for any T, but the reverse is not always true. From the claim of (ii) \Rightarrow (iii) above, we obtain the following corollary for T-graphs.

Corollary 3.3. For any T and any n, $\operatorname{sp}_T(G_T^n) = \operatorname{sp}_T(K_{\chi(G_T^n)})$ iff G_T^n is weakly perfect.

Next we discuss the two known families of T those satisfy (*).

Corollary 3.4 [2,9]. If T is an r-initial set, then (*) holds and $sp_T(K_m) = (r+1)(m-1)$.

Proof. By Theorem 3.1, to get (*), it is enough to show that G_T^n is weakly perfect for all *n*. In G_T , for any $k \ge 0$ the set of vertices $\{0, r+1, 2(r+1), \ldots, k(r+1)\}$ forms a clique, so $\omega(G_T^{k(r+1)+1}) \ge k+1$ for any $k \ge 0$ (See Fig. 1 as an example). Therefore it's sufficient to show that $\chi(G_T^{k(r+1)}) \le k$. Let *f* be the coloring defined by

$$f(i) = \left\lfloor \frac{i}{r+1} \right\rfloor + 1.$$

If $\{a, b\} \in G_T^{k(r+1)}$ then $|a - b| \notin T$, i.e. $|a - b| \ge r + 1$, so

$$\left\lfloor \frac{a}{r+1} \right\rfloor \neq \left\lfloor \frac{b}{r+1} \right\rfloor.$$

Hence $f(a) \neq f(b)$, f is a proper coloring and

$$|\text{Range}(f)| = \left\lfloor \frac{k(r+1) - 1}{r+1} \right\rfloor + 1 = k,$$

so

$$\chi(G_T^{k(r+1)}) = \omega(G_T^{k(r+1)}) = k.$$

Fig. 1. $T = \{0, 1, 2, 4, 5\}$ (T is an 3-initial set).

206

On the other hand, this also implies that n = k(r+1) + 1 is the minimum such that $\omega(G_T^n) = k + 1$. By Lemma 3.1, $\operatorname{sp}_T(K_m) = (m-1)(r+1)$. This finishes the proof. \Box

Corollary 3.5 [5]. If T is a k multiple of s set, then (*) holds and $sp_T(K_m) = sd(k+1) + q - 1$, m = ds + q, $d \ge 0$, $1 \le q \le s$.

Proof. In G_T , $[0, s-1] \cup \{ks+s\}$ is a clique. Furthermore, for any $d \ge 0$ and $0 \le q \le s$, $\omega(G_T^{ds(k+1)+q}) \ge sd + q$ (see Fig. 2 as an example). Hence, for (*), it will be enough to show that $\chi(G_T^{ds(k+1)}) = sd$ for all $d \ge 1$. We can color G_T by f:

$$f(i) = j + 1 + s \left\lfloor \frac{i}{s(k+1)} \right\rfloor, \text{ where } j \equiv i \pmod{s} \text{ and } 0 \le j < s.$$

We now show that f is a proper coloring. Because the colors f uses are increasing periodically, we only have to check the first period, i.e., for $i \in [0, s(k+1)-1]$. If $\{a, b\} \in E(G_T)$ and $a, b \in [0, s(k+1)-1]$, then $|a-b| \notin T$. Since $T \supseteq \{0, s, 2s, \ldots, ks\}$, this implies $f(a) \neq f(b)$. Also, we can get that n = ds(k+1) + q is the minimum such that $\omega(G_T^n) = sd + q$ for all $1 \le q \le s$ and $d \ge 0$. So by Lemma 3.1, we can get the minimum spans for complete graphs. This finishes the proof. \Box

For a k multiple of s set T, the maximum cliques in the family of T-graphs come out periodically. For example, when $T = \{0, 3, 4, 5, 6\}$ (Fig. 2),

Fig. 2. $T = \{0, 3, 4, 5, 6\}$ (T is a 2 multiple of 3 set).

 $\{0, 1, 2, 9, 10, 11, 18, 19, 20, ...\}$ is a maximum clique in G_T . In the above proof, we properly color the vertices in each period by the modularity, and use different colors for each period. Now we may extend T by union with another set S', where all numbers in S' are greater than or equal to s(k + 2), and S' does not contain any number of

$$[s(2k+1)+1, s(2k+3)-1] \cup [s(3k+2)+1, s(3k+4)-1] \cup [s(4k+3)+1, s(4k+5)-1] \cup \cdots$$

Since $\{0, s, 2s, \ldots, ks\} \subseteq T \cup S'$, this implies the modular coloring used in the above proof is still proper for $G_{T \cup S'}$. Without breaking the maximum clique, we let S' avoid those values to maintain that the maximum clique in G_T is also a maximum clique in $G_{T \cup S'}$. We call $T \cup S'$ an extended k multiple of s set. This implies the following.

