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Abstract
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1. Introduction

The Volterra equations appear in modeling various physical and engineering systems
(as examples, we mention the aero-elasticity problem [2] or actuarial mathematics [9]).
Despite a lot of works concerned with the Volterra systems without a control input (see, for
instance, [2,10,13,29-32,37]), the controllability problem for the Volterra systems has been
investigated by few authors. The first paper concerned with the controllability problem for
the \Volterra systems was [1], where an approach based on the reduction of the control-
lability conditions to the Kakutani fixed point theorem was proposed. The next works in
this direction were [3,4]. In these papers, a sufficient condition of the global controllability
was proven for linear integro-differential Volterra systems and for their nonlinear bounded
perturbations. The obtained results are a generalization of the well-known controllabil-
ity criterion for the linear systems of ordinary differential equations (ODE). However, for
the nonlinear Volterra systems, the controllability problem requires further investigation.
Thus, finding new classes of the nonlinear Volterra systems that are globally controllable
is of interest.

On the other hand, beginning with [16], the “triangular,” or “feedback” (or “pure feed-
back”) form is well known in the case of the nonlinear control systems of ODE (see [6,
7,11,14,15,19,21,22,25,27,28,35,36]). First, the triangular form is physically natural. To
explain this, let us consider two systems: {I= f(x, y) with statesx and controlsy,
and (Il) z = g(z, u) with statesz and controls:; then, by puttingz = y, we obtain the
“cascade” of (I) and (ll), i.e., the system of the triangular fotrs: f(x, y), y = g(y, u),
where(x, y)T is the state and is the control. Such chain structures, where the output of
a system affects the input of another system, appear in mechanical systems very often (for
example, see [5,12,24], etc.). Second, there are effective backstepping design procedures
which allow to construct stabilizing feedback laws for the triangular form [11,15,21,22].
Third, the triangular systems are closely related to the general feedback linearization prob-
lem [6,14,27], which arises both in general nonlinear control theory [6,12,14,16,27], and
in engineering problems [8,19,23,33].

Therefore, it is natural to begin the investigation of the nonlinear control systems of the
Volterra equations with the triangular systems as in the case of ODE. The controllability
problem for the Volterra systems of the triangular form was considered in [18] by the
current authors. However, the robustness properties of the constructed controls were not
discussed in this paper. In general, it is not clear how the open-loop control that steers a
given initial state into a given terminal one would be changed if the terminal or the initial
state were changed continuously or if we deviated from the prescribed route during the
driving. Nevertheless, it turns out that the construction proposed in [18] can be modified
essentially; in particular, the problem of robustness can be solved for the Volterra systems
of the triangular form. In the current work, we consider triangular systems of the \Volterra
integro-differential equations under more general conditions in comparison with [18]. For
this class, we construct a family of continuous open-loop controls parametrized by the
initial and the terminal states such that each element of this family steers the corresponding
initial state into the corresponding terminal one and depends continuously on them with
respect to the metric af ([ro, 71; R1). This remedies the above-mentioned deficiencies of
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the open-loop controls and allows us to prove the global controllability for the uniformly
bounded perturbations of our class.

Following most works devoted to the triangular systems over last 15 years, we use
“adding a differentiator” and some kind of backstepping to construct the desired controls
(see, for instance, [11,15,21,22,36]). However, our technique differs greatly from that of
the above-mentioned works: whereas the backstepping technique is used habitually for
constructingclosed-loop control$or systems ofDDE, we construct family of open-loop
controlsfor our systems ointegro-differential equations

2. Preliminaries

In this paper, we consider a control system of the Volterra integro-differential equations
t
x() = f(t,x(t), u(t)) + / g([,s,x(s), u(s)) ds, tel=|[t,T], Q)
fo

wherex = (x1,...,x,)T € R" is the statey € R! is the control, and functiong and g
have the following “triangular” form:

f(t7x1 l/l) = (fl(t,xl:x2)7 f2(t7x17x2,x3)7 ML) fn(ts-xl’ . "1xn7 M))T»

