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Abstract

A solution of the global controllability problem for a class of nonlinear control systems o
Volterra integro-differential equations is presented. It is proven that there exists a family of c
uous controls that solve the global controllability problem for this class. The constructed co
depend continuously on the initial and the terminal states. It makes possible to prove the
controllability of the uniformly bounded perturbations of these systems under the global Lip
condition for the unperturbed system with respect to the states and the controls.
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1. Introduction

The Volterra equations appear in modeling various physical and engineering sy
(as examples, we mention the aero-elasticity problem [2] or actuarial mathematic
Despite a lot of works concerned with the Volterra systems without a control input (se
instance, [2,10,13,29–32,37]), the controllability problem for the Volterra systems has
investigated by few authors. The first paper concerned with the controllability proble
the Volterra systems was [1], where an approach based on the reduction of the c
lability conditions to the Kakutani fixed point theorem was proposed. The next wor
this direction were [3,4]. In these papers, a sufficient condition of the global controlla
was proven for linear integro-differential Volterra systems and for their nonlinear bou
perturbations. The obtained results are a generalization of the well-known contro
ity criterion for the linear systems of ordinary differential equations (ODE). However
the nonlinear Volterra systems, the controllability problem requires further investiga
Thus, finding new classes of the nonlinear Volterra systems that are globally contro
is of interest.

On the other hand, beginning with [16], the “triangular,” or “feedback” (or “pure fe
back”) form is well known in the case of the nonlinear control systems of ODE (se
7,11,14,15,19,21,22,25,27,28,35,36]). First, the triangular form is physically natur
explain this, let us consider two systems: (I)ẋ = f (x, y) with statesx and controlsy,

and (II) ż = g(z,u) with statesz and controlsu; then, by puttingz = y, we obtain the
“cascade” of (I) and (II), i.e., the system of the triangular formẋ = f (x, y), ẏ = g(y,u),

where(x, y)T is the state andu is the control. Such chain structures, where the outpu
a system affects the input of another system, appear in mechanical systems very of
example, see [5,12,24], etc.). Second, there are effective backstepping design pro
which allow to construct stabilizing feedback laws for the triangular form [11,15,21
Third, the triangular systems are closely related to the general feedback linearization
lem [6,14,27], which arises both in general nonlinear control theory [6,12,14,16,27
in engineering problems [8,19,23,33].

Therefore, it is natural to begin the investigation of the nonlinear control systems
Volterra equations with the triangular systems as in the case of ODE. The controlla
problem for the Volterra systems of the triangular form was considered in [18] b
current authors. However, the robustness properties of the constructed controls w
discussed in this paper. In general, it is not clear how the open-loop control that s
given initial state into a given terminal one would be changed if the terminal or the i
state were changed continuously or if we deviated from the prescribed route duri
driving. Nevertheless, it turns out that the construction proposed in [18] can be mo
essentially; in particular, the problem of robustness can be solved for the Volterra sy
of the triangular form. In the current work, we consider triangular systems of the Vo
integro-differential equations under more general conditions in comparison with [18
this class, we construct a family of continuous open-loop controls parametrized b
initial and the terminal states such that each element of this family steers the corresp
initial state into the corresponding terminal one and depends continuously on them

respect to the metric ofC([t0, T ];R1). This remedies the above-mentioned deficiencies of
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the open-loop controls and allows us to prove the global controllability for the unifo
bounded perturbations of our class.

Following most works devoted to the triangular systems over last 15 years, w
“adding a differentiator” and some kind of backstepping to construct the desired co
(see, for instance, [11,15,21,22,36]). However, our technique differs greatly from t
the above-mentioned works: whereas the backstepping technique is used habitu
constructingclosed-loop controlsfor systems ofODE, we constructa family of open-loop
controlsfor our systems ofintegro-differential equations.

2. Preliminaries

In this paper, we consider a control system of the Volterra integro-differential equa

ẋ(t) = f
(
t, x(t), u(t)

) +
t∫

t0

g
(
t, s, x(s), u(s)

)
ds, t ∈ I = [t0, T ], (1)

wherex = (x1, . . . , xn)
T ∈ Rn is the state,u ∈ R1 is the control, and functionsf andg

have the following “triangular” form:

f (t, x,u) = (
f1(t, x1, x2), f2(t, x1, x2, x3), . . . , fn(t, x1, . . . , xn, u)

)T
,

g(t, s, x,u) = (
g1(t, s, x1, x2), g2(t, s, x1, x2, x3), . . . , gn(t, s, x1, . . . , xn, u)

)T (2)

and satisfy the conditions:

(i) f ∈ C(I × Rn × R1;Rn), g ∈ C(I2 × Rn × R1;Rn),
∂f
∂x

∈ C(I × Rn × R1;Rn×n),
∂f
∂u

∈ C(I ×Rn ×R1;Rn),
∂g
∂x

∈ C(I2×Rn ×R1;Rn×n),
∂g
∂u

∈ C(I2×Rn ×R1;Rn).

(ii) There existsa > 0 such that for eacht ∈ I and each(x,u) ∈ Rn × R1 we have∣∣∣∣ ∂fi

∂xi+1
(t, x1, . . . , xi+1)

∣∣∣∣ � a > 0, i = 1, . . . , n − 1;∣∣∣∣∂fn

∂u
(t, x,u)

∣∣∣∣ � a > 0.

(iii) For eachi = 1, . . . , n and each compact setK ⊂ Ri there existslK > 0 such that for
all (t, s) ∈ I2, (x1, . . . , xi)

T ∈ K, y ∈ R1, z ∈ R1 we have∣∣gi(t, s, x1, . . . , xi, y) − gi(t, s, x1, . . . , xi, z)
∣∣ � lK |y − z|.

Along with system (1), we consider its perturbation of the form

ẋ(t) = f
(
t, x(t), u(t)

) + h
(
t, x(t), u(t)

) +
t∫

t0

g
(
t, s, x(s), u(s)

)
ds

+
t∫
r
(
t, s, x(s), u(s)

)
ds, t ∈ I, (3)
t0
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(iv) h ∈ C(I × Rn × R1;Rn), r ∈ C(I2 × Rn × R1;Rn), and for each compact setQ ⊂
Rn × R1 there existsLQ > 0 such that∣∣h(t, x1, u1) − h(t, x2, u2)

∣∣ � LQ

(|x1 − x2| + |u1 − u2|),∣∣r(t, s, x1, u1) − r(t, s, x2, u2)
∣∣ � LQ

(|x1 − x2| + |u1 − u2|)
for all (t, s) ∈ I2, (x1, u1) ∈ Q, (x2, u2) ∈ Q.

(v) There existsH > 0 such that|h(t, x,u)| � H, and|r(t, s, x,u)| � H for all (t, s, x,u)

∈ I2 × Rn × R1.

For eachx0 ∈ Rn and eachu(·) ∈ C(I ;R1) by t �→ x(t, x0, u(·)) we denote the trajec
tory of (1), that is defined by this controlu(·) and by the initial conditionx(t0, x

0, u(·)) =
x0 on some maximal subintervalJ ⊂ I. Throughout the paper, the abbreviation “w.r
means “with respect to.”

As in the case of ODE, we say that a system of the Volterra integro-differential equ
is globally controllable in timeI = [t0, T ], iff for each initial statex0 and each termina
statexT there exists a controlu(·) that “steersx0 into xT w.r.t. the system,” i.e., the trajec
tory x(·) of the system with this controlu(·) such thatx(t0) = x0 satisfiesx(T ) = xT .

3. Main results

Theorem 3.1. Assume that for system(1) functionsf andg have triangular form(2) and
satisfy conditions(i)–(iii) . Then there exists a family of controls{u(x0,xT )(·)}(x0,xT )∈Rn×Rn

such that the map(x0, xT ) �→ u(x0,xT )(·) is of classC(Rn × Rn;C(I ;R1)), and for each
(x0, xT ) ∈ Rn × Rn the trajectoryt �→ x(t, x0, u(x0,xT )(·)) is defined for allt ∈ I and
satisfies the conditionx(T , x0, u(x0,xT )(·)) = xT .