Corollary 3.6. If T is an extended k multiple of s set, then T has the same result as a k multiple of s set as in Corollary 3.4.

Example. If $T = \{0, 3, 6, 12\}$, or $T = \{0, 3, 6, 12, 13, 14, 15\}$ then for all graphs G, $sp_T(G) = sp_T(K_{\chi(G)})$, and $sp_T(K_m)$ has the same value as in Corollary 3.4.

It would be nice to characterize all sets T for which (*) holds. While we cannot do this we now present other new families of T's with the same property as the above cases. We let N_p denote the infinite set of multiples of p, $\{p, 2p, 3p, \ldots\}$.

Theorem 3.7. Suppose $T = ([0, a+b] - \{a+1\}) \cup S$, where a = cp, $p \ge 2$, $b \ge 2$, $i(a+1) \notin N_p$ and $(a+b+1) + i(a+1) \notin N_p$ for all i = 0, 1, 2, ..., p-1, and S has the following properties:

- (1) All numbers in S are less than pa + p + b.
- (2) $N_p \cap [0, pa + p + b 1] \subseteq S$.

(3) $i(a+1) \notin S$, and $(a+b+1) + i(a+1) \notin S$ for all i = 0, 1, 2, ..., p-1. Then $sp_T(G) = sp_T(K_{\chi(G)})$ for all graphs G, and

$$sp_T(K_m) = k(pa + p + b) + (l - 1)(a + 1), \quad m = kp + l, \quad k \ge 0, \quad 1 \le l \le p.$$

Note that in this theorem, the set T is neither a k multiple of s set, nor an r-initial set since p(a + 1) is in T. Before we prove this theorem, let us look at the simpler special cases p = 2, and b = 2, 4 respectively.

Corollary 3.8. If $T = [0, a] \cup \{a + 2, a + 4, a + 6, ..., 2(a + 1)\} \cup R$, where a is an even integer and $R \subseteq \{a + 5, a + 7, ..., 2(a + 1) + 1\}$ then (*) holds, and

$$\operatorname{sp}_{T}(K_{m}) = \begin{cases} k(2a+4), & \text{if } m = 2k+1, \ k \ge 0; \\ (k-1)(2a+4) + a + 1, & \text{if } m = 2k, \ k \ge 1. \end{cases}$$

208

Fig. 3. $T = \{0, 1, 2, 3, 4, 6, 8, 9, 10\}.$

Proof. In G_T , for any $k \ge 0$, $\omega(G_T^{k(2a+4)+1}) \ge 2k+1$ and $\omega(G_T^{k(2a+4)+a+2}) \ge 2(k+1)$ (see Fig. 3 as an example). Hence, it is enough to show the following:

(i) $\chi(G_T^{k(2a+4)}) \le 2k, k \ge 1$ and

(ii) $\chi(G_T^{k(2a+4)+a+1}) \le 2k+1, k \ge 0.$

To show (i), since G_T^{2a+4} is isomorphic to the subgraph of G_T induced by the vertices [2a+4, 2(2a+4)-1], it will be enough to claim that $\chi(G_T^{2a+4}) \leq 2$. Color G_T^{2a+4} by:

$$f(i) = \begin{cases} 1, & i \text{ is even;} \\ 2, & i \text{ is odd.} \end{cases}$$

If $\{x, y\} \in E(G_T^{2a+4})$, then $x, y \le 2a+3$ and $|x-y| \notin T$. Since T contains all the even integers less than or equal to 2(k+1), |x-y| must be odd which implies $f(x) \ne f(y)$, i.e., f is a proper coloring. On the other hand, the vertex set [k(2a+4), k(2a+4)+a] is independent, so (ii) follows from (i). This also implies that n = k(2a+4) + 1 is the minimum such that $\omega(G_T^n) = 2k+1$, and n = k(2a+4) + a + 2 is the minimum such that $\omega(G_T^n) = 2(k+1)$. So by Lemma 3.1, we complete the proof. \Box

