Discrete Mathematics 101 (1992) 203-212 North-Holland

T-colorings of graphs

Daphne Der-Fen Liu

Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

Received 27 December 1990

Abstract

Liu, D. D.-F., T-colorings of graphs, Discrete Mathematics 101 (1992) 203-212.

Given a finite set T of positive integers containing $\{0\}$, a T-coloring of a simple graph G is a **nonnegative integer function f defined on the vertex set of G, such that if** $\{u, v\} \in E(G)$ **then** $|f(u) - f(v)| \notin T$. The T-span of a T-coloring is defined as the difference of the largest and smallest colors used; the T-span of G, $sp_T(G)$, is the minimum span over all T-colorings of G. It is known that the T-span of G satisfies $sp_T(K_{\omega(G)}) \le sp_T(G) \le sp_T(K_{\chi(G)})$. When T is an **r-initial set (Cozzens and Roberts, 1982), or a k multiple of s set (A. Raychaudhuri, 1985),** then $\text{sp}_T(G) = \text{sp}_T(K_{\chi(G)})$ for all graphs G. Using graph homomorphisms and a special family of graphs, we characterize those T's with equality $sp_T(G) = sp_T(K_{\chi(G)})$ for all graphs G. We **discover new T's with the same result. Furthermore, we get a necessary and sufficient condition** of equality $sp_T(G) = sp_T(K_m)$ for all graphs G with $\chi(G) = m$.

1. Introduction

Given a finite set T of positive integers containing $\{0\}$, a T-coloring of a simple graph G is a nonnegative integer function *f* defined on the vertex set of G, such that if $\{u, v\} \in E(G)$ then $|f(u) - f(v)| \notin T$. *T*-colorings of graphs arose from the channel assignment problem. Hale [l] formulated it in graph theory language. *T* is the interference set. That is, if we want to assign channels to a pair of adjacent cities or radio stations, then the difference of those two channels used has to avoid the set *T*. For example, $T = \{0, 7, 14, 15\}$ is the interference set for UHF-television stations. If the set T is $\{0\}$ then T-coloring is the same as proper coloring. The T-span of a T-coloring f, denoted by $sp_T(f)$, is defined as the difference of the maximum and minimum channels used; and the T-span of a graph G, denoted by $\text{sp}_T(G)$, is the minimum span over all T-colorings of G. It is known that $sp_T(K_{\omega(G)}) \le sp_T(G) \le sp_T(K_{\chi(G)})$ for any T-set T and any graph G, where $\omega(G)$ is the maximum clique size of G (Cozzens and Roberts [2]). When T is an *r*-initial set, i.e., $T = \{0, 1, 2, \ldots, r\} \cup S$, where S contains no multiple of $r+1$ (Cozzens and Roberts [2]); and when *T* is a *k* multiple of *s* set, i.e., $T = \{0, s, 2s, ..., ks\} \cup S$, where $S \subseteq \{s+1, s+2, ..., ks-1\}$ (Raychaudhuri

0012-365X/92/\$05 .OO @ 1992 - Elsevier Science Publishers B .V. All rights reserved

[41), then

$$
\text{sp}_T(G) = \text{sp}_T(K_{\chi(G)}) \quad \text{for all graphs } G. \tag{*}
$$

In this paper, we first introduce a special family of graphs, called T -graphs. A graph G is weakly perfect if $\chi(G) = \omega(G)$. Using graph homomorphisms and the weak perfectness of the T-graphs, we get a necessary and sufficient condition in Section 3 to characterize the sets *T.* This leads to short proof that (*) holds for the two families above, and new families with this property are presented. In Section 4, we characterize the equality

$$
\text{sp}_T(G) = \text{sp}_T(K_m) \quad \text{for all graphs } G \text{ with } \chi(G) = m.
$$

2. **T-gmphs and graph homomorphisms**

For a given set *T*, the *T*-graph, denoted by G_T , is defined by the following:

$$
V(G_T) = \mathbb{Z}^+ \cup \{0\} \quad \text{and} \quad \{x, y\} \in E(G_T) \text{ iff } |x - y| \notin T.
$$

