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Abstract 

Liu, D. D.-F., T-colorings of graphs, Discrete Mathematics 101 (1992) 203-212. 

Given a finite set T of positive integers containing {0}, a T-coloring of a simple graph G is a 

nonnegative integer function f defined on the vertex set of G, such that if (u, v} E E(G) then 
Lf(u) -f (u)l $ T. The T-span of a T-coloring is defined as the difference of the largest and 
smallest colors used; the T-span of G, se,(G), is the minimum span over all T-colorings of G. 

It is known that the T-span of G satisfies spr(&(o) ) s se,(G) 6 spr(K,(,)). When T is an 
r-initial set (Cozzens and Roberts, 1982), or a k multiple of s set (A. Raychaudhuri, 1985), 
then se,(G) = spr(Kx(& for all graphs G. Using graph homomorphisms and a special family 
of graphs, we characterize those T’s with equality spr(G) = spr(K,(,J for all graphs G. We 
discover new T’s with the same result. Furthermore, we get a necessary and sufficient condition 

of equality se,(G) = se,(&) for all graphs G with x(G) = m. 

1. Introduction 

Given a finite set T of positive integers containing {0}, a T-coloring of a simple 

graph G is a nonnegative integer function f defined on the vertex set of G, such 

that if {u, V} E E(G) then If(u) - f(v)1 $ T. T-colorings of graphs arose from the 

channel assignment problem. Hale [l] formulated it in graph theory language. T 

is the interference set. That is, if we want to assign channels to a pair of adjacent 

cities or radio stations, then the difference of those two channels used has to 

avoid the set T. For example, T = (0, 7, 14, 15) is the interference set for 

UHF-television stations. If the set T is {0} then T-coloring is the same as proper 

coloring. The T-span of a T-coloring f, denoted by sp&f), is defined as the 

difference of the maximum and minimum channels used; and the T-span of a 

graph G, denoted by sp,(G), is the minimum span over all T-colorings of G. It is 

known that s~~(K,(~, ) G spT(G) 6 spT(KXcG,) for any T-set T and any graph G, 

where o(G) is the maximum clique size of G (Cozzens and Roberts [2]). When T 

is an r-initial set, i.e., T = (0, 1, 2, . . . , r} U S, where S contains no multiple of 

r + 1 (Cozzens and Roberts [2]); and when T is a k multiple of s set, i.e., 

T={O,s,b ,..., ks}US, where S~{S+~,S+~,...,~S--1) (Raychaudhuri 

0012-365X/92/$05 .OO @ 1992 - Elsevier Science Publishers B .V. All rights reserved 



204 D. D.-F. Liu 

[41), then 

spT(G) = spT(KxCo-,) for all graphs G. (*) 

In this paper, we first introduce a special family of graphs, called T-graphs. A 
graph G is weakly perfect if x(G) = o(G). Using graph homomorphisms and the 
weak perfectness of the T-graphs, we get a necessary and sufficient condition in 
Section 3 to characterize the sets T. This leads to short proof that (*) holds for 
the two families above, and new families with this property are presented. In 
Section 4, we characterize the equality 

spT(G) = spr(K,) for all graphs G with x(G) = m. 

2. T-gmphs and graph homomorphisms 

For a given set T, the T-graph, denoted by GT, is defined by the following: 

V(G,) = Z+ U (0) and {x, y } E E(G,) iff Ix - y I$ T. 

The T-graph of order n is the subgraph of GT induced by the vertices 
(0, 1,2, . . . , II - 1} of GT, and is denoted by GF. Since the ordering of the 
vertices of GT is a T-coloring itself, one has sp=(G$) c n - 1 for any n. Given 
two graphs G and H, a graph homomorphism from G to H is a function 
f : V(G)+ V(H) such that if {u, v} E E(G) then {f(u), f(v)} E E(H). We say 
that G is homomorphic to ZZ, if there is a graph homomorphism from G to H, 
denoted by G-, H. If G+ H then x(G) c x(H); if 2(G) s m then G+ K,,,; and 
if K,,,+ G then w(G) 2 m. For related work on graph homomorphisms, see 
[7-81. From the definitions, we can get the following properties. 

Properties. (i) if G + H then sp,(G) c sp&H). 
(ii) spT(G) 6 n - 1 iff G + G+. 