As a corollary, we obtain the following result.

Theorem 3.2. Assume that functionsf andg have triangular form(2), satisfy(i)–(iii) , and
satisfy the global Lipschitz condition w.r.t.x and u, i.e., there existsL > 0 such that for
each(t, s) ∈ I2, each(x1, u1) ∈ Rn × R1, and each(x2, u2) ∈ Rn × R1 we have∣∣f (t, x1, u1) − f (t, x2, u2)

∣∣ � L
(|x1 − x2| + |u1 − u2|),∣∣g(t, s, x1, u1) − g(t, s, x2, u2)

∣∣ � L
(|x1 − x2| + |u1 − u2|).

Suppose thath andr satisfy(iv), (v). Then(3) is globally controllable in timeI by means
of controls of classC(I ;R1).

In particular, the following statement, which is a generalization of the main resu

[18], is a mere partial case of the statement of Theorem 3.1.
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Theorem 3.3. Assume thatf and g have triangular form(2) and satisfy(i)–(iii) . Then
system(1) is globally controllable in timeI by means of controls of classC(I ;R1).

Remark 3.1. We assume thatu andxi are scalar only to simplify the notation and to ma
the argument clearer. For the caseu ∈ Rm, x = (x1, . . . , xk)

T ∈ Rn, xi ∈ Rm, n = km, we
can replace condition (ii) with the following one:

(II) For eachi = 1, . . . , k, and each(t, x1, . . . , xi) ∈ I × Rim, fi(t, x1, . . . , xi, ·) is a dif-
feomorphism ofRm ontoRm such that the inverse diffeomorphismUi(t, x1, . . . , xi, ·)
satisfies the following condition: for every compact setK ⊂ Rim there exists
ΛK > 0 such that|Ui(t, x1, . . . , xi, v) − Ui(t, x1, . . . , xi,w)| � ΛK |v − w| for all
(t, x1, . . . , xi) in I × K , v ∈ Rm, w ∈ Rm.

Then, using the same argument as below, we can prove Theorems 3.1–3.3 for each
(1) such that (i), (II), and (iii) hold regardless of whetheru andxi are scalars or vectors.

Example 3.1. Consider the following system:


ẋ1 = 2x2 + sinx2 + ∫ t

0 etsx2(s) ds + h1(t, x1, x2, u)

+ ∫ t

0 r1(t, s, x1(s), x2(s), u(s)) ds,

ẋ2 = u + h2(t, x1, x2, u) + ∫ t

0 r2(t, s, x1(s), x2(s), u(s)) ds,

t ∈ [0,1], (4)

with states(x1, x2)
T ∈ R2 and controlsu ∈ R1, wherehi andri are arbitrary functions suc

that (iv), (v) hold. If we hadhi(t, x,u) = ri(t, s, x,u) = 0 for all (t, s) ∈ [0,1]2, x ∈ R2,

u ∈ R1, then (4) would be a mere triangular system satisfying the global Lipschitz c
tion w.r.t.(x,u), and we could refer to the results of [18]. However, if the perturbation d
not vanish, the results of [18] are no longer applicable. Nevertheless, by our Theore
system (4) being a bounded perturbation of a triangular system, it is globally contro
in time [0,1].

Example 3.2. Consider the system{
ẋ1 = x3

2 + x2 + ∫ t

0 e2tsx1(s)x2(s) ds,

ẋ2 = u3 + u + ∫ t
etsx2

2(s)u(s) ds,
t ∈ [0,1], (5)

with states(x1, x2)
T and controlsu. System (5) satisfies conditions (i)–(iii). Therefo

by Theorem 3.1, there exists a family{u(x0,xT )(·)}(x0,xT )∈R2×R2 of controls such tha
(x0, xT ) �→ u(x0,xT )(·) is of classC(R2 × R2;C([0,1];R1)), andu(x0,xT )(·) steersx0

into xT w.r.t. (5) whateverx0 = (x0
1, x0

2)T ∈ R2 andxT = (xT
1 , xT

2 )T ∈ R2. In particular,
(5) is globally controllable (Theorem 3.3), whereas the results of [18] cannot be ap
to (5) because the global Lipschitz condition w.r.t.(x,u) does not hold for the right-han

side of (5).
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Example 3.3. Let us show how Theorem 3.2 can work in the case of ODE. Conside
system{

ẋ1 = f1(x2),

ẋ2 = u,
t ∈ I = [t0, T ], (6)

where(x1, x2)
T ∈ R2 is the state,u ∈ R1 is the control,f1(·) is given byf1(x2) = (x2 −

2 sinx2)(1 − ψ(x2)), andψ(·) is an arbitrary function of classC1(R;R) such that 0�
ψ(x2) � 1, if x2 ∈ R; ψ(x2) = 0, if x2 ∈ R \ [−3,3]; andψ(x2) = 1, if x2 ∈ [−2,2].
System (6) is a uniformly bounded perturbation of the canonical systemẋ1 = x2, ẋ2 = u.

Applying Theorem 3.2, we obtain that (6) is globally controllable in timeI. Let us point out
that (6) is a triangular system of ODE but it is easy to prove that (6) is not globally feed
equivalent to the canonical linear systemż1 = z2, ż2 = v. In particular, for system (6) th
usual regularity condition∂f1

∂x2
�= 0 does not hold; thus, we obtain the triangular form

the so-called singular case (see [6,27]). This observation leads us to a more wide c
the triangular systems of ODE in comparison with those investigated previously [6,1
which is globally controllable, but the set of its regular points is no longer open and
in the state space. This question is studied in [17,26].

The paper is organized as follows. In Section 4, we prove that Theorem 3.2 fo
from Theorem 3.1, and then we reduce Theorem 3.1 to Theorem 4.1, Theorem 4.1
the main point of our approach. In Section 5, we prove Theorem 4.1.

4. The reduction of the main results to a backstepping procedure

Let us first prove that Theorem 3.2 follows from Theorem 3.1. Denote by{
u(x0,xT )(·)

}
(x0,xT )∈Rn×Rn

the family obtained from Theorem 3.1. Take anyx0 ∈ Rn. Let y(xT , ·) be the trajectory
of (3), defined by the controlu(x0,xT )(·) and by the initial conditiony(xT , t0) = x0, when-
everxT ∈ Rn. Putx(xT , t) := x(t, x0, u(x0,xT )(·)) for all t ∈ I andxT ∈ Rn. Then, using
standard arguments based on the Gronwall–Bellman lemma, we get the existence oD > 0
such that∣∣x(xT , t) − y(xT , t)

∣∣ � D, whenevert ∈ I, andxT ∈ Rn. (7)

Sincex(xT , T ) = xT , we get|y(xT , T ) − xT | � D for all xT ∈ Rn. From Theorem 3.1
it follows that the mapxT �→ y(xT , T ) is of classC(Rn;Rn). Using the statement from
[20, p. 277], which is based on the Brouwer fixed point theorem, we obtain that for
yT ∈ Rn there existsxT ∈ Rn such thaty(xT , T ) = yT , i.e., the controlu(x0,xT )(·) steers
x0 into yT in time I w.r.t. (3). Finally, sincex0 ∈ Rn was an arbitrary initial state, th
completes the proof of Theorem 3.2.

Next, we reduce Theorem 3.1 to a theorem which roughly speaking states that th
trollability of a triangular system implies its controllability with any prescribed bound

conditions for the controls.
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ẏ(t) = ϕ
(
t, y(t), v(t)

) +
t∫

t0

ψ
(
t, s, y(s), v(s)

)
ds, t ∈ I, (8)

wherey = (x1, . . . , xk)
T ∈ Rk is the state,v ∈ R1 is the control, and

ϕ(t, y, v) = (
f1(t, x1, x2), f2(t, x1, x2, x3), . . . , fk(t, x1, . . . , xk, v)

)T
,

ψ(t, s, y, v) = (
g1(t, s, x1, x2), g2(t, s, x1, x2, x3), . . . , gk(t, s, x1, . . . , xk, v)

)T
. (9)

In other words, (8) is thek-dimensional subsystem of (1), that consists of the
k equations of (1), wherexk+1 is treated as the control. For eachy0 ∈ Rk and each
v(·) ∈ C(I ;R1), let t �→ y(t, y0, v(·)) be the trajectory of (8), defined by the controlv(·)
and by the initial conditiony(t0, y

0, v(·)) = y0 on some maximal subintervalJ ⊂ I.