The T-graph of order *n* is the subgraph of G_T induced by the vertices $\{0, 1, 2, \ldots, n-1\}$ of G_T , and is denoted by G_T^n . Since the ordering of the vertices of G_T^n is a T-coloring itself, one has $sp_T(G_T^n) \le n - 1$ for any n. Given two graphs G and H , a graph homomorphism from G to H is a function $f: V(G) \to V(H)$ such that if $\{u, v\} \in E(G)$ then $\{f(u), f(v)\} \in E(H)$. We say that G is homomorphic to H , if there is a graph homomorphism from G to H , denoted by $G \rightarrow H$. If $G \rightarrow H$ then $\chi(G) \leq \chi(H)$; if $\chi(G) \leq m$ then $G \rightarrow K_m$; and if $K_m \to G$ then $\omega(G) \geq m$. For related work on graph homomorphisms, see [7-8]. From the definitions, we can get the following properties.

Properties. (i) if $G \to H$ then $sp_T(G) \le sp_T(H)$.

- (ii) $\text{sp}_T(G) \leq n 1$ *iff* $G \rightarrow G^n$.
- (iii) If n is the minimum number such that $\chi(G_T^n) \geq \chi(G)$, then $sp_T(G) \geq n 1$.
- (iv) If $\text{sp}_T(G)$ < n then $\chi(G) \leq \chi(G_T^n)$.
- (v) If $\chi(G) \leq \omega(G_T^n)$ then $sp_T(G) \leq n-1$.

Proof. (i) If f is a homomorphism from G to H, and g is a T-coloring of H, then the composition function $g \circ f$ is a T-coloring of G. Hence $sp_T(G) \le sp_T(H)$.

(ii) (\Leftarrow) From Property (i), and $sp_T(G_T^n) \leq n - 1$.

 (\Rightarrow) Suppose f is a T-coloring of G attaining $sp_T(f) = sp_T(G) \le n - 1$. Without loss of generality, we can assume the colors that f uses are in the set $\{0, 1, \ldots, n-1\}$. If $\{u, v\} \in E(G)$, then $|f(u) - f(v)| \notin T$, i.e. $\{f(u), f(v)\} \in E(G)$ $E(G_T^n)$. Hence f is also a homomorphism from G to G_T^n .

(iii) If *n* is the minimum number with $\chi(G_T^n) \geq \chi(G)$ but $sp_T(G) \leq n-1$, by (ii) $G \rightarrow G_T^{n-1}$, which implies $\chi(G) \leq \chi(G_T^{n-1})$. This contradicts the minimality of n.

(iv) If
$$
\text{sp}_T(G) < n
$$
, by (ii) $G \to G^n_T$, so $\chi(G) \leq G^n_T$.
\n(v) If $\omega(G^n_T) \geq \chi(G)$ then
\n $G \to K_{\omega(G^n_T)} \to G^n_T$,

so $G \rightarrow G_{T}^{n}$, which implies $sp_{T}(G) \leq n-1$. \Box

3. **Main theorem**

The following Lemma 3.1 describes the relation between the minimum span of a complete graph K_m and the clique size of the T-graph of size n. Then we present the main theorem.

Lemma 3.1. *The number n is the minimum such that* $\omega(G_T^{\pi}) = m$ *iff* $sp_T(K_m) =$ $n-1$.

Proof. (\Rightarrow) Suppose *n* is the minimum such that $\omega(G_T^n) = m$. Therefore $K_m \rightarrow$ G_{τ}^{n} so $\text{sp}_{\tau}(K_{m}) \leq n - 1$. Now if $\text{sp}_{\tau}(K_{m}) \leq n - 1$, by Property (ii), we get $K_m \rightarrow G_T^{n-1}$, so $\omega(G_T^{n-1}) \geq m$. This contradicts the minimality of *n*.