(iii) Zfn is the minimum number such that x(G+) 2 x(G), then sp,(G) 3 n - 1. 

(iv) Zf spT(G) <II then x(G) s x(GnT). 
(v) Zfx(G) 6 o(G?) then spT(G) s n - 1. 

Proof. (i) If f is a homomorphism from G to H, and g is a T-coloring of H, then 
the composition function g of is a T-coloring of G. Hence spr-(G) s spT(H). 

(ii) (c$) From Property (i), and sp=(GT) <n - 1. 
(3) Suppose f is a T-coloring of G attaining sp&f) = sp,(G) s n - 1. Without 

loss of generality, we can assume the colors that f uses are in the set 
(0, 1, . . . , n - I>. If {u, u> e E(G), then If(u) -f(u)1 $ T, i.e. {f(u), f(v)> E 
E(G”,. Hence f is also a homomorphism from G to GT. 

(iii) If n is the minimum number with x(GF) 2 x(G) but sp&G) <n - 1, by 
(ii) G-, G”;‘, which implies x(G) G x(G+-*). This contradicts the minimality of 
n. 
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(iv) If sp&G) < n, by (ii) G+ GF, so x(G) < G”, 
(v) If w(GF) ax(G) then 

G + K~(G~)+ GnT, 

so G-, GF, which implies sp,(G) < n - 1. Cl 

3. Main theorem 

The following Lemma 3.1 describes the relation between the minimum span of 
a complete graph K,,, and the clique size of the T-graph of size n. Then we 
present the main theorem. 

Lemma 3.1. The number n is the minimum such that o(G’+) = m i# sp,(K,,J = 
n - 1. 

Proof. (3) Suppose n is the minimum such that w(G’+) = m. Therefore K,,, + 
G;, so spT(K,) <n - 1. Now if sp,(K,,J<n - 1, by Property (ii), we get 
K,,,+ G;-l, so CU(G’+-‘) 3 m. This contradicts the minimality of n. 

(g) If sp*(K,,J = n - 1, then K,,, + G$. Therefore o(G’+) 3 m. If o(G’+-l) = 
m, then by Property (v), we get spT(K,) c n - 2, which contradicts sp,(K,,J = 
n - 1. Hence n is the minimum with w(GF) = m. Cl 

Theorem 3.2. Given T, the following are equivalent: 

(9 spy = ~PT(K~cG)) for all graph G, 
(ii) sp=(GnT) = spr-(KX(~;)) for all n, 

(iii) G; is weakly perfect for all n, 
(iv) G$ k weakly perfect for all n with some graph H such that sp,(H) = n - 1. 

Proof. (i) j (ii), (iii) + (iv) are trivial. 
(ii) j (iii): It’s enough to show that, for any n, sp&GT) = sp,(Kx(c+,) implies 

w(G;) = x(G;). Suppose spT(G+) = spr-(KXCG;J = no = 1, since sp&GF) s n - 1, 
so no G n. Also by Lemma 3.1, no is the minimum such that o(G?) = x(G;). 
Therefore w(GT) 3 o(G?) = x(GF), so we get w(G?) = x(G”,. 

(iv)+(i): Let spr(G) = no - 1 and spT(KXCGj) = n - 1, and suppose n,<n. 
Then G+ Gy, x(GT) = w(GI;), and x(G?) = w(GF). By Lemma 3.1, n is the 
minimum with o(GT) =x(G). Therefore, x(G?) = o(G?) < o(G’+) =x(G). 
This contradicts G+ GF. Hence no = n. •i 

If G is weakly perfect then sp&G) = spr-(KXCGj) = sp,(K,(& for any T, but 
the reverse is not always true. From the claim of (ii) j (iii) above, we obtain the 
following corollary for T-graphs. 



206 D. D.-F. Liu 

Corohry 3.3. For any T and any n, sp&GF) = spT(KXCG;)) ifl GQL Is weakly 

perfect. 

Next we discuss the two known families of T those satisfy (*). 

Corollary 3.4 [2,9]. 1f T is an r-initial set, then (*) holds and sp*(K,) = 
(r + l)(m - 1). 