Theorem 4.1. Assume thatf andg are given by(2) and satisfy(i)–(iii) . Suppose that fo
some fixedk = 1, . . . , n and for system(8) with ϕ andψ defined by(9), there is a family of
controls{v(ζ,ξ)(·)}(ζ,ξ)∈Rk×Rk such that:

(a) The map given by(ζ, ξ) �→ v(ζ,ξ)(·) is of classC(Rk × Rk;C(I ;R1)).
(b) For each(ζ, ξ) ∈ Rk × Rk, the trajectoryt �→ y(t, ζ, v(ζ,ξ)(·)) is defined for allt ∈ I

andy(T , ζ, v(ζ,ξ)(·)) = ξ.

Then there exists a family of controls{v̂(ζ,α,ξ,β)(·)}(ζ,α,ξ,β)∈Rk×R1×Rk×R1 such that the
following three conditions hold:

(c) For each (ζ,α, ξ,β) ∈ Rk × R1 × Rk × R1, the control v̂(ζ,α,ξ,β)(·) is of class
C1(I ;R1) and v̂(ζ,α,ξ,β)(t0) = α, v̂(ζ,α,ξ,β)(T ) = β.

(d) The map(ζ,α, ξ,β) �→ v̂(ζ,α,ξ,β)(·) is of classC(Rk × R1 × Rk × R1;C1(I ;R1)).

(e) For each(ζ,α, ξ,β) ∈ Rk × R1 × Rk × R1, the trajectoryt �→ y(t, ζ, v̂(ζ,α,ξ,β)(·)) is
defined for allt ∈ I andy(T , ζ, v̂(ζ,α,ξ,β)(·)) = ξ.

Having proved Theorem 4.1, we can easily obtain Theorem 3.1 by induction ovk.

Indeed, fork = 1, we may definev(ζ,ξ)(·) as the solution of the Volterra integral equati
(w.r.t. unknown functionv(t))

d

dt
x1(ζ, ξ, t) = f1

(
t, x1(ζ, ξ, t), v(t)

) +
t∫

t0

g1
(
t, s, x1(ζ, ξ, s), v(s)

)
ds, t ∈ I,

wherex1(ζ, ξ, t) = ζ T −t
T −t0

+ ξ
t−t0
T −t0

for all t ∈ I, (ζ, ξ) ∈ R1 × R1. Then, from (i)–(iii)
we obtain thatv(ζ,ξ)(t) is well defined for allt ∈ I and satisfies (a)–(b). Assume th
for somek = 1, . . . , n − 1 there exists{v(ζ,ξ)(·)}(ζ,ξ)∈Rk×Rk such that (a)–(b) hold, an
let {v̂(ζ,α,ξ,β)(·)}(ζ,α,ξ,β)∈Rk×R1×Rk×R1 be the family that satisfies conditions (c)–(e)

Theorem 4.1. For eachχ = ((ζ,α), (ξ,β)) ∈ Rk × R1 × Rk × R1, by definition, put
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y(χ, t) := y(t, ζ, v̂(ζ,α,ξ,β)(·)), t ∈ I, and letuχ(·) be the solution of the Volterra integr
equation

d

dt
v̂χ (t) = fk+1

(
t, y(χ, t), v̂χ (t), u(t)

) +
t∫

t0

fk+1
(
t, s, y(χ, s), v̂χ (s), u(s)

)
ds

(10)

w.r.t. unknown functionu(t). Then (again, due to (i)–(iii)),uχ(·) is defined for allt ∈ I

and the family of controls{uχ(·)}χ∈Rk+1×Rk+1 satisfies conditions (a)–(b) for the extend
(k + 1)-dimensional control system{

ẏ(t) = ϕ(t, y(t), xk+1(t)) + ∫ t

t0
ψ(t, s, y(s), xk+1(s)) ds,

ẋk+1(t) = fk+1(t, y(t), xk+1(t), u(t)) + ∫ t

t0
gk+1(t, s, y(s), xk+1(s), u(s)) ds.

Thus, fork + 1= n, we obtain the family of controls satisfying Theorem 3.1.

5. Proof of Theorem 4.1

To prove Theorem 4.1, we follow the same way as in the proof of Theorem 4 in
However, in contrast with [18], we have to deal with families of controls and trajecto
This affects the formulations and the proofs of all the lemmas.

For eachy0 ∈ Rk and eachr > 0, we putBr(y
0) := {y ∈ Rk | |y − y0| < r}, and, for

A ⊂ Rk, by A we denote the closure ofA.

5.1. The controllability of families of linear systems

Consider a family of control systems of the following form:

ż(t) = A(ξ, t)z(t) + B(ξ, t)w(t) +
t∫

t0

[
C(ξ, t, s)z(s) + D(ξ, t, s)w(s)

]
ds, (11)

wherez = (z1, . . . , zk)
T ∈ Rk is the state,w ∈ R1 is the control,ξ ∈ RN is the paramete

of the family, matrixesA(· , ·), B(· , ·), C(· , · , ·), andD(· , · , ·) have the form

A(ξ, t) =




a11(ξ, t) a12(ξ, t) 0 . . . 0
a21(ξ, t) a22(ξ, t) a23(ξ, t) . . . 0

...
...

...
. . .

...

ak−11(ξ, t) ak−12(ξ, t) ak−13(ξ, t) . . . ak−1k(ξ, t)

ak1(ξ, t) ak2(ξ, t) ak3(ξ, t) . . . akk(ξ, t)


 , (12)

C(ξ, t, s) =




c11(ξ, t, s) c12(ξ, t, s) 0 . . . 0
c21(ξ, t, s) c22(ξ, t, s) c23(ξ, t, s) . . . 0

...
...

...
. . .

...

ck−11(ξ, t, s) ck−12(ξ, t, s) . . . . . . ck−1k(ξ, t, s)

ck1(ξ, t, s) ck2(ξ, t, s) ck3(ξ, t, s) . . . ckk(ξ, t, s)


 ,
(13)
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B(ξ, t) =




0
...

0
ak k+1(ξ, t)


 , D(ξ, t, s) =




0
...

0
ck k+1(ξ, t, s)


 , (14)

aij (· , ·) ∈ C(RN × I ;R), cij (· , · , ·) ∈ C(RN × I2;R). (15)

Givenz0 ∈ Rk, w(·) ∈ C(I ;R1), andξ ∈ RN, let t �→ z(t, z0,w(·), ξ) be the trajectory
of system (11) determined byξ, that is defined by the controlw(·) and by the initial
conditionz(t0, z

0,w(·), ξ) = z0.

The goal of this subsection is to prove the following lemma.

Lemma 5.1. Assume that family(11)satisfies(12)–(15), and for eachi = 1, . . . , k and each
(ξ, t) ∈ RN × I we haveai i+1(ξ, t) �= 0. Then for eachzT ∈ Rk, eachβ ∈ R1 and each
µ ∈ N there exists a family of controls{w(ξ, ·)}ξ∈RN such that the following condition
hold:

(a) For eachξ ∈ RN the controlw(ξ, ·) is of classCµ(I ;R1) and satisfies the boundar
conditionsw(ξ,T ) = β; w(ξ, t0) = 0.

(b) The mapξ �→ w(ξ, ·) is of classC(RN ;Cµ(I ;R1)).

(c) For eachξ ∈ RN we havez(T ,0,w(ξ, ·), ξ) = zT .

The principal part of the proof is the following lemma.

Lemma 5.2. Suppose that family(11)satisfies(12)–(15), and for eachzT ∈ Rk there exists
a family of controls{w(ξ, ·)}ξ∈RN such that the following conditions hold:

(a) The mapξ �→ w(ξ, ·) is of classC(RN ;C(I ;R1)).