(\Leftarrow) If $sp_T(K_m) = n - 1$, then $K_m \to G^n$. Therefore $\omega(G^n) \ge m$. If $\omega(G^{n-1}) =$ *m*, then by Property (v), we get $sp_T(K_m) \le n - 2$, which contradicts $sp_T(K_m)$ = $n-1$. Hence *n* is the minimum with $\omega(G_T^n) = m$. \Box

Theorem 3.2. *Given T, the following are equivalent:*

(i) $sp_T(G) = sp_T(K_{\gamma(G)})$ *for all graphs G,*

(ii) $\text{sp}_T(G^n_T) = \text{sp}_T(K_{\chi(G^n_T)})$ *for all n,*

(iii) G_T^n is weakly perfect for all n,

(iv) G^r *is weakly perfect for all n with some graph H such that* $\text{sp}_T(H) = n - 1$.

Proof. (i) \Rightarrow (ii), (iii) \Rightarrow (iv) are trivial.

(ii) \Rightarrow (iii): It's enough to show that, for any n, sp_T(G_T^n) = sp_T($K_{\chi(G_T^n)}$) implies $\omega(G_T^n) = \chi(G_T^n)$. Suppose $\text{sp}_T(G_T^n) = \text{sp}_T(K_{\chi(G_T^n)}) = n_0 = 1$, since $\text{sp}_T(G_T^n) \le n - 1$, so $n_0 \le n$. Also by Lemma 3.1, n_0 is the minimum such that $\omega(G_T^{n_0}) = \chi(G_T^n)$. Therefore $\omega(G_T^n) \geq \omega(G_T^{n_0}) = \chi(G_T^n)$, so we get $\omega(G_T^n) = \chi(G_T^n)$.

(iv) \Rightarrow (i): Let $sp_T(G) = n_0 - 1$ and $sp_T(K_{\chi(G)}) = n - 1$, and suppose $n_0 < n$. Then $G \rightarrow G_T^{n_0}$, $\chi(G_T^n) = \omega(G_T^n)$, and $\chi(G_T^{n_0}) = \omega(G_T^{n_0})$. By Lemma 3.1, *n* is the minimum with $\omega(G_T^n) = \chi(G)$. Therefore, $\chi(G_T^{n_0}) = \omega(G_T^{n_0}) < \omega(G_T^n) = \chi(G)$. This contradicts $G \rightarrow G_T^{n_0}$. Hence $n_0 = n$. \Box

If G is weakly perfect then $sp_T(G) = sp_T(K_{\chi(G)}) = sp_T(K_{\omega(G)})$ for any T, but the reverse is not always true. From the claim of (ii) \Rightarrow (iii) above, we obtain the following corollary for T -graphs.

Corollary 3.3. For any T and any n, $sp_T(G_T^n) = sp_T(K_{\chi(G_T^n)})$ iff G_T^n is weakly *perfect.*

Next we discuss the two known families of *T* those satisfy (*).

Corollary 3.4 [2, 9]. If *T* is an *r*-initial set, then (*) holds and $sp_T(K_m) =$ $(r + 1)(m - 1)$.

Proof. By Theorem 3.1, to get $(*)$, it is enough to show that $G_Tⁿ$ is weakly perfect for all *n*. In G_T , for any $k \ge 0$ the set of vertices $\{0, r+1, 2(r+1), \ldots, k(r+1)\}\$ forms a clique, so $\omega(G_T^{k(r+1)+1}) \geq k+1$ for any $k \geq 0$ (See Fig. 1 as an example). Therefore it's sufficient to show that $\chi(G_T^{(r+1)}) \leq k$. Let f be the coloring defined by

$$
f(i) = \left\lfloor \frac{i}{r+1} \right\rfloor + 1.
$$

If $\{a, b\} \in G_T^{k(r+1)}$ then $|a - b| \notin T$, i.e. $|a - b| \ge r + 1$, so

$$
\left\lfloor \frac{a}{r+1} \right\rfloor \neq \left\lfloor \frac{b}{r+1} \right\rfloor.
$$

Hence $f(a) \neq f(b)$, f is a proper coloring and

$$
|\text{Range}(f)| = \left\lfloor \frac{k(r+1)-1}{r+1} \right\rfloor + 1 = k,
$$

so

$$
\chi(G_T^{k(r+1)}) = \omega(G_T^{k(r+1)}) = k.
$$

Fig. 1. T = **{0, 1, 2,** *4, 5) (T* **is an 3-initial set).**

On the other hand, this also implies that $n = k(r + 1) + 1$ is the minimum such that $\omega(G_T^n) = k + 1$. By Lemma 3.1, $sp_T(K_m) = (m - 1)(r + 1)$. This finishes the proof. \square