T
g(t,s, x,u) = (g1(t, 5, x1, x2), g2(1, 5, X1, X2, X3), ..., gu(t, 8, X1, ..., X, 1)) (2)
and satisfy the conditions:

() feCUxR"xRLRY, geCI?xR"xRLRY), &L e C(I x R" x RL; Ry,
U ec(I xR"xRYRY), % e C(12xR" xRY; R”X") 3g € C(I?xR" x RL R").
(ii) There existsz > 0 such that for eache I and eachx, u) e R"” x R we have

fl(txl,.. JXiv1)| =a>0, i=1,...,n—1,
0xi+1
%(txu) >a>0.

(iiiy For eachi =1,...,n and each compact s& C R’ there existdg > 0 such that for
all (r,s) € I2, (x1,...,x)T € K, y e R, ze Rt we have

lgi(t, s, x1, ..., xi, y) — gi(t, 5, x1, ..., xi, 2)| <Igly —zl.

Along with system (1), we consider its perturbation of the form

t

)'c(t)=f(t,x(t),u(t))+h(t,x(t),u(t))—i—/g(t,s,x(s),u(s))ds

fo
t

—l—/r(t,s,x(s),u(s))ds, tel, 3)

fo
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where functiong: andr satisfy the conditions:

(iv) he C(I x R" x RLR™), r € C(I? x R* x R R"), and for each compact sét c
R" x R there existd. o > 0 such that

|h(t, x uty — h(t, x2, u?)| < Lo (1xt — 22| + |ut — u?)),
|r(t, s, xtuty —r(r, 5, X2, u2)| < LQ(|)cl —x2| + |ut— u2|)

forall (r,s) € 1%, (x1, ul) € 0, (x2,u?) € Q.
(v) There existdd > 0 suchthath(z, x,u)| < H, and|r(t,s, x,u)| < H forall (z, s, x, u)
eI? x R" x RL,

For eachr® € R" and eachu(-) € C(I; RY) by 1 — x(z, x°, u(-)) we denote the trajec-
tory of (1), that is defined by this contral-) and by the initial condition (rg, x°, u(-)) =
x? on some maximal subinterval c 1. Throughout the paper, the abbreviation “w.r.t.”
means “with respect to.”

As in the case of ODE, we say that a system of the Volterra integro-differential equations
is globally controllable in timd = [zo, T'], iff for each initial statex® and each terminal
statex” there exists a contrai(-) that “steersc® into x” w.r.t. the system,” i.e., the trajec-

tory x(-) of the system with this contral(-) such thatx (rg) = x° satisfiesc(7) = x”".

3. Main results

Theorem 3.1. Assume that for syste¢h) functionsf and g have triangular form(2) and
satisfy conditiongi)—(iii) . Then there exists a family of contrdls o ,7)(-)} 0 7)err xR

such that the mapx®, x7) u0 1y () is of classC(R" x R"; C(I; R1)), and for each
(% xT) e R" x R" the trajectorys > x(t,x% u 0 ,7/() is defined for allr € I and
satisfies the condition(7’, x°, u o 7, (-)) = xT.

As a corollary, we obtain the following result.

Theorem 3.2. Assume that functiong andg have triangular forn(2), satisfy(i)—(iii) , and
satisfy the global Lipschitz condition w.rt.and u, i.e., there existd > 0 such that for
each(r, s) € I2, each(x1, u1) e R" x RY, and each(x2, u?) € R” x Rl we have

| £ xtuty — fe, 2% u?)| < L(1xt = 2+ Jut — u?)),
!g(l, s, xtuty — g(t, 5, X2, u2)| < L(|xl —x2| + |ut — u2|).

Suppose that andr satisfy(iv), (v). Then(3) is globally controllable in timg by means
of controls of clas€(7; RY).

In particular, the following statement, which is a generalization of the main result of
[18], is a mere partial case of the statement of Theorem 3.1.
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Theorem 3.3. Assume thalf and g have triangular form(2) and satisfy(i)—(iii) . Then
systerr(1) is globally controllable in time by means of controls of clag(/; RY).