(b) For eachξ ∈ RN we havez(T ,0,w(ξ, ·), ξ) = zT .

Then for eachzT ∈ Rk, eachβ ∈ R1 and eachµ ∈ N there exists a family of control
{ŵ(ξ, ·)}ξ∈RN such that the following conditions hold:

(c) ŵ(ξ, ·) ∈ Cµ(I ;R1), ŵ(ξ, T ) = β, andŵ(ξ, t0) = 0 for all ξ ∈ RN.

(d) The mapξ �→ ŵ(ξ, ·) is of classC(RN ;Cµ(I ;R1)).

(e) z(T ,0, ŵ(ξ, ·), ξ) = zT for all ξ ∈ RN.

Arguing as above, we see that the reduction of Lemma 5.1 to Lemma 5.2 is sim
that of Theorem 3.1 to Theorem 4.1. Therefore, to complete the proof of Lemma 5
need only to prove Lemma 5.2.

Proof of Lemma 5.2. Take anyβ ∈ R1, zT ∈ Rk, and µ ∈ N. Let z1, . . . , zk+1 be in
Rk such that the interior intS of the simplexS = conv{z1, . . . , zk+1} is not empty, and
zT ∈ intS. Then there exist(k + 1) families of controls{vi(ξ, ·)}ξ∈RN , i = 1, . . . , k + 1,

such that:
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(A1) For eachi = 1, . . . , k + 1, the mapξ �→ vi(ξ, ·) is of classC(RN ;C(I ;R1)).
(A2) zi = z(T ,0, vi(ξ, ·), ξ), wheneveri = 1, . . . , k + 1 andξ ∈ RN.

Chooseε > 0 such that, for each collection{ẑi}k+1
i=1 ⊂ Rk, the conditionẑi ∈ Bε(z

i), i =
1, . . . , k + 1, implieszT ∈ int conv{ẑ1, . . . , ẑk+1}. Our goal is to construct(k + 1) families
of smooth controls which satisfy the required boundary conditions, continuously de
on ξ and steer 0∈ Rk into Bε(z

i), i = 1, . . . , k + 1, for all ξ ∈ RN. Put

R(ξ) := |β| + max
i=1,...,k+1

∥∥vi(ξ, ·)∥∥
C(I ;R1)

+ 1, (16)

M(ξ) := ∥∥A(ξ, ·)∥∥
C(I ;Rk×k)

+ ∥∥B(ξ, ·)∥∥
C(I ;Rk)

+ ∥∥C(ξ, · , ·)∥∥
C(I2;Rk×k)

+ ∥∥D(ξ, · , ·)∥∥
C(I2;Rk)

+ 1, (17)

δ(ξ) := min

{
ε

2(4R(ξ) + T − t0)(M(ξ) + M(ξ)(T − t0))e((T −t0)
2+(T −t0))M(ξ)

,

T − t0

3

}
, wheneverξ ∈ RN. (18)

Using the well-known theorem on the partitions of unity (see, for instance, [34]), w
the existence ofk + 1 families of controls{wi(ξ, ·)}ξ∈RN , i = 1, . . . , k + 1, such that eac
mapξ �→ wi(ξ, ·) is of classC(RN ;Cµ(I ;R1)) and∥∥wi(ξ, ·) − vi(ξ, ·)∥∥

C(I ;R1)
� min

{
δ(ξ),1

}
, ξ ∈ RN, i ∈ {1, . . . , k + 1}. (19)

Giveni ∈ {1, . . . , k + 1} andξ ∈ RN, define the control̂wi(ξ, ·) by

ŵi(ξ, t) =




wi(ξ, t)r
(

t−t0
δ(ξ)

)
if t ∈ [t0, t0 + δ(ξ)[,

wi(ξ, t) if t ∈ [t0 + δ(ξ), T − δ(ξ)],(
1− r

(
t−T +δ(ξ)

δ(ξ)

))
wi(ξ, t)

+ r
(

t−T +δ(ξ)
δ(ξ)

)
β if t ∈ ]T − δ(ξ), T ],

(20)

wherer(·) ∈ C∞(R;R) is some fixed function such thatr(s) = 0, if s � 0; 0 � r(s) � 1,

if 0 � s � 1; andr(s) = 1, if s � 1. From(A1) and from (15)–(18) it follows that function
M(ξ), R(ξ) andδ(ξ) are of classC(RN ; ]0,+∞[); therefore from (20) we obtain that th
families{ŵi(ξ, ·)}ξ∈RN satisfy the conditions:

(A3) ŵi(ξ, ·) ∈ Cµ(I ;R1), ŵi(ξ, t0) = 0, ŵi(ξ, T ) = β for all ξ ∈ RN, i = 1, . . . , k + 1.

(A4) The mapξ �→ ŵi(ξ, ·) is of classC(RN ;Cµ(I ;R1)), wheneveri ∈ {1, . . . , k + 1}.
(A5) ‖ŵi(ξ, ·)‖C(I ;R1) � R(ξ), for all i ∈ {1, . . . , k + 1}, andξ ∈ RN.

For the sake of simplicity, bŷzi(ξ, ·) and zi(ξ, ·) we denote the trajectoriest �→
z(t,0, ŵi(ξ, ·), ξ) and t �→ z(t,0, vi(ξ, ·), ξ), respectively, for alli = 1, . . . , k + 1 and
ξ ∈ Rk. Arguing as in [18] (see the proof of Lemma 2), from the Gronwall–Bellm
lemma, we obtain that̂zi(ξ, T ) ∈ Bε(z

i) for all i = 1, . . . , k + 1, ξ ∈ RN. Hence, by the
definition ofε > 0, for eachξ ∈ RN there exists (a unique) collection{λ∗

i (ξ)}k+1
i=1 ⊂ R such
that
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k+1∑
i=1

λ∗
i (ξ) = 1; λ∗

i (ξ) � 0, i = 1, . . . , k + 1;

k+1∑
i=1

λ∗
i (ξ)ẑi (ξ, T ) = zT . (21)

Put ŵ(ξ, t) := ∑k+1
i=1 λ∗

i (ξ)ŵi(ξ, t), for all ξ ∈ RN and t ∈ I. Since each system (11)
linear, we get

z
(
t,0, ŵ(ξ, ·), ξ) =

k+1∑
i=1

λ∗
i (ξ)z

(
t,0, ŵi(ξ, ·), ξ) =

k+1∑
i=1

λ∗
i (ξ)ẑi (ξ, t).

Taking into account (21), we obtainz(T ,0, ŵ(ξ, ·), ξ) = zT for all ξ ∈ RN. In addi-
tion, from (20), (21) and(A3) it follows that each control̂w(ξ, ·) is of classCµ(I ;R1)

and satisfies the boundary conditions:ŵ(ξ, T ) = β, ŵ(ξ, t0) = 0, ξ ∈ RN. Thus, family
{ŵ(ξ, ·)}ξ∈RN satisfies conditions (c) and (e) of Lemma 5.2.

From (15), and(A4), it follows that each mapξ �→ ẑi (ξ, T ) is of classC(RN ;Rk).