Corollary 3.9. If

 $T = ([0, a + 4] - \{a + 1\}) \cup \{a + 6, a + 8, \dots, 2(a + 1), 2(a + 1) + 2\} \cup R$ where a is even and $R \subseteq \{a + 7, a + 9, \dots, 2(a + 1) + 3\}$ then (*) holds, and

$$\operatorname{sp}_T(K_m) = \begin{cases} k(2a+6), & m = 2k+1, \ k \ge 0; \\ (k-1)(2a+6)+a+1, & m = 2k, \ k \ge 1. \end{cases}$$

Proof. Similar argument to the above corollary. \Box

Proof of Theorem 3.7. First notice that (p-1)(a+1) + a + b + 1 = pa + p + b. Since S has the properties (1) and (3), the set of vertices $\{0, a+1, 2(a+1), \dots, (p-1)(a+1), pa+p+b\}$ in G_T forms a clique. Hence, $\omega(G_T^{pa+p+b+1}) \ge p+1$. Moreover, we get

$$\omega(G_T^{k(pa+p+b)+q(a+1)+1}) \ge kp+q+1$$
, for all $k \ge 0$ and $0 \le q \le p-1$.

By Theorem 3.2, it is enough to show that $\chi(G_T^{k(pa+p+b)+q(a+1)+1}) \leq kp+q+1$ for $0 \leq q \leq p-1$ and $k \geq 0$. Any a+1 consecutive vertices in G_T form an independent set, and the subgraph of G_T induced by the vertices [k(pa+p+b), (k+1)(pa+p+b)-1] is isomorphic to G_T^{pa+p+b} for all $k \geq 1$. Therefore, it is sufficient to show that $\chi(G_T^{pa+p+b}) \leq p$. We define the coloring f on G_T^{pa+p+b} by the following:

$$f(i) = i - \left\lfloor \frac{i}{p} \right\rfloor p + 1.$$

If $\{i, j\} \in E(G_T^{pa+p+b})$, then $i, j \le pa + p + b - 1$. Since S contains all multiples of p, one has that $f(i) \ne f(j)$. The coloring f uses p colors. This shows that T has the property (*). It is easy to see that n = k(pa + p + b) + q(a + 1) is the minimum number such that $\omega(G_T^{n+1}) = kp + q + 1$, $k \ge 0$, $0 \le q \le p - 1$. By Lemma 3.1, we get the minimum span of K_m . \Box

Using the same method of extending a k multiple of s set, we can also extend the T's in the above three cases to get more families of T with the property (*). It's tedious, so we will not state them here.

A greedy algorithm to *T*-color a complete graph K_m is defined as: Order the vertices of K_m by $\{1, 2, 3, \ldots, m\}$. Suppose the vertices [1, i - 1] have been colored, then color the vertex *i* by the smallest integer that will not contradict the definition of a *T*-coloring, and keep going to the last vertex. If the *T*-coloring done by the greedy algorithm attains the minimum span of K_m , then we say that greedy works for K_m ([6]). Notice that for all *T*'s in this section, the greedy algorithm works for all complete graphs K_m . To end this section, we state the following conjecture.

Conjecture 3.10. If T has the property (*), then the greedy algorithm gets $sp_T(K_m)$ for all $m \ge 1$.

4. Graphs G with $\chi(G) = m$

The property (*) is very strong for T. That is, only a few of T's have that property but the most of T's do not. In this section, we consider the weaker

property where equality $sp_T(G) = sp_T(K_{\chi(G)})$ holds only for the graphs G with fixed chromatic number instead for all graphs G.

Theorem 4.1. The T-span $\operatorname{sp}_T(G) = \operatorname{sp}_T(K_m) = n-1$ for all graphs G with $\chi(G) = m$ iff $\omega(G_T^n) = \chi(G_T^n) = m$ and $\chi(G_T^{n-1}) < \chi(G_T^n)$.

Proof. (\Rightarrow) Since $\operatorname{sp}_T(G) = \operatorname{sp}_T(K_m) = n - 1$, by Lemma 3.1, *n* is the minimum such that $\omega(G_T^n) = m$. Now, suppose $m = \omega(G_T^n) < \chi(G_T^n)$, then there exists some $n_0 < n$ such that $\chi(G_T^{n_0}) = m$. Hence, $\operatorname{sp}_T(G_T^{n_0}) = \operatorname{sp}_T(K_m) = n - 1$. But $\operatorname{sp}_T(G_T^{n_0}) \le n_0 - 1 < n - 1$. This is a contradiction. Therefore, $\omega(G_T^n) = \chi(G_T^n) = m$. Next, if we suppose $\chi(G_T^{n-1}) = \chi(G_T^n) = m$, then $\operatorname{sp}_T(G_T^{n-1}) = \operatorname{sp}_T(K_m) = n - 1$. But this contradicts $\operatorname{sp}_T(G_T^{n-1}) \le n - 2$.