Remark 3.1. We assume that andx; are scalar only to simplify the notation and to make
the argument clearer. For the case R™, x = (x1,...,xx)! € R", x; e R™, n =km, we
can replace condition (ii) with the following one:

(Il) Foreachi =1,...,k, and eacht, x1,...,x;) € I x R"™, fi(t,x1,...,x;, ) is a dif-
feomorphism oR™ ontoR™ such that the inverse diffeomorphidii(z, x1, ..., x;, -)
satisfies the following condition: for every compact s€tc R there exists
Ag > 0 such that|U; (¢, x1, ..., x;,v) — Ui (¢, x1, ..., xi, w)| < Ag|v — w] for all
(t,x1,...,x;)inI x K,veR™, weR™,

Then, using the same argument as below, we can prove Theorems 3.1-3.3 for each system
(1) such that (i), (II), and (iii) hold regardless of whetheandx; are scalars or vectors.

Example 3.1. Consider the following system:

X1 = 2x3 + sinxy + fé eSxo(s)ds + hq(t, x1, x2, 1)
+ Jorat. s, x1(s), x2(s), u(s)) ds, 1€[0,1], (4)
Xp=u+ho(t, x1,x2,u) + [ ra(t, s, x1(s), x2(s), u(s)) ds,

with stateg(x1, x2)7 € R? and controls: € R, whereh; andr; are arbitrary functions such

that (iv), (v) hold. If we hadh; (¢, x, u) = ri (¢, s, x,u) = 0 for all (¢, s) € [0, 1], x € R?,

u € R1, then (4) would be a mere triangular system satisfying the global Lipschitz condi-
tion w.r.t. (x, u), and we could refer to the results of [18]. However, if the perturbation does
not vanish, the results of [18] are no longer applicable. Nevertheless, by our Theorem 3.2,
system (4) being a bounded perturbation of a triangular system, it is globally controllable
in time [0, 1].

Example 3.2. Consider the system

0,11, 5
fo=ul+u+ [Mex2(s)u(s)ds, rel0dl ®)

{ X1= xg’ +x2+ fé e?$x1(s)x2(s) ds,
with states(x1, x2)” and controlsu. System (5) satisfies conditions (i)—(iii). Therefore,
by Theorem 3.1, there exists a famify o ,7)(-)}(;0 ,7)ecr2xr2 Of controls such that
(% xT) + ugo,r)() is of classC(R? x R? C([0, 1]; RY)), andu o0 ,7(-) steersx®
into x w.r.t. (5) whateven® = (x,x9)” e R? andx” = (], xI)" € R2 In particular,

(5) is globally controllable (Theorem 3.3), whereas the results of [18] cannot be applied
to (5) because the global Lipschitz condition w.¢t, u) does not hold for the right-hand
side of (5).



748 V.1. Korobov et al. / J. Math. Anal. Appl. 309 (2005) 743-760

Example 3.3. Let us show how Theorem 3.2 can work in the case of ODE. Consider the
system

{’flzfl(xZ)’ tel=lt,T], (6)
X2=uUu,

where(x1, x2)7 € R? is the statey € R is the control,f1(-) is given by f1(x2) = (x2 —
2sinx2)(1 — ¥ (x2)), and ¥ (-) is an arbitrary function of clas§1(R; R) such that 0<

Y) <L if xoeR; Y(x2) =0, if x2e R\ [-3,3]; andy(x2) =1, if xp € [-2,2].

System (6) is a uniformly bounded perturbation of the canonical systesixs, X2 = u.
Applying Theorem 3.2, we obtain that (6) is globally controllable in timeet us point out

that (6) is a triangular system of ODE but it is easy to prove that (6) is not globally feedback
equivalent to the canonical linear systém= z,, z2 = v. In particular, for system (6) the

usual regularity conditio@% # 0 does not hold; thus, we obtain the triangular form in

the so-called singular case (see [6,27]). This observation leads us to a more wide class of
the triangular systems of ODE in comparison with those investigated previously [6,16,27],
which is globally controllable, but the set of its regular points is no longer open and dense
in the state space. This question is studied in [17,26].