On the other hand, every collection{ẑi}k+1
i=1 ⊂ Rk such that̂zi ∈ Bε(z

i), i = 1, . . . , k + 1,
determines a unique collection{λi(ẑ

1, . . . , ẑk+1)}k+1
i=1 that satisfies the conditions

λi(ẑ
1, . . . , ẑk+1) � 0;

k+1∑
i=1

λi(ẑ
1, . . . , ẑk+1) = 1;

k+1∑
i=1

λi(ẑ
1, . . . , ẑk+1)ẑi = zT ; (22)

and all the mappings(ẑ1, . . . , ẑk+1) �→ λi(ẑ
1, . . . , ẑk+1), i = 1, . . . , k + 1, are of class

C(Rk×(k+1);R). Indeed, (22) is equivalent to the system of linear algebraic equa∑k+1
i=2 λi(ẑ

i − ẑ1) = zT − ẑ1 w.r.t. unknown variablesλi, i = 2, . . . , k+1. By the definition
of ε > 0, the set{(ẑi − ẑ1)}k+1

i=2 is a basis ofRk. Thus, the solution of this nonsingular line
system is uniquely determined and depends continuously on the coefficients of the s
Therefore, the mapsξ �→ λ∗

i (ξ), i = 1, . . . , k + 1, defined by (21) are of classC(RN ;R);
finally, it follows from (A4) and from the definition of̂w(ξ, ·) thatξ �→ ŵ(ξ, ·) is of class
C(RN ;Cµ(I ;R1)), i.e., condition (d) of the statement of Lemma 5.2 holds as well. T
completes the proofs of Lemmas 5.2 and 5.1.�
5.2. Proof of Theorem 4.1

Let {v(ζ,ξ)(·)}(ζ,ξ)∈Rk×Rk be a family of controls such that conditions (a)–(b) of Th
rem 4.1 hold. Consider the following family ofk-dimensional linear control systems:

ż(t) = ∂ϕ

∂y

(
t, y

(
t, ζ, v(ζ,ξ)(·)

)
, v(ζ,ξ)(t)

)
z(t) + ∂ϕ

∂v

(
t, y

(
t, ζ, v(ζ,ξ)(·)

)
, v(ζ,ξ)(t)

)
w(t)

+
t∫ [

∂ψ (
t, s, y

(
s, ζ, v(ζ,ξ)(·)

)
, v(ζ,ξ)(s)

)
z(s)
t0

∂y



754 V.I. Korobov et al. / J. Math. Anal. Appl. 309 (2005) 743–760

,
ob-
.1 it

d-

nput–
+ ∂ψ

∂v

(
t, s, y

(
s, ζ, v(ζ,ξ)(·)

)
, v(ζ,ξ)(s)

)
w(s)

]
ds, t ∈ I, (23)

where(ζ, ξ) ∈ Rk × Rk is the parameter of the family,z = (z1, . . . , zk)
T ∈ Rk is the state

w ∈ R1 is the control. From conditions (a)–(b) of Theorem 4.1 and from (i), (ii) we
tain that family (23) satisfies the conditions of Lemma 5.1. Then, from Lemma 5
follows that there existk families{wi(ζ, ξ, ·)}(ζ,ξ)∈Rk×Rk , i = 1, . . . , k, of controls of class
C1(I ;R1) such that for eachi = 1, . . . , k the map(ζ, ξ) �→ wi(ζ, ξ, ·) is of classC(Rk ×
Rk;C1(I ;R1)), and for each(ζ, ξ) ∈ Rk × Rk the controlwi(ζ, ξ, ·) steers 0∈ Rk into
ei = (0, . . . ,0,1,0, . . . ,0)T ∈ Rk in time I with respect to (23) and satisfies the boun
ary conditionswi(ζ, ξ, t0) = wi(ζ, ξ, T ) = 0. For eachλ = (λ1, . . . , λk)

T ∈ Rk, define the
family of controls{vλ(ζ, ξ, ·)}(ζ,ξ)∈Rk×Rk by vλ(ζ, ξ, t) = v(ζ,ξ)(t) + ∑k

j=1 λjwj (ζ, ξ, t),

for all t ∈ I, (ζ, ξ) ∈ Rk × Rk.

For each(ζ, ξ) ∈ Rk × Rk and eachλ ∈ Rk such thatt �→ y(t, ζ, vλ(ζ, ξ, ·)) is defined
for all t ∈ I, putyλ(ζ, ξ, t) := y(t, ζ, vλ(ζ, ξ, ·)), t ∈ I. For eachµ = (µ1, . . . ,µk)

T ∈ Rk,

by zµ,λ(ζ, ξ, ·) denote the trajectory of the system

ż(t) = ∂ϕ

∂y

(
t, yλ(ζ, ξ, t), vλ(ζ, ξ, t)

)
z(t) + ∂ϕ

∂v

(
t, yλ(ζ, ξ, t), vλ(ζ, ξ, t)

)
w(t)

+
t∫

t0

[
∂ψ

∂y

(
t, s, yλ(ζ, ξ, s), vλ(ζ, ξ, s)

)
z(s)

+ ∂ψ

∂v

(
t, s, yλ(ζ, ξ, s), vλ(ζ, ξ, s)

)
w(s)

]
ds, t ∈ I, (24)

defined by the controlw(·) := wµ(ζ, ξ, ·) = ∑k
j=1 µjwj (ζ, ξ, ·) and by the initial con-

dition zµ,λ(ζ, ξ, t0) = 0 ∈ Rk. Define the families{F(ζ, ξ, ·)}(ζ,ξ)∈Rk×Rk and {G(ζ, ξ,

· , ·)}(ζ,ξ)∈Rk×Rk of maps fromRk andRk × Rk , respectively, toRk as follows: for each
(ζ, ξ,µ,λ) in Rk × Rk × Rk × Rk such thatt �→ y(t, ζ, vλ(ζ, ξ, ·)) is defined for allt ∈ I,

putF(ζ, ξ, λ) := yλ(ζ, ξ, T ), andG(ζ, ξ,µ,λ) := zµ,λ(ζ, ξ, T ).

Lemma 5.3.

(a) There exists a functionε(·, ·) of classC(Rk × Rk; ]0,+∞[) such that, for each
(ζ, ξ, λ) in Ω = {(ζ, ξ, λ) ∈ Rk × Rk × Rk | λ ∈ Bε(ζ,ξ)(0)}, the trajectory t �→
y(t, ζ, vλ(ζ, ξ, ·)) is defined for allt ∈ I, and, therefore,F(ζ, ξ, λ) and G(ζ, ξ, ·, λ)

are well defined.
(b) For each (ζ, ξ) ∈ Rk × Rk the mapλ �→ F(ζ, ξ, λ) is differentiable at everyλ ∈

Bε(ζ,ξ)(0), and ∂F
∂λ

(ζ, ξ, λ)µ = G(ζ, ξ,µ,λ), wheneverλ ∈ Bε(ζ,ξ)(0), µ ∈ Rk.

(c) The maps(ζ, ξ, λ) �→ yλ(ζ, ξ, ·), (ζ, ξ, λ) �→ F(ζ, ξ, λ) and (ζ, ξ, λ) �→ ∂F
∂λ

(ζ, ξ, λ)

are of classesC(Ω;C(I ;Rk)), C(Ω;Rk) andC(Ω;Rk×k), respectively.

Lemma 5.3 is a version of the standard statement on the differentiability of the i

output map of a control system. It can be proved, for instance, by using the Gronwall–
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Bellman lemma (one can find this argument in [18], see the proof of Theorem 4 (S
and 3)). We omit the proof of Lemma 5.3 due to space limits.

We will use also the following lemma, which is a direct corollary of the well-kno
Lagrange theorem.

Lemma 5.4. Assume thatB ⊂ Rk is a convex open set, and for eachλ0 ∈ B the Jakoby
matrix ∂F

∂λ
(λ0) of a mapF(·) ∈ C1(B;Rk) is positive definite. Then,λ �→ F(λ) is a diffeo-

morphism ofB ontoF(B).

By the definition of{wi(ζ, ξ, ·)}(ζ,ξ)∈Rk×Rk , for each(ζ, ξ) ∈ Rk × Rk we haveG(ζ, ξ,

ei, λ)|λ=0 = ei, i.e. (by Lemma 5.3),∂F
∂λ

(ζ, ξ,0) = E, whereE ∈ Rk×k is the identity
matrix. Fix someσ > 0 such that each matrixA ∈ Rk×k that satisfies the inequalit
‖A − E‖ < 2σ is positive definite. For eachr > 0 we putΞr := {(ζ, ξ) ∈ Rk × Rk |
|ζ | + |ξ | � r}.