Proof. By Theorem 3.1, to get (*), it is enough to show that GF is weakly perfect 
for all n. In G,, for any k 2 0 the set of vertices (0, r + 1,2(r + l), . . . , k(r + 1)) 
forms a clique, so o( G yr+‘)+‘) 2 k + 1 for any k 3 0 (See Fig. 1 as an example). 
Therefore it’s sufficient to show that x(G$@+l)) s k. Let f be the coloring defined 

by 

f(i) = l&J + 1. 

If {a, 6) E GT ‘@+l) then ]a - b] $ T, i.e. la - bl 2 r + 1, so 

Hence f(a) #f(b), f is a proper coloring and 

[Range(f)] = [ k(‘:+‘i- 11 + 1= k, 

so 

x(G $@+l)) = W(GkT(r+l)) = k. 

7 

Fig. 1. T = {0, 1, 2, 4, 5) (T is an 3-initial set). 
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On the other hand, this also implies that n = k(r + 1) + 1 is the minimum such 

that o(G’+) = k + 1. By Lemma 3.1, spT(K,,J = (m - l)(r + 1). This finishes the 

proof. Cl 

Corollary 3.5 [5]. Zf T is a k multiple of s set, then (*) holds and 

spT(K,)=sd(k+l)+q-1, m=ds+q, d>O, leqcs. 

Proof. In GT, [0, s - l] U {ks + s} is a clique. Furthermore, for any d 3 0 and 

O<qcs, o(G $(k+l)+q) 2sd + q (see Fig. 2 as an example). Hence, for (*), it 

will be enough to show that x(GFCk+“) = sd for all d 3 1. We can color GT by f: 

where j = i (mod s) and 0 <j < s. 

We now show that f is a proper coloring. Because the colors f uses are 

increasing periodically, we only have to check the first period, i.e., for 

i E [0, s(k + 1) - 11. If {a, b} E E(G,) and a, b E [0, s(k + 1) - 11, then la - 61 $ 
T. Since T 2 (0, s, 2, . . . , ks}, this implies f(a) f f (b). Also, we can get that 

n = ds(k + 1) + q is the minimum such that o(GT) = sd + q for all 1s q <s and 

d 3 0. So by Lemma 3.1, we can get the minimum spans for complete graphs. 

This finishes the proof. 0 

For a k multiple of s set T, the maximum cliques in the family of T-graphs 

come out periodically. For example, when T = (0, 3, 4, 5, 6) (Fig. 2), 

. 

. 

. 

8 9 

Fig. 2. T = (0, 3, 4, 5, 6) (T is a 2 multiple of 3 set). 
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(0, 1, 2, 9, 10, 11, 18, 19, 20, . . . } is a maximum clique in GP In the above 
proof, we properly color the vertices in each period by the modularity, and use 
different colors for each period. Now we may extend T by union with another set 
S’, where all numbers in S’ are greater than or equal to s(k + 2), and S’ does not 
contain any number of 

[s(2k + 1) + 1, s(2k + 3) - l] u [S(3k + 2) + 1, s(3k + 4) - l] 

u [S(4k + 3) + 1, s(4k + 5) - l] u . . . . 

Since (0, s, 2r, . . . , h} c T U S’, this implies the modular coloring used in the 
above proof is still proper for GTUS,. Without breaking the maximum clique, we 
let S’ avoid those values to maintain that the maximum clique in CT is also a 
maximum clique in GTUS,. We call T U S’ an extended k multiple of s set. This 
implies the following. 

Corollary 3.6. If T is an extended k multiple of s set, then T has the same result as 

a k multiple of s set as in Corollary 3.4. 

Example. If T = (0, 3, 6, 12}, or T = (0, 3, 6, 12, 13, 14, 15) then for all graphs 

G, sp,(G) = sp~(Kx(~,), and sp*(K,,,) has the same value as in Corollary 3.4, 

It would be nice to characterize all sets T for which (*) holds. While we cannot 
do this we now present other new families of T’s with the same property as the 
above cases. We let NP denote the infinite set of multiples of p, {p, 2p, 3p, . . . }. 

Theorem 3.7. Suppose T = ([0, a + b] - {a + 1)) U S, where a = cp, p 2 2, b 2 2, 

i(a + 1) $ NP and (a + b + 1) + i(a + 1) $ NP for all i = 0, 1, 2, . . . , p - 1, and S 

has the following properties : 

(1) All numbers in S are less than pa + p + b. 