The paper is organized as follows. In Section 4, we prove that Theorem 3.2 follows
from Theorem 3.1, and then we reduce Theorem 3.1 to Theorem 4.1, Theorem 4.1 being
the main point of our approach. In Section 5, we prove Theorem 4.1.

4. Thereduction of the main resultsto a backstepping procedure

Let us first prove that Theorem 3.2 follows from Theorem 3.1. Denote by

{M(XO,XT)(.) }(xo,xT)eR" xR

the family obtained from Theorem 3.1. Take arfye R". Let y(x”,-) be the trajectory
of (3), defined by the contral o ,r,(-) and by the initial conditiory(x”, 10) = x©, when-
everx” e R". Putx(x”, 1) :=x(t,x% ug0,7)(-)) forall r € I andx” € R". Then, using
standard arguments based on the Gronwall-Bellman lemma, we get the existénselof
such that

|x(x”, 1) — y(x",1)| < D, whenever € I, andx” e R". (7)

Sincex(x”, T) =xT, we get|y(x”,T) — xT| < D for all xT € R". From Theorem 3.1,
it follows that the mapc” — y(x”, T) is of classC(R"; R"). Using the statement from
[20, p. 277], which is based on the Brouwer fixed point theorem, we obtain that for each
y! € R" there existsc” € R" such thaty(x”, T) = y7, i.e., the controk o .7, (-) Steers
x%into yT in time I w.r.t. (3). Finally, sincex € R* was an arbitrary initial state, this
completes the proof of Theorem 3.2.

Next, we reduce Theorem 3.1 to a theorem which roughly speaking states that the con-
trollability of a triangular system implies its controllability with any prescribed boundary
conditions for the controls.
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For each fixed =1, ..., n, consider the following control system:
1
Y0y =o(t, y@), v(1)) + f Y (t,s,y(s),v(s))ds, tel, (8)
Io

wherey = (x1, ..., x;)T € RK is the statey € R1 is the control, and

T
(p(t7 y? U) = (fl(t7'x11 x2)7 fz(t7‘xl’ ‘x27 ‘x3)7 A ] fk(t7xl’ .. "xk1 v)) b

T
Yt s, y,v) = (g1(t, s, x1, x2), g2(t, 5, X1, X2, x3), ..., &k (£, 8, X1, ..., X, v)) " . (9)

In other words, (8) is the-dimensional subsystem of (1), that consists of the first
k equations of (1), wheray1 is treated as the control. For eagfl € R¥ and each
v(-) € C(I;RY), lett — y(r, y°, v(-)) be the trajectory of (8), defined by the conttal)

and by the initial conditiory (fo, y°, v(-)) = y° on some maximal subintervdlc I.

Theorem 4.1. Assume thay and g are given by(2) and satisfy(i)—(iii) . Suppose that for
some fixed =1, ..., n and for systen8) with ¢ and+s defined by(9), there is a family of
controls{v(; )(-)} ¢ ¢)erkxr+ SUCh that

(a) The map given by, &) = v £)(-) is of classC (RF x R¥; € (I; RY)).
(b) For each(¢, &) € Rk x R, the trajectoryt > y(t, ¢, vc.¢)(-)) is defined for alk € 7
andy(T, ¢, v g)(-) =&.

Then there exists a family of control8 «.¢,5)()}(r,0., )Rk xRIxRExRT SUCH that the
following three conditions hotd

(c) For each (¢,a,&,B) € RF x Rt x Rk x R1, the control i, 4¢.4)(-) is of class
CYI;RY and i 6.5 (t0) = &, D.ae.p)(T) = B

(d) The map(¢, a, &, B) = Dr.a.e.p) () is of classC(RF x R x Rk x RY; ¢1(1; RY)).