Lemma 5.5. There existε1(·, ·) and ε2(·, ·) of classC(Rk × Rk; ]0,+∞[) such that, for
each(ζ, ξ) ∈ Rk × Rk, we obtain

ε1(ζ, ξ) <
1

2
ε(ζ, ξ), (25)∥∥∥∥∂F

∂λ
(ζ, ξ, λ) − E

∥∥∥∥ < σ, wheneverλ ∈ Bε1(ζ,ξ)(0), (26)

Bε2(ζ,ξ)(ξ) ⊂ F
(
ζ, ξ,Bε1(ζ,ξ)(0)

)
. (27)

Proof. Let us first prove the existence ofε1(· , ·). To do this it is sufficient to prove tha
for eachm ∈ N there existsεm ∈ ]0, 1

2 min(ζ,ξ)∈Ξm ε(ζ, ξ)[ such that for every(ζ, ξ) ∈ Ξm

and everyλ ∈ Bεm(0) we have‖ ∂F
∂λ

(ζ, ξ, λ) − E‖ < σ. Without loss of generality, we ca
assume thatεm+1 � εm, m ∈ N (otherwise, consider̃εm = min1�l�m εl, m ∈ N, instead of
εm). Then the functionε1(· , ·) given byε1(ζ, ξ) = εm+1 + (εm+2 − εm+1)(|ζ | + |ξ | − m)

for all m � |ζ | + |ξ | < m + 1, m � 0, and(ζ, ξ) ∈ Rk × Rk will satisfy (25), (26).
Indeed, if such{εm}∞m=1 does not exist, there ism0 ∈ N such that for eachε ∈

]0, 1
2 min(ζ,ξ)∈Ξm0

ε(ζ, ξ)[ there exists(ζ, ξ) ∈ Ξm0 andλ ∈ Bε(0) satisfying the inequal

ity ‖ ∂F
∂λ

(ζ, ξ, λ) − E‖ � σ . Hence, we get the existence of sequences{(ζq, ξq)}∞q=1 ⊂ Ξm0

and{λq}∞q=1 ⊂ B 1
2 min(ζ,ξ)∈Ξm0

ε(ζ,ξ)
(0) such thatλq → 0 asq → +∞, and for allq ∈ N we

have‖ ∂F
∂λ

(ζq, ξq, λq) − E‖ � σ. Choose a subsequence{(ζqp , ξqp )}∞p=1 of {(ζq, ξq)}∞q=1

such that(ζqp , ξqp ) → (ζ ∗, ξ∗) asp → ∞ for some(ζ ∗, ξ∗) ∈ Ξm0. From Lemma 5.3 and

from the inequality‖ ∂F
∂λ

(ζqp , ξqp , λqp ) − E‖ � σ we get‖ ∂F
∂λ

(ζ ∗, ξ∗,0) − E‖ � σ. Since
∂F
∂λ

(ζ ∗, ξ∗,0) = E, this contradicts the definition ofF(· , · , ·) and proves the existence
ε1(· , ·) ∈ C(Rk × Rk; ]0,+∞[) such that (25) and (26) hold.

Let us prove the existence ofε2(· , ·) ∈ C(Rk × Rk; ]0;+∞[) such that (27) holds fo
all (ζ, ξ) ∈ Rk × Rk . For eachm ∈ N denoteε̂m = min(ζ,ξ)∈Ξm ε1(ζ, ξ). It is sufficient to
prove the existence of{ε̃m}∞m=1 ⊂ ]0,+∞[ such that for allm ∈ N and (ζ, ξ) ∈ Ξm we

haveBε̃m

(ξ) ⊂ F(ζ, ξ,Bε̂m
(0)).
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Assume the converse, then there existm0 ∈ N and sequences{(ζq, ξq)}∞q=1 ⊂ Ξm0 and

{ηq}∞q=1 ⊂ Rk satisfying|ηq − ξq | → 0 asq → ∞, andηq /∈ F(ζq, ξq,Bε̂m0
(0)) for all

q ∈ N. Since{(ζq, ξq)}∞q=1 is a bounded sequence, there is a subsequence{(ζqp , ξqp )}∞p=1

and a point(ζ , ξ) ∈ Ξm0 such that(ζqp , ξqp ) → (ζ , ξ) as p → ∞. By definition, put
ηp = ηqp , ζp = ζqp , ξp = ξqp , wheneverp ∈ N. From the definition of̂εm0, from (26),
and from Lemma 5.4, it follows thatF(ζ , ξ, ·) is a diffeomorphism ofBε̂m0

(0) onto

F(ζ , ξ,Bε̂m0
(0)). Hence there existsε > 0 such thatBε(ξ) ⊂ F(ζ , ξ,Bε̂m0

(0)). The con-

tinuous functionF(· , · , ·) is uniformly continuous on the compact setΞm0 × Bε̂m0
(0);

andηp → ξ, ζp → ζ , andξp → ξ asp → ∞. Therefore, there existsp0 ∈ N such that
for eachp � p0, p ∈ N, and eachλ ∈ Bε̂m0

(0) we have|F(ζp, ξp,λ) − F(ζ , ξ, λ)| < ε
2,

and|ηp − ξ | < ε
2. By F−1(ζ , ξ , ·) we denote the map ofBε(ξ) to Bε̂m0

(0) that is inverse

to the diffeomorphismλ �→ F(ζ , ξ, λ) of Bε̂m0
(0) to F(ζ , ξ,Bε̂m0

(0)). For eachp � p0,

p ∈ N, consider the map ofBε(ξ) to Rk given byη �→ η − F(ζp, ξp,F−1(ζ , ξ, η)) + ηp,

this continuous function maps the closed ballBε/2(ηp) ⊂ Bε(ξ) into itself. Then, from
the Brouwer fixed point theorem, we get the existence ofη∗

p ∈ Bε/2(ηp) such that

ηp = F(ζp, ξp,F−1(ζ , ξ, η∗
p)). Finally, defineλ∗

p = F−1(ζ , ξ, η∗
p), then, we obtain tha

for eachp � p0, p ∈ N there existsλ∗
p ∈ Bε̂m0

(0) such thatηp = F(ζp, ξp,λ∗
p). This

contradicts the definition of{ηp}∞p=1, {ζp}∞p=1, {ξp}∞p=1. The proof of Lemma 5.5 is com
plete. �

To simplify the notation, letχ = (ζ,α, ξ,β) ∈ R2k+2 meanζ ∈ Rk, α ∈ R1, ξ ∈ Rk,

andβ ∈ R1.

Lemma 5.6. For each∆(· , · , · , ·) ∈ C(R2k+2; ]0,+∞[) there exists a family{
v∆(χ, ·)}

χ∈R2k+2

of controls of classC1(I ;R1) such that

(a) The mapχ �→ v∆(χ, ·) is of classC(R2k+2;C1(I ;R1)).

(b) For eachχ = (ζ,α, ξ,β) ∈ R2k+2 we have

v∆(χ, t0) = α, v∆(χ,T ) = β; (28)∥∥v∆(χ, ·) − v(ζ,ξ)(·)
∥∥

L1(I ;R1)
< ∆(χ),

∥∥v∆(χ, ·)∥∥
C(I ;R1)

< R(χ), (29)

whereR(χ) = 2 max
{
|α|, |β|, max

λ∈Bε1(ζ,ξ)(0)

∥∥vλ(ζ, ξ, ·)∥∥
C(I ;R1)

}
+ 1. (30)

The proof of Lemma 5.6 is based on the theorem on the partitions of unity, and is s
to the construction of the families{ŵi(ξ, ·)}ξ∈RN from the proof of Lemma 5.2. We om
the proof of Lemma 5.6 due to space limits.