Corollary 3.5 [5]. Zf *T is a k multiple of s set, then (*) holds and* $\text{sp}_T(K_m) = sd(k+1)+q-1, \quad m=ds+q, \quad d\geq 0, \quad 1\leq q\leq s.$

Proof. In G_T , $[0, s-1] \cup \{ks+s\}$ is a clique. Furthermore, for any $d \ge 0$ and $0 \leq q \leq s$, $\omega(G_T^{ds(k+1)+q}) \geq sd + q$ (see Fig. 2 as an example). Hence, for (*), it will be enough to show that $\chi(G_T^{ds(k+1)}) = sd$ for all $d \ge 1$. We can color G_T by f:

$$
f(i) = j + 1 + s \left[\frac{i}{s(k+1)} \right]
$$
, where $j \equiv i \pmod{s}$ and $0 \le j < s$.

We now show that f is a proper coloring. Because the colors f uses are increasing periodically, we only have to check the first period, i.e., for $i \in [0, s(k + 1) - 1]$. If $\{a, b\} \in E(G_T)$ and $a, b \in [0, s(k + 1) - 1]$, then $|a - b| \notin$ *T.* Since $T \supseteq \{0, s, 2s, \ldots, ks\}$, this implies $f(a) \neq f(b)$. Also, we can get that $n = ds(k + 1) + q$ is the minimum such that $\omega(G_Tⁿ) = sd + q$ for all $1 \le q \le s$ and $d \ge 0$. So by Lemma 3.1, we can get the minimum spans for complete graphs. This finishes the proof. \Box

For a k multiple of s set T , the maximum cliques in the family of T -graphs come out periodically. For example, when $T = \{0, 3, 4, 5, 6\}$ (Fig. 2),

Fig. 2. *T = (0, 3, 4, 5, 6) (T* **is a 2 multiple of 3 set).**

 $\{0, 1, 2, 9, 10, 11, 18, 19, 20, \ldots\}$ is a maximum clique in G_T . In the above proof, we properly color the vertices in each period by the modularity, and use different colors for each period. Now we may extend *T* by union with another set S', where all numbers in S' are greater than or equal to $s(k + 2)$, and S' does not contain any number of

$$
[s(2k + 1) + 1, s(2k + 3) - 1] \cup [s(3k + 2) + 1, s(3k + 4) - 1]
$$

$$
\cup [s(4k + 3) + 1, s(4k + 5) - 1] \cup \cdots
$$

Since $\{0, s, 2s, \ldots, ks\} \subseteq T \cup S'$, this implies the modular coloring used in the above proof is still proper for $G_{T\cup S}$. Without breaking the maximum clique, we let S' avoid those values to maintain that the maximum clique in G_T is also a maximum clique in $G_{T\cup S}$. We call $T\cup S'$ an extended k multiple of s set. This implies the following.

Corollary 3.6. *If T is an extended k multiple of s set, then T has the same result as a k multiple of s set as in Corollary 3.4.*

Example. If $T = \{0, 3, 6, 12\}$, or $T = \{0, 3, 6, 12, 13, 14, 15\}$ then for all graphs $G, sp_T(G) = sp_T(K_{\chi(G)})$, and $sp_T(K_m)$ has the same value as in Corollary 3.4.

It would be nice to characterize all sets *T* for which (*) holds. While we cannot do this we now present other new families of *T's* with the same property as the above cases. We let N_p denote the infinite set of multiples of p, $\{p, 2p, 3p, \ldots\}$.

Theorem 3.7. *Suppose* $T = ([0, a + b] - \{a + 1\}) \cup S$, *where* $a = cp$, $p \ge 2$, $b \ge 2$, $i(a + 1) \notin N_p$ *and* $(a + b + 1) + i(a + 1) \notin N_p$ *for all* $i = 0, 1, 2, ..., p - 1$ *, and S has the following properties* :

- (1) All numbers in S are less than $pa + p + b$.
- (2) $N_p \cap [0, pa + p + b 1] \subseteq S$.