(e) For each(¢,a, £, B) € RF x R x R¥ x RY, the trajectoryt > y(t, ¢, Dc.a.6.5) () IS
defined for allr € I and y(T', ¢, D¢ a.6,8) () =&.

Having proved Theorem 4.1, we can easily obtain Theorem 3.1 by inductionkover
Indeed, fork = 1, we may definey; ¢)(-) as the solution of the Volterra integral equation
(w.r.t. unknown functiorv(z))

t

d
SR n= Ja(t, x1(8, &, 0, 0()) +/g1(t, 5, %18, &, ), v(s))ds, tel,

fo

wherex1(¢, &, 1) = ;;T‘fo +é—nforallrel, (5,6 e R x RL Then, from (i)—(iii)
we obtain thatv £)(¢) is well defined for allr € I and satisfies (a)—(b). Assume that
for somek = 1,...,n — 1 there existdv(; &) (")} ¢)erixré SUCh that (a)—(b) hold, and

let {O,0.6.8) (D} (r,0.6. p)eR* xRIxRExRT D€ the family that satisfies conditions (c)-(e) of

Theorem 4.1. For each = ((¢,a), (£, 8)) € R¥ x Rl x Rk x RY, by definition, put
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v, 1) =y, ¢, 0¢aep (), t €1, and letu, (-) be the solution of the Volterra integral
equation

t
d R .
2 0= fir1(t, yOr. 1), 0y (1), () + / fia(t. 5, y(x, 8), 0y (5), u(s)) ds
0 (10)

w.r.t. unknown functioru(¢). Then (again, due to (i)—(iii))«, (-) is defined for allt € I
and the family of control$u, ()}, cre+1ri+1 Satisfies conditions (a)—(b) for the extended
(k + 1)-dimensional control system

V(O =@t y(O), xk41(0) + [ W (1,5, Y(5), xx+1(5)) ds,

X1 () = fiera(t, y(0), x42(0), u(1)) + f,; 8k+1(, 5, y(8), Xk41(s), u(s)) ds.
Thus, fork + 1= n, we obtain the family of controls satisfying Theorem 3.1.

5. Proof of Theorem 4.1

To prove Theorem 4.1, we follow the same way as in the proof of Theorem 4 in [18].
However, in contrast with [18], we have to deal with families of controls and trajectories.
This affects the formulations and the proofs of all the lemmas.

For eachy? € R* and each > 0, we putB,(y°) :={y e R¥ | |y — y°| < r}, and, for
A c Rk, by A we denote the closure of.

5.1. The controllability of families of linear systems

Consider a family of control systems of the following form:
t
2(t) = A, )z(t) + B, Hw() + /[C(s, t,5)z(s) + D&, 1, 5)w(s)]ds, (11)
fo

wherez = (z1, ..., zx)" € R is the statew € R is the controlg € RY is the parameter
of the family, matrixesA(-, -), B(-,-), C(-,-,-), andD(-, -, -) have the form

ai1(§,1) aiz(§,1) 0 .. 0
az(§,1) az(§,1) ax(.1) ... 0
A1) = : : : : ; (12)
ar-116,1) ar-12,1) ax-13,1) ... ar-1x(, 1)
ax1(§,1) ax2(§,1) a3, 1) ... aw(§,1)
c11&,1,5) c12(&,1, ) 0 . 0
c218,1,5) c22(8,t,5)  c23,t,5) ... 0
C(Evt’s): )
ck—118,1,8) cr-12(6,1,5) oo ck—1k(,1,8)
ck1(§.1,5) ck28,t,8) 3 &ts) ... (1)

(13)



V.1. Korobov et al. / J. Math. Anal. Appl. 309 (2005) 743-760 751

0 0
Ben=| i | DEns- : , (14)
ark+1(,1) crk+1(8,1,5)
aij(-,) € CRY x I;R), cij(-,-,) € C(RY x I%R). (15)

Givenz® e R¥, w(-) e C(I; RY), andé e RV, letr > z(z, 20, w(-), £) be the trajectory
of system (11) determined by, that is defined by the contralb(-) and by the initial
conditionz (o, 2%, w(-), &) = 2°.