(2) N,n[O,pa+p+b-l]sS. 

(3) i(a + 1) $ S, and (a + 6 + 1) + i(a + 1) 4 S for all i = 0, 1, 2, . . . , p - 1. 
Then sp,(G) = spT(KXCG,) for all graphs G, and 

spT(K,)=k(pa+p+b)+(l-l)(a+l), m=kp+l, ka0, 1~1s~. 

Note that in this theorem, the set T is neither a k multiple of s set, nor an 
r-initial set since p(a + 1) is in T. Before we prove this theorem, let us look at the 
simpler special cases p = 2, and b = 2, 4 respectively. 

Corollary 3.8. Zf T = [0, a] U {a + 2, a + 4, a + 6, . . . , 2(a + 1)) U R, where a is 

an even integer and R E {a + 5, a + 7, . . . ,2(a + 1) + l} then (*) hohIs, and 

sp’(Km) = 

k@ + 4) ifm=2k+l, ka0; 

(k - 1)(2a + 4) + a + 1, ifm=2k, kal. 
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Fig. 3. T = (0, 1, 2, 3, 4, 6, 8, 9, lo}. 

Proof. In Gr., for any k 30, o(G$@+~)+‘) 3 2k + 1 and w(G$@+~)+~+*) 2 
2(k + 1) (see Fig. 3 as an example). Hence, it is enough to show the following: 

(i) x(G$@+~) )<2k, ksl and 

(ii) x(G kT(Za+4)+n+1) < 2k + 1, k > 0. 

To show (i), since GF+4 is isomorphic to the subgraph of GT induced by the 
vertices [2u + 4, 2(2a + 4) - 11, it will be enough to claim that x(G?+~) c 2. 
Color Gp+4 by: 

f(i) = [ 
1, i is even; 

2, i is odd. 

If {x, y} E E(G?+4), then x, y 6 2a + 3 and ]x - y ( 4 T. Since T contains all the 
even integers less than or equal to 2(k + l), Ix - y 1 must be odd which implies 

f(x) #f(y), i.e., f is a proper coloring. On the other hand, the vertex set 
[k(2a + 4) k(2a + 4) + a] is independent, so (ii) follows from (i). This also 
implies that II = k(2a + 4) + 1 is the minimum such that o(G’+) = 2k + 1, and 
n = k(2u + 4) + a + 2 is the minimum such that o(GF) = 2(k + 1). So by Lemma 
3.1, we complete the proof. Cl 

Corollary 3.9. Zf 

T = ([0, a + 4]- {a + 1)) U {a + 6, a + 8, . . . , 2(u + l), 2(u + 1) + 2) U R 

where a is even and R s {a + 7, a + 9, . . . , 2(u + 1) + 3) then (*) holds, and 

k(h + 6), 

spT(Knz) = [(k - 1)(2u + 6) + a + 1, 

m=2k+l,ksO; 

m=2k,k31. 
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Proof. Similar argument to the above corollary. 0 

Proof of Theorem 3.7. First notice that (p - l)(a + 1) + a + b + 1 =pa + p + b. 

Since S has the properties (1) and (3), the set of vertices (0, Q + 1, 2(a + l), 

. . . , (p - l)(u + l), pa +p + b} in GT forms a clique. Hence, o(GT+~+‘+~) > 

p + 1. Moreover, we get 

w(G~T(~~+~+~)+~(~+*)+~) 5 kp + q + 1, for all k 2 0 and 0 < q <p - 1. 

By Theorem 3.2, it is enough to show that ~(GkT(~~+~+~)+~(~+l)+l) < kp + q + 1 

for 0 c q =~p - 1 and k 2 0. Any a + 1 consecutive vertices in G, form an 

independent set, and the subgraph of GT induced by the vertices [k(pu +p + b), 

(k + l)(pu +p + b) - l] is isomorphic to Gy+P+b for all k 2 1. Therefore, it is 

sufficient to show that x(G$Y+~+~ )-p. We define the coloring f on Gy+P+b by < 

the following: 

f(i) = i - ; p + 1. 
11 

If {i, i} E E(GpTa+p+6 ), then i, i spa + p + b - 1. Since S contains all multiples of 

p, one has that f(i) #f(j). Th e coloring f uses p colors. This shows that T has the 

property (*). It is easy to see that 12 = k(pu +p + b) + q(u + 1) is the minimum 

number such that m(GT+‘) = kp + q + 1, k 2 0, 0 c q up - 1. By Lemma 3.1, we 

get the minimum span of K,. 0 

Using the same method of extending a k multiple of s set, we can also extend 

the T’s in the above three cases to get more families of T with the property (*). 