(3) $i(a + 1) \notin S$, and $(a + b + 1) + i(a + 1) \notin S$ for all $i = 0, 1, 2, ..., p - 1$. *Then* $sp_T(G) = sp_T(K_{\chi(G)})$ *for all graphs G, and*

$$
sp_T(K_m) = k(pa + p + b) + (l - 1)(a + 1), \quad m = kp + l, \quad k \ge 0, \quad 1 \le l \le p.
$$

Note that in this theorem, the set *T* is neither a *k* multiple of s set, nor an *r*-initial set since $p(a + 1)$ is in *T*. Before we prove this theorem, let us look at the simpler special cases $p = 2$, and $b = 2$, 4 respectively.

Corollary 3.8. If $T = [0, a] \cup \{a+2, a+4, a+6, \ldots, 2(a+1)\} \cup R$, where a is *an even integer and* $R \subseteq \{a + 5, a + 7, \ldots, 2(a + 1) + 1\}$ *then* (*) *holds, and*

$$
\mathrm{sp}_T(K_m) = \begin{cases} k(2a+4), & \text{if } m = 2k+1, \ k \geq 0; \\ (k-1)(2a+4)+a+1, & \text{if } m = 2k, \ k \geq 1. \end{cases}
$$

Fig. 3. *T = (0,* 1, 2, 3, 4, 6, 8, 9, lo}.

Proof. In G_T , for any $k \ge 0$, $\omega(G_T^{k(2a+4)+1}) \ge 2k+1$ and $\omega(G_T^{k(2a+4)+a+2}) \ge 0$ $2(k + 1)$ (see Fig. 3 as an example). Hence, it is enough to show the following:

(i) $\chi(G_T^{k(2a+4)}) \leq 2k, k \geq 1$ and

(ii) $\chi(G_T^{k(2a+4)+a+1}) \leq 2k+1, k \geq 0.$

To show (i), since G_T^{2a+4} is isomorphic to the subgraph of G_T induced by the vertices $[2a+4, 2(2a+4)-1]$, it will be enough to claim that $\chi(G_T^{2a+4}) \le 2$. Color G_T^{2a+4} by:

$$
f(i) = \begin{cases} 1, & i \text{ is even;} \\ 2, & i \text{ is odd.} \end{cases}
$$

If $\{x, y\} \in E(G_T^{2a+4})$, then x, $y \le 2a+3$ and $|x-y| \notin T$. Since *T* contains all the even integers less than or equal to $2(k + 1)$, $|x - y|$ must be odd which implies $f(x) \neq f(y)$, i.e., f is a proper coloring. On the other hand, the vertex set $[k(2a + 4), k(2a + 4) + a]$ is independent, so (ii) follows from (i). This also implies that $n = k(2a + 4) + 1$ is the minimum such that $\omega(G_Tⁿ) = 2k + 1$, and $n = k(2a + 4) + a + 2$ is the minimum such that $\omega(G_T^n) = 2(k + 1)$. So by Lemma 3.1, we complete the proof. \Box

Corollary 3.9. *Zf*

 $T = (\{0, a + 4\} - \{a + 1\}) \cup \{a + 6, a + 8, \ldots, 2(a + 1), 2(a + 1) + 2\} \cup R$

where a is even and R \subseteq {a + 7, a + 9, . . . , 2(a + 1) + 3} then (*) holds, and

$$
\text{sp}_T(K_m) = \begin{cases} k(2a+6), & m = 2k+1, k \ge 0; \\ (k-1)(2a+6)+a+1, & m = 2k, k \ge 1. \end{cases}
$$

210 *D. D.-F. Liu*

Proof. Similar argument to the above corollary. \Box

Proof of Theorem 3.7. First notice that $(p - 1)(a + 1) + a + b + 1 = pa + p + b$. Since S has the properties (1) and (3), the set of vertices $\{0, a+1, 2(a+1),\}$..., $(p-1)(a+1)$, $pa+p+b$ } in G_T forms a clique. Hence, $\omega(G_T^{pa+p+b+1}) \geq$ *p +* 1. Moreover, we get

$$
\omega(G_T^{k(pa+p+b)+q(a+1)+1}) \geq k p + q + 1, \text{ for all } k \geq 0 \text{ and } 0 \leq q \leq p - 1.
$$