The goal of this subsection is to prove the following lemma.

Lemmab5.1. Assume that familgd 1) satisfieg12)—(15) and foreachi =1, ..., k and each
(£,1) € RN x I we haveq;;,1(£,1) # 0. Then for each” € R¥, eachpg € R! and each
w € N there exists a family of controlsu (&, -)}zcgny such that the following conditions
hold:

(a) For eacht e R" the controlw(g, -) is of classC*(I; RY) and satisfies the boundary
conditionsw(&¢, T) = B; w(&, 1) =0.

(b) The mapt — w(é, -) is of classC(RN; CH(I; RY)).

(c) For eachs € RN we haver(T,0, w(&, ), &) =z".

The principal part of the proof is the following lemma.

Lemma 5.2. Suppose that famil§i 1) satisfieg12)—(15) and for eacty” e R¥ there exists
a family of control{w (&, -)}¢cgrv such that the following conditions hold

(@) The mapt — w(g, ) is of classC(R"; C(I; RY)).
(b) For eacht € RN we havez(T, 0, w(g, ), &) =z".

Then for eachy” € R¥, eachp € R! and eachu € N there exists a family of controls
{w(&, -)}gcrn such that the following conditions hold

(c) w(&,-) e CHU;RY, w(g, T) =B, andw(&,10) =0forall § e RV,
(d) The mapt — W(¢, -) is of classC (RN ; C*(I; RY)).
(€) z(T,0,w(&,-), &)=z forall £ e RV,

Arguing as above, we see that the reduction of Lemma 5.1 to Lemma 5.2 is similar to
that of Theorem 3.1 to Theorem 4.1. Therefore, to complete the proof of Lemma 5.1 we
need only to prove Lemma 5.2.

Proof of Lemma 5.2. Take anyB € RY, z7 € R¥, and € N. Let z%, ..., z¥*1 be in

Rk such that the interior irf of the simplexS = conv{z%, ..., zt*1} is not empty, and
7! eintS. Then there existk + 1) families of controls{v; (£, Neervs i=1,...,k+1,

such that:
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(A1) Foreach =1,...,k+ 1, the mapt — v; (£, -) is of classC(RY; C(I; RY)).

(A2) 7/ =z(T,0,v;(&,-), &), whenevei =1, ..., k+ 1 ands e RV.

Chooses > 0 such that, for each collectida’ }"Jrl C R¥, the conditionz’ € B,(z)), i =
1,....k+1, impliesz” eintconvz?, ..., Ak”} Our goal is to construai + 1) families

of smooth controls which satisfy the required boundary conditions, continuously depend
on¢ and steer @ R¥ into B.(z), i=1,...,k+ 1, forall € e RV. Put

R(S) - |:3| + ma.X H i (é,v: )”C(l Rl) + 1 (16)
M (&) := ”A(S’ ')HC(I;RI‘X") + HB(S’ ')HC(l;Rk) + ”C(E’ " ’)HC(IZ;kak)
+ HD(S, T ')”C(IZ;Rk) +1 7)
5(E) = min{ © . ,
2(4R(E) + T — 10)(M(§) + M (§)(T — 19))e! T ~10"+(T=10))M (&)
Tt } whenevek € RY. (18)

Using the well-known theorem on the partitions of unity (see, for instance, [34]), we get
the existence of + 1 families of controlw; (¢, )}scgpy, i =1, ...,k + 1, such that each

mapé — w; (£, -) is of classC (RN ; C#(I; R1)) and
|wi (&, ) — vi €, ')ch;m) <min{8®),1}, £eRY, ief{l....k+1}. (19)