To each function∆(· , · , · , ·) of classC(R2k+2; ]0,+∞[) assign the family of control

{v∆(χ, ·)}χ∈R2k+2 obtained from Lemma 5.6 such that conditions (a) and (b) of Lemma 5.6
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e

hold. Then, to eachλ = (λ1, . . . , λk)
T ∈ Rk assign the family{v̂∆,λ(χ, ·)}χ∈R2k+2 of con-

trols of classC1(I ;R1) given byv̂∆,λ(χ, t) = v∆(χ, t)+∑k
j=1 λjwj (ζ, ξ, t), for all t ∈ I

andχ = (ζ,α, ξ,β) ∈ R2k+2. For eachχ = (ζ,α, ξ,β) ∈ R2k+2 and eachλ ∈ Rk such
that t �→ y(t, ζ, v̂∆,λ(χ, ·)) is defined for allt ∈ I, we put by definition:ŷ∆,λ(χ, t) =
y(t, ζ, v̂∆,λ(χ, ·)), t ∈ I ; and then, for eachµ = (µ1, . . . ,µk)

T ∈ Rk, by ẑ∆,µ,λ(χ, ·) we
denote the trajectory of the system

ż(t) = ∂ϕ

∂y

(
t, ŷ∆,λ(χ, t), v̂∆,λ(χ, t)

)
z(t) + ∂ϕ

∂v

(
t, ŷ∆,λ(χ, t), v̂∆,λ(χ, t)

)
w(t)

+
t∫

t0

[
∂ψ

∂y

(
t, s, ŷ∆,λ(χ, s), v̂∆,λ(χ, s)

)
z(s)

+ ∂ψ

∂v

(
t, s, ŷ∆,λ(χ, s), v̂∆,λ(χ, s)

)
w(s)

]
ds, t ∈ I, (31)

defined by the controlwµ(ζ, ξ, ·) := ∑k
j=1 µjwj (ζ, ξ, ·) and by the initial condition

ẑ∆,µ,λ(χ, t0) = 0∈ Rk. Define the families{
F̂∆(χ, ·)}

χ=(ζ,α,ξ,β)∈R2k+2 and
{
Ĝ∆(χ, · , ·)}

χ=(ζ,α,ξ,β)∈R2k+2

of maps fromRk andRk ×Rk , respectively, toRk as follows: for eachχ ∈ R2k+2, eachµ ∈
Rk, and eachλ ∈ Rk such thatt �→ y(t, ζ, v̂∆,λ(χ, ·)) is defined for allt ∈ I, by definition,

put F̂∆(χ,λ) = ŷ∆,λ(χ,T ), Ĝ∆(χ,µ,λ) = ẑ∆,µ,λ(χ,T ). In addition, we introduce th

following notation: for eachχ = (ζ,α, ξ,β) ∈ R2k+2 we put|χ | = |ζ | + |α| + |ξ | + |β|,
and for eachr > 0 byΥr we denote the setΥr := {χ ∈ R2k+2 | |χ | � r}.

Lemma 5.7. There exists a function∆(·, ·, ·, ·) ∈ C(R2k+2; ]0,+∞[) such that the follow-
ing statements hold:

(a) For each (χ,λ) in Ω1 := {(ζ,α, ξ,β,λ) ∈ R2k+2 × Rk | λ ∈ Bε1(ζ,ξ)(0)}, the tra-
jectory t �→ y(t, ζ, v̂∆,λ(χ, ·)) is defined for allt ∈ I, and, therefore,F̂∆(χ,λ) and
Ĝ∆(χ, ·, λ) are well defined.

(b) For eachχ = (ζ,α, ξ,β) ∈ R2k+2 the mapλ �→ F̂∆(χ,λ) is differentiable for allλ ∈
Bε1(ζ,ξ)(0), and for everyµ ∈ Rk, we have∂F̂∆

∂λ
(χ,λ)µ = Ĝ∆(χ,µ,λ).

(c) The maps(χ,λ) �→ F̂∆(χ,λ) and (χ,λ) �→ ∂F̂∆

∂λ
(χ,λ) are of classesC(Ω1;Rk) and

C(Ω1;Rk×k), respectively.
(d) For each(χ,λ) ∈ Ω1 we have

∣∣F̂∆(χ,λ) − F(ζ, ξ, λ)
∣∣ <

ε2(ζ, ξ)

2
;∥∥∥∥∂F̂∆

(χ,λ) − ∂F
(ζ, ξ, λ)

∥∥∥∥ < σ. (32)

∂λ ∂λ
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The construction of a∆(· , · , · , ·) such that conditions (a)–(c) hold is similar to th
of ε(· , ·) from Lemma 5.3. To comply with item (d) of Lemma 5.7, we use the sam
gument as [18, proof of Theorem 4, Step 5]. The input–output map of system (8)
map ofL∞(I ;R1) to C(I ;Rk)) being continuous w.r.t. the norms of spacesL1(I ;R1) and
C(I ;Rk), respectively, the left-hand sides of the inequalities from (32) are small en
whenever‖v∆(χ, ·) − v(ζ,ξ)(·)‖L1(I ;R1) is small enough andχ ∈ Ω1. Then, the construc
tion of the desired∆(· , · , · , ·) becomes similar to that ofε1(· , ·) andε2(· , ·) in Lemma 5.5.
We must omit the proof of Lemma 5.7 due to space limits.

Now we can complete the proof of Theorem 4.1. Using (26), item (d) of Lemma
the definition ofσ, and Lemma 5.4, we obtain that for each(ζ,α, ξ,β) ∈ R2k+2 the map
F̂∆(ζ,α, ξ,β, ·) is a diffeomorphism ofBε1(ζ,ξ)(0) onto the setF̂∆(ζ,α, ξ,β,Bε1(ζ,ξ)(0)).
Furthermore, from (26), it follows that for each(ζ, ξ) ∈ Rk × Rk the mapF(ζ, ξ, ·) is a
diffeomorphism ofBε1(ζ,ξ)(0) onto its imageF(ζ, ξ,Bε1(ζ,ξ)(0)) as well. ByF−1(ζ, ξ, ·)
we denote the diffeomorphism ofF(ζ, ξ,Bε1(ζ,ξ)(0)) onto Bε1(ζ,ξ)(0) that is inverse to
F(ζ, ξ, ·). From statement (c) of Lemma 5.7, (27), and (32), it follows that for e
(ζ,α, ξ,β) ∈ R2k+2 the mapη �→ F̂∆(ζ,α, ξ,β,F−1(ζ, ξ, η)) is well defined and con
tinuous at eachη ∈ Bε2(ζ,ξ)(ξ), and |η − F̂∆(ζ,α, ξ,β,F−1(ζ, ξ, η))| <

ε2(ζ,ξ)
2 for all

η ∈ Bε2(ζ,ξ)(ξ). Therefore, from the statement of [20, p. 277], we get the existenc
η∗ = η∗(ζ,α, ξ,β) ∈ Bε2(ζ,ξ)(ξ) such thatξ = F̂∆(ζ,α, ξ,β,F−1(ζ, ξ, η∗)). For each
(ζ,α, ξ,β) ∈ R2k+2, putλ∗(ζ,α, ξ,β) = F−1(ζ, ξ, η∗(ζ,α, ξ,β)); then,

ξ = F̂∆

(
ζ,α, ξ,β,λ∗(ζ,α, ξ,β)

)
. (33)

In addition, by the construction,λ∗(ζ,α, ξ,β) ∈ Bε1(ζ,ξ)(0), and the mapF̂∆(ζ,α, ξ,β, ·)
is a diffeomorphism ofBε1(ζ,ξ)(0) onto its image. From this, we get the uniqueness
λ∗(ζ,α, ξ,β) ∈ Bε1(ζ,ξ)(0) such that (33) holds. From statement (c) of Lemma 5.7
from the implicit function theorem, we obtain that the mapχ �→ λ∗(χ) is continuous a
eachχ ∈ R2k+2. For each(ζ,α, ξ,β) ∈ R2k+2 let v̂(ζ,α,ξ,β)(·) be the control given by

v̂(ζ,α,ξ,β)(t) = v̂∆,λ∗(ζ,α,ξ,β)(ζ,α, ξ,β, t) for all t ∈ I. (34)

It is clear that the family{
v̂(ζ,α,ξ,β)(·)

}
(ζ,α,ξ,β)∈R2k+2

given by (34) satisfies the statement of Theorem 4.1. Indeed, condition (e) of Theore
follows from (33) and from the definition of̂F∆; condition (d) follows from the continuity
of λ∗(· , · , · , ·), item (a) of Lemma 5.6, and the definition of{wi(ζ, ξ, ·)}(ζ,ξ)∈Rk×Rk . Fi-
nally, statement (c) follows from (28) and from the fact that all thewi(ζ, ξ, ·) satisfy the
homogeneous boundary conditions. This completes the proof of Theorem 4.1.�

Acknowledgments

This work was complete while the second author was visiting Institute of Mathematics and Informatics,
Moritz-Arndt University of Greifswald. Svyatoslav Pavlichkov is grateful for the warm hospitality provide

Prof. Dr. W.H. Schmidt, and Dr. V. Azmjakov.