(⇐) Since $\omega(G_T^{n-1}) \leq \chi(G_T^{n-1}) < \chi(G_T^n) = \omega(G_T^n) = m$, so *n* is the minimum number such that $\omega(G_T^n) = m$. By Lemma 3.1, $\operatorname{sp}_T(K_m) = n - 1$. Suppose there is a graph *G* with $\chi(G) = m$ but $\operatorname{sp}_T(G) \leq \operatorname{sp}_T(K_m) = n - 1$, i.e., $\operatorname{sp}_T(G) \leq n - 2$. By Property (i), $G \to G_T^{n-1}$, then $m = \chi(G) \leq (G_T^{n-1}) < m$. This is a contradiction. \Box

From Theorem 4.1, if we want to check the truth of

$$\operatorname{sp}_T(G) = \operatorname{sp}_T(K_m)$$
 for all graphs G with $\chi(G) = m$, (**)

we first find out the smallest integer *n* such that $\omega(G_T^n) = m$. By Lemma 3.1, $\operatorname{sp}_T(K_m) = n - 1$. Secondly, we check the graph G_T^n . If both $\omega(G_T^n) = \chi(G_T^n)$ and $\chi(G_T^{n-1}) < \chi(G_T^n)$ are true, then we can get (**). Otherwise, we are able to find a counterexample by looking at G_T^n .

Example. If $T = \{0, 2, 3, 5\}$, then for any graphs G with $\chi(G) = 4$, $sp_T(G) = sp_T(K_4) = 8$.

D.D.-F. Liu

Proof. From the graph G_T^9 (Fig. 4) and by Lemma 3.1, we can get $\operatorname{sp}_T(K_3) = 7$ and $\operatorname{sp}_T(K_4) = 8$. The circled number at each vertex is a proper coloring. Since $\omega(G_T^9) = 4$ and $\omega(G_T^8) = 3$, hence $\chi(G_T^9) = 4$ and $\chi(G_T^8) = 3$. Therefore by Theorem 4.1, we get $\operatorname{sp}_T(G) = \operatorname{sp}_T(K_4) = 8$ for all graphs G with $\chi(G) = 4$. \Box

For the above case, $\chi(G_T^8) = \omega(G_T^8) = 3$ but $\chi(G_T^7) = 3$. By Theorem 4.1, there exists some graph G with $\chi(G) = 3$ but $\operatorname{sp}_T(G) < \operatorname{sp}_T(K_{\chi(G)})$. For example, the 5-cycle is such a graph (Actually, G_T^5 is a 5-cycle!). Since $\{0, 1, 2, 3, 4\}$ is a T-coloring of C_5 , $\operatorname{sp}_T(C_5) \leq 4$, but $\operatorname{sp}_T(K_3) = 7$.

Acknowledgement

I am grateful to Dr. Jerry Griggs and Dr. Ko-Wei Lih for their helpful support and discussion to this topic. Special thanks to Jerry for editorial supervision of this paper.

References

- [1] W.K. Hale, Frequency Assignment: Theory and Applications, Proc. IEEE 68 (1980) 1497-1514.
- [2] M.B. Cozzens and F.S. Roberts, T-colorings of graphs and the channel assignment problem, Congr. Numer 35 (1982) 191-208.
- [3] Z. Füredi, J. Griggs and D. Kleitman, Pair labelings with given distance, SIAM J. Discrete Math. 2 (1989) 491-499.
- [4] A. Raychaudhuri, Intersection assignment, T-coloring, and powers of graphs, Ph.D. Dissertation, Department of Mathematics, Rutgers University, New Brunswick, NJ, 1985.
- [5] A. Raychaudhuri, Further results on T-coloring and frequency assignment problems, 1990, preprint.
- [6] F.S. Roberts, From Garbage to Rainbows: Generalizations of Graph coloring and their Applications (1988).
- [7] M.O. Albertson, Generalized Colorings (Academic Press, New York, 1987) 35-49.
- [8] A.M.H., Gerards, Homomorphisms of graphs to odd cycles, J. Graph Theory 12 (1988) 73-83.
- [9] B.A. Tesman, T-colorings, list T-colorings and set T-colorings of graphs, Ph.D. Dissertation, Department of Mathematics, Rutgers University, New Brunswick, NJ, 1989.