Giveni € {1,...,k + 1} and& € RV, define the controi); (¢, -) by

wi (6,07 (5z3) if t € 10,70+ (51,
. w;(§,1) iftelro+0(). T —38(6)]
wi(§,1) = (1-r(= TJrzS(s)))wl(é " (20)
+r(%)ﬁ if 1e]T —68(),T),

wherer(-) € C*°(R; R) is some fixed function such thafs) =0, if s <0; 0<r(s) <1,
if0<s <1 andr(s) =1, if s > 1. From(A1) and from (15)—(18) it follows that functions
M (&), R(£) ands(€) are of clas<” (RV; 10, +o0c[); therefore from (20) we obtain that the
families {w; (&, Veery satisfy the conditions:

(A3) Wi(5,) € CH(I;RY), (5,100 =0, 0;(§, T)=Bforall eRY, i=1,... . k+1.
(A4) The mapt — w; (£, -) is of classC (RN ; C*(I; R1)), whenever € {1, ...,k + 1}.
(As) 1i (&, )lcryy < RE), foralli e {1,....k+1}, andé e RY.

For the sake of simplicity, by (&, -) and z/(¢,-) we denote the trajectories—
z(£,0,w; (§,9),&) andr — z(¢,0,v; (&, ), &), respectively, for ali =1,...,k + 1 and
£ € R*. Arguing as in [18] (see the proof of Lemma 2), from the Gronwall-Bellman
lemma, we obtain tha¥ (£, T) € B.(z)) foralli =1,...,k+ 1, £ € RY. Hence, by the
definition ofe > 0, for eacht € RY there exists (a unlque) CO||ECIIQRI*($)}k+l C Rsuch
that
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k+1

dDMNE =1 2E =0 i=1.  k+1L

k+1
Y oM®EE T =2" (21)
i=1
Putw(,t) := Zf.‘;rllkj‘@)zb,-(é,t), for all £ e RN andt € 1. Since each system (11) is
linear, we get
k+1 k41
(1,0, W(, ). &) = ZM‘(E)Z(LO, Wi (€, ), ) ZZAZ‘(S)?(SJ)-
i=1 =
Taking into account (21), we obtaif(7, 0, (£, -), &) = z! for all £ € RY. In addi-
tion, from (20), (21) and A3) it follows that each controli (¢, ) is of classC*(I; R1)
and satisfies the boundary conditions, T) = B, w(&, fo) =0, £ € RY. Thus, family
{w(, -)}¢crn satisfies conditions (c) and (e) of Lemma 5.2.
From (15), and(A4), it follows that each mag — 2/ (¢, T) is of classC(RV; R¥).
On the other hand, every collectu{)ﬂ }"Jrl Cc R¥ such that! € B,(z'), i =1,...,k+ 1,
determines a unique collectidgn; (21, . .. Ak“)}’“rl that satisfies the condmons

k+1
a0 Z/\i(il,---fkﬂ):l;

k+1

S ek, 2z =T (22)

and all the mappingsz?, ..., 250 — 1 2L, ... 25, i =1,..., k + 1, are of class
C(RF*+D. Ry, Indeed, (22) is equivalent to the system of linear algebraic equations
Y F a1 =51 = 27 — 2t wrt. unknown variables;, i =2, ..., k+ 1. By the definition

of ¢ > 0, the sef (3’ — z1)}*11 is a basis oR*. Thus, the solutlon of this nonsingular linear
system is uniquely determlned and depends continuously on the coefficients of the system.
Therefore, the maps— A7(§), i =1,...,k + 1, defined by (21) are of clagd(RV; R);

finally, it follows from (A4) and from the definition ofv (&, ) thaté — w(§, -) is of class

C(RN; C*(I;RY)), i.e., condition (d) of the statement of Lemma 5.2 holds as well. This
completes the proofs of Lemmas 5.2 and 5.1

5.2. Proof of Theorem 4.1

Let {v(c.6)(D}¢.6)err xre De @ family of controls such that conditions (a)—(b) of Theo-
rem 4.1 hold. Consider the following family éfdimensional linear control systems:

Z(f)— (f y(t, & v (), v, 5)(f))1(f)+ (f Y(t, ¢ v (), v e () w(r)
t

d
_{_/[%(t,s,y(s,{,v(;,g)('))7U(LS)(S))Z(S)