By Theorem 3.2, it is enough to show that $\chi(G_T^{k(pa+p+b)+q(a+1)+1}) \leq k p + q + 1$ for $0 \le q \le p - 1$ and $k \ge 0$. Any $a + 1$ consecutive vertices in G_T form an independent set, and the subgraph of G_T induced by the vertices $[k(pa + p + b)]$, $(k + 1)(pa + p + b) - 1$ is isomorphic to G_T^{pa+p+b} for all $k \ge 1$. Therefore, it is sufficient to show that $\chi(G_T^{pa+p+b}) \leq p$. We define the coloring f on G_T^{pa+p+b} by the following:

$$
f(i) = i - \left\lfloor \frac{i}{p} \right\rfloor p + 1.
$$

If $\{i, j\} \in E(G_T^{pa+p+b})$, then $i, j \leq pa + p + b - 1$. Since S contains all multiples of *p*, one has that $f(i) \neq f(j)$. The coloring *f* uses *p* colors. This shows that *T* has the property (*). It is easy to see that $n = k(pa + p + b) + q(a + 1)$ is the minimum number such that $\omega(G_T^{n+1}) = kp + q + 1$, $k \ge 0$, $0 \le q \le p - 1$. By Lemma 3.1, we get the minimum span of K_m . \Box

Using the same method of extending a *k* multiple of s set, we can also extend the T 's in the above three cases to get more families of T with the property $(*)$. It's tedious, so we will not state them here.

A greedy algorithm to T-color a complete graph K_m is defined as: Order the vertices of K_m by $\{1, 2, 3, \ldots, m\}$. Suppose the vertices $[1, i - 1]$ have been colored, then color the vertex *i* by the smallest integer that will not contradict the definition of a T -coloring, and keep going to the last vertex. If the T -coloring done by the greedy algorithm attains the minimum span of K_m , then we say that greedy works for K_m ([6]). Notice that for all *T*'s in this section, the greedy algorithm works for all complete graphs K_m . To end this section, we state the following conjecture.

Conjecture 3.10. If *T* has the property (*), then the greedy algorithm gets $\text{sp}_T(K_m)$ for all $m \ge 1$.

4. Graphs G with $\chi(G) = m$

The property (*) is very strong for *T.* That is, only a few of *T's* have that property but the most of *T's* do not. In this section, we consider the weaker

property where equality $sp_T(G) = sp_T(K_{Y(G)})$ holds only for the graphs G with fixed chromatic number instead for all graphs G.

Theorem 4.1. *The T-span* $sp_T(G) = sp_T(K_m) = n - 1$ *for all graphs G with* $\chi(G) = m$ iff $\omega(G_T^n) = \chi(G_T^n) = m$ and $\chi(G_T^{n-1}) < \chi(G_T^n)$.

Proof. (\Rightarrow) Since $sp_T(G) = sp_T(K_m) = n - 1$, by Lemma 3.1, *n* is the minimum such that $\omega(G_T^n) = m$. Now, suppose $m = \omega(G_T^n) < \chi(G_T^n)$, then there exists some $n_0 < n$ such that $\chi(G_T^{n_0}) = m$. Hence, $\text{sp}_T(G_T^{n_0}) = \text{sp}_T(K_m) = n - 1$. But $\text{sp}_T(G_T^{n_0}) \leq$ $n_0-1 < n-1$. This is a contradiction. Therefore, $\omega(G_T^n) = \chi(G_T^n) = m$. Next, if we suppose $\chi(G_T^{n-1}) = \chi(G_T^n) = m$, then $\text{sp}_T(G_T^{n-1}) = \text{sp}_T(K_m) = n - 1$. But this contradicts $\text{sp}_T(G_T^{n-1}) \leq n - 2$.