It’s tedious, so we will not state them here. 

A greedy algorithm to T-color a complete graph K,,, is defined as: Order the 

vertices of K,,, by {1,2,3, . . . , m}. Suppose the vertices [l, i - l] have been 

colored, then color the vertex i by the smallest integer that will not contradict the 

definition of a T-coloring, and keep going to the last vertex. If the T-coloring 

done by the greedy algorithm attains the minimum span of K,,,, then we say that 

greedy works for K,,, ([6]). Notice that for all T’s in this section, the greedy 

algorithm works for all complete graphs K,,,. To end this section, we state the 

following conjecture. 

Conjecture 3.10. If T has the property (*), then the greedy algorithm gets 

spT(K,) for all m 3 1. 

4. Graphs G with x(G) = m 

The property (*) is very strong for T. That is, only a few of T’s have that 

property but the most of T’s do not. In this section, we consider the weaker 
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property where equality sp&G) = spT(KXCG,) holds only for the graphs G with 
fixed chromatic number instead for all graphs G. 

Theorem 4.1. The T-span sp,(G) = spT(K,) = n - 1 for all graphs G with 
x(G) = m iff o(GF) = x(GF) = m and x(G”;‘) < x(GF). 

Proof. (+) Since spr.(G) = spT(K,) = n - 1, by Lemma 3.1, n is the minimum 
such that o(GF) = m. Now, suppose m = o(GF) < x(G?)), then there exists some 
no < n such that x(G”,“) = m. Hence, sp=(G?) = spT(K,J = n - 1. But sp=(GF) s 
n,, - 1 <n - 1. This is a contradiction. Therefore, o(GT) = x(GF) = m. Next, if 
we suppose x(G”;‘) = x(G?) = m, then spT(GFml) = sp,(K,) = n - 1. But this 
contradicts spT(G$-‘) c IZ - 2. 

(+) Since o(G~-~)~x(G~-‘)<x(G”T) = m(GT) = m, so n is the minimum 
number such that w(Gq) = m. By Lemma 3.1, spT(K,) = n - 1. Suppose there is 
a graph G with x(G) = m but sp=(G) s spT(K,) = n - 1, i.e., &G) s n - 2. By 
Property (i), G-, G;-‘, then m =X(G) s (G$-l) Cm. This is a 
contradiction. 0 

From Theorem 4.1, if we want to check the truth of 

spT(G) = spT(K,,,) for all graphs G with x(G) = m, (**) 

we first find out the smallest integer n such that o(GF) = m. By Lemma 3.1, 
spr(K,) = n - 1. Secondly, we check the graph GT. If both o(GT) = x(G;) and 
x(G;-‘) <x(Gr) are true, then we can get (**). Otherwise, we are able to find a 
counterexample by looking at G;. 

Example. Zf T = (0, 2, 3, 5}, then for any graphs G with x(G) = 4, spT(G) = 

spy = 8. 

5 

0 “0 
Fig. 4. T = (0, 2, 3, 5). 
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Proof. From the graph G% (Fig. 4) and by Lemma 3.1, we can get spT(K3) = 7 

and sp,(&) = 8. The circled number at each vertex is a proper coloring. Since 

w(GF) =4 and w(GF) = 3, hence x(G’T> = 4 and x(G”T> = 3. Therefore by 

Theorem 4.1, we get spT(G) = spT(&) = 8 for all graphs G with x(G) = 4. q 

For the above case, x(Gg) = w(GF) = 3 but x(G’T> = 3. By Theorem 4.1, there 

exists some graph G with x(G) = 3 but sp&G) < spT(Kx(&. For example, the 

5-cycle is such a graph (Actually, G$ is a 5-cycle!). Since (0, 1,2,3,4} is a 

T-coloring of Cs, sp,(&) c 4, but spT(K,) = 7. 
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