V.I. Korobov et al. / J. Math. Anal. Appl. 309 (2005) 743–760 759

983)

al’nih
) 1628–

989)

ential

. 52

ystems

1991)

dback
ds.),

72.
ath.

esta-

stems,
7–312.
theory

991)

r. Sci.

, Sys-

619.
gular

gro-

kova

ystems,

ular

winkel
. 523–

orld

ystems,
References

[1] T.S. Angell, The controllability problem for nonlinear Volterra systems, J. Optim. Theory Appl. 41 (1
9–35.

[2] I.S. Astapov, S.M. Belotserkovsky, B.O. Kachanov, Yu.A. Kochetkov, O sistemah integro-differenci
uravnenij, opisivayushih neustanovivsheesya dvizhenie tel v sploshnoi srede, Differ. Uravn. 18 (1982
1637.

[3] K. Balachandran, Controllability of nonlinear Volterra integro-differential systems, Kybernetika 25 (1
505–518.

[4] K. Balachandran, P. Balasubramaniam, A note on controllability of nonlinear Volterra integro-differ
systems, Kybernetika 28 (1992) 284–291.

[5] V.F. Borisov, M.I. Zelikin, Chattering arcs in the time-optimal robots control problem, Prikl. Mat. Mekh
(1988) 939–946.

[6] S. Celikovsky, H. Nijmeijer, Equivalence of nonlinear systems to triangular form: The singular case, S
Control Lett. 27 (1996) 135–144.

[7] J.-M. Coron, L. Praly, Adding an integrator for the stabilization problem, Systems Control Lett. 17 (
89–104.

[8] B. D’Andrea, J. Levine, C.A.D. for nonlinear systems decoupling, perturbations rejection and fee
linearization with applications to the dynamic control of a robot arm, in: M. Fliess, M. Hazewinkel (E
Algebraic and Geometric Methods in Nonlinear Control Theory, Reidel, Dordrecht, 1986, pp. 545–5

[9] D.C.M. Dickson, H.R. Waters, Ruin theory, Inst. of Actuaries, Faculty of Actuaries, Dept. Actuarial M
and Statistics, Heriott-Watt, 1992.

[10] A.I. Egorov, P.I. Kogut, Ob ustoichivosti po sostoyaniyu sistemy integro-differencial’nyh uravnenij n
cionarnoi aerouprugosti, Vychisl. Prikl. Mat. (Kiev) 70 (1990) 112–121.

[11] R.A. Freeman, P.V. Kokotovic, Backstepping design of robust controllers for a class of nonlinear sy
in: Nonlinear Control Systems Design Symposium NOLCOS 92, Proc. IFAC, Bordeaux, 1992, pp. 30

[12] M. Fliess, J. Levine, Ph. Martin, P. Rouchon, Flatness and defect of nonlinear systems: introductory
and examples, Internat. J. Control 61 (1995) 1327–1361.

[13] Y. Hino, S. Murikami, Stability properties of linear Volterra equations, J. Differential Equations 89 (1
121–137.

[14] B. Jakubczyk, W. Respondek, On linearization of control systems, Bull. Acad. Sci. Polonaise Se
Math. 28 (1980) 517–522.

[15] P.V. Kokotovic, H.J. Sussmann, A positive real condition for global stabilization of nonlinear systems
tems Control Lett. 13 (1989) 125–133.

[16] V.I. Korobov, Upravlyaemost’, ustoichivost’ nekotoryh nelineinyh sistem, Differ. Uravn. 9 (1973) 614–
[17] V.I. Korobov, S.S. Pavlichkov, The global controllability of a class of the triangular systems in the sin

case, Math. Preprints Server (Elsevier Science) on 29.11.2003, submitted for publication.
[18] V.I. Korobov, S.S. Pavlichkov, W.H. Schmidt, The controllability problem for certain nonlinear inte

differential Volterra systems, Optimization 50 (2001) 155–186.
[19] A.M. Kovalev, Nelineijnie Zadachi Upravleniya i Nabludeniya v Teorii Dinamicheskih Sistem, Nau

Dumka, Kiev, 1980.
[20] A.B. Lee, L. Marcus, Foundations of the Optimal Control Theory, Nauka, Moscow, 1972.
[21] J.-S. Lin, I. Kanellakopoulos, Nonlinearities enhance parameter convergence in strict-feedback s

IEEE Trans. Automat. Control 43 (1998) 1–5.
[22] W. Lin, C. Quan, Adding one power integrator: A tool for global stabilization of high order lower-triang

systems, Systems Control Lett. 39 (2000) 339–351.
[23] R. Marino, Feedback linearization techniques in robotics and power systems, in: M. Fliess, M. Haze

(Eds.), Algebraic and Geometric Methods in Nonlinear Control Theory, Reidel, Dordrecht, 1986, pp
543.

[24] R.M. Murray, Trajectory generation for a towed cable flight control system, in: Proceedings IFAC W
Congress, San Francisco, 1996, pp. 395–400.

[25] K. Nam, A. Arapostathis, A model reference adaptive control scheme for pure-feedback nonlinear s

IEEE Trans. Automat. Control 33 (1988) 803–811.



760 V.I. Korobov et al. / J. Math. Anal. Appl. 309 (2005) 743–760

ducible
.
of non-
linear

SIAM

avnenij,

mah s

sistem

Trans.

Control

edback-
[26] S.S. Pavlichkov, The complete controllability of some classes of triangular systems which are not re
to the canonical form, Ph.D. thesis, Manuscript, V.N. Karazin Kharkov National Univ., Kharkov, 2001

[27] W. Respondek, Global aspects of linearization, equivalence to polynomial forms and decomposition
linear control systems, in: M. Fliess, M. Hazewinkel (Eds.), Algebraic and Geometric Methods in Non
Control Theory, Reidel, Dordrecht, 1986, pp. 257–284.

[28] A. Saberi, P.V. Kokotovic, H.J. Sussmann, Global stabilization of partially linear composite systems,
J. Control Optim. 28 (1990) 1491–1503.

[29] V.S. Sergeev, O neustoichivosti nulevogo resheniya odnogo klassa sistem integro-differencial’nyh ur
Differ. Uravn. 24 (1988) 1443–1454.

[30] V.S. Sergeev, Ob asimptoticheskoi ustoichivosti i otsenke oblasti prityazheniya v nekotoryh siste
posledeistviem, Prikl. Mat. Mekh. 60 (1996) 744–751.

[31] V.S. Sergeev, O neustoichivosti v kriticheskom sluchae pary chisto mnimyh kornei dla odnogo klassa
s posledeistviem, Prikl. Mat. Mekh. 62 (1998) 79–86.

[32] R. Shigui, Stability of Volterra integro-differential systems, J. Math. Anal. Appl. 137 (1989) 471–476.
[33] S.N. Singh, T.C. Bossart, Exact feedback linearization and control of space station using CMG, IEEE

Automat. Control 38 (1993) 184–187.
[34] S. Sternberg, Lectures on Differential Geometry, Mir, Moscow, 1970.
[35] J. Tsinias, A theorem on global stabilization of nonlinear systems by linear feedback, Systems

Lett. 17 (1991) 357–362.
[36] J. Tsinias, Triangular systems: A global extension of the Coron–Praly theorem on the existence of fe

integrator stabilisers, European J. Control 3 (1997) 37–46.

[37] V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, Nauka, Moscow, 1982.