(\Leftarrow) Since $\omega(G_T^{n-1}) \leq \chi(G_T^{n-1}) \leq \chi(G_T^{n}) = \omega(G_T^{n}) = m$, so *n* is the minimum number such that $\omega(G_T^n) = m$. By Lemma 3.1, $\text{sp}_T(K_m) = n - 1$. Suppose there is a graph G with $\chi(G) = m$ but $sp_T(G) \le sp_T(K_m) = n - 1$, i.e., $sp_T(G) \le n - 2$. By Property (i), $G \rightarrow G_T^{n-1}$, then $m = \chi(G) \leq (G_T^{n-1}) < m$. This is a contradiction. \Box

From Theorem 4.1, if we want to check the truth of

$$
sp_T(G) = sp_T(K_m) \quad \text{for all graphs } G \text{ with } \chi(G) = m,
$$

we first find out the smallest integer *n* such that $\omega(G_T^n) = m$. By Lemma 3.1, $\text{sp}_T(K_m) = n - 1$. Secondly, we check the graph G^n_T . If both $\omega(G^n_T) = \chi(G^n_T)$ and $\chi(G_T^{n-1}) < \chi(G_T^n)$ are true, then we can get (**). Otherwise, we are able to find a counterexample by looking at G^{\prime} .

Example. *If* $T = \{0, 2, 3, 5\}$, *then for any graphs G with* $\chi(G) = 4$, $\text{sp}_T(G) =$ $sp_T(K_4) = 8.$

²¹²*D. D.-F. Liu* .

Proof. From the graph G_T^9 (Fig. 4) and by Lemma 3.1, we can get $sp_T(K_3) = 7$ and $sp_T(K_4) = 8$. The circled number at each vertex is a proper coloring. Since $\omega(G_T^9) = 4$ and $\omega(G_T^8) = 3$, hence $\chi(G_T^9) = 4$ and $\chi(G_T^8) = 3$. Therefore by **Theorem 4.1, we get** $sp_T(G) = sp_T(K_4) = 8$ **for all graphs G with** $\chi(G) = 4$ **.** \Box

For the above case, $\chi(G_T^8) = \omega(G_T^8) = 3$ but $\chi(G_T^7) = 3$. By Theorem 4.1, there exists some graph G with $\chi(G) = 3$ but $sp_T(G) \le sp_T(K_{\chi(G)})$. For example, the 5-cycle is such a graph (Actually, G_T^5 is a 5-cycle!). Since $\{0, 1, 2, 3, 4\}$ is a **T**-coloring of C_5 , $sp_T(C_5) \leq 4$, but $sp_T(K_3) = 7$.

Acknowledgement

I am grateful to Dr. Jerry Griggs and Dr. Ko-Wei Lih for their helpful support and discussion to this topic. Special thanks to Jerry for editorial supervision of this paper.

References

- [l] W.K. Hale, Frequency Assignment: Theory and Applications, Proc. IEEE 68 (1980) 1497-1514.
- [2] M.B. Cozzens and F.S. Roberts, T-colorings of graphs and the channel assignment problem, Congr. Numer 35 (1982) 191-208.
- [3] Z. Füredi, J. Griggs and D. Kleitman, Pair labelings with given distance, SIAM J. Discrete Math. 2 (1989) 491-499.
- [4] A. Raychaudhuri, Intersection assignment, T-coloring, and powers of graphs, Ph.D. Dissertation, Department of Mathematics, Rutgers University, New Brunswick, NJ, 1985.
- [S] A. Raychaudhuri, Further results on T-coloring and frequency assignment problems, 1990, preprint.
- [6] F.S. Roberts, From Garbage to Rainbows: Generalizations of Graph coloring and their Applications (1988).
- [7] M.O. Albertson, Generalized Colorings (Academic Press, New York, 1987) 35-49.
- [8] A.M.H., Gerards, Homomorphisms of graphs to odd cycles, J. Graph Theory 12 (1988) 73-83.
- [9] B.A. Tesman, T-colorings, list T-colorings and set T-colorings of graphs, Ph.D. Dissertation, Department of Mathematics, Rutgers University, New Brunswick, NJ, 1989.