4]
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+ %(t s, y(s, Z, v(;_g)(-)), v(;,g)(s))w(s)i| ds, tel, (23)
where(z, £) € RF x R is the parameter of the family,= (z1, ..., z)T € RK is the state,
w € RY is the control. From conditions (a)—(b) of Theorem 4.1 and from (i), (ii) we ob-
tain that family (23) satisfies the conditions of Lemma 5.1. Then, from Lemma 5.1 it
follows that there exist families{w; (¢, &, )} (¢ g)erixrr> i =1, - .-, k, of controls of class
CL(I; RY) such that for each=1, ..., k the map(¢, &) — w; (¢, &, -) is of classC (R x
RK: c1(1; RY)), and for eacht, &) € RF x RK the controlw; (¢, &, -) steers 0= R¥ into
e;i =(0,...,0,1,0,...,00 e R¥ in time I with respect to (23) and satisfies the bound-
ary conditionsw; (¢, &, 1) = w; (¢, €, T) = 0. For each. = (A1, ..., \)T € R¥, define the
family of controls{v; (¢, &, V(. £)eRk xRE by vi (¢, &, 1) = v e ) + Z’;zl rjw;i(g,&,1),
forallr e 1, (¢,&) € R x RF.

For each(z, £) € R¥ x RF and each. € R* such that — y(z, ¢, vA (¢, €, ) is defined

forallt e I, puty, (¢, &,1) == y(t, ¢, va(¢, &, -), t € I. Foreachu = (ug, ..., i)’ € R,
by z,.,,.(¢, €, ) denote the trajectory of the system

0 0
i) = %(n V(6 ), 0 (8.6, D) 2(0) + %(n VL E D) 0 (8.6, D) w(D)

t
d
_{_/I:%(l, s, yk(§7 gv S), U)L(;’ %‘,S))Z(S)

fo

+ %(h s, (8, &,5), (¢, &, S))w(S)] ds, tel, (24)
defined by the controlv(-) := w, (¢, &, ) = Z’;Zl,ujwj(;,g, -y and by the initial con-
dition z,,,(¢, £, 10) = 0 € R¥. Define the families{F (¢. &, )} £)crexre and {G(¢. &,
- V.6 erixre Of maps fromRF andR* x R¥, respectively, tR¥ as follows: for each
(¢, &, 1, A) in R x RE x R* x R such that — y(t, ¢, v;.(¢, £, -)) is defined for alk € I,
PUtF (¢, &,2) :==.(¢, &, T), andG (¢, &, u, A) :=z,.2.(¢, &, T).

Lemmab.3.

(a) There exists a functiom(-,-) of class C(RF x R: 10, +o0[) such that, for each
(¢, &0 In 2 ={( &1 e RE x RF x RE | A € Byr6)(0)}, the trajectoryt
y(t, ¢, v (¢, &, ) is defined for allt € I, and, thereforeF (¢, &,A) and G(¢, &, -, A)
are well defined.

(b) For each (¢, &) € R* x RK the mapx — F(¢, &, ) is differentiable at every. €
Be(.6)(0), and 32X (¢, £, ) = G(£, &, ., 1), wheneven. € B ¢)(0), 1 € RE.

(c) The maps(¢, &,4) = (8, €,9), (¢, &,4) > F(, &) and (¢, §,0) — 55(2,€,3)
are of classe€ (£2; C(I; RY)), C(£2; RK) and C(£2; R*K), respectively.

Lemma 5.3 is a version of the standard statement on the differentiability of the input—
output map of a control system. It can be proved, for instance, by using the Gronwall—
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Bellman lemma (one can find this argument in [18], see the proof of Theorem 4 (Steps 2
and 3)). We omit the proof of Lemma 5.3 due to space limits.

We will use also the following lemma, which is a direct corollary of the well-known
Lagrange theorem.

Lemma 54 Assume thaB c R¥ is a convex open set, and for eathe B the Jakoby
matrix 3£ (1) of a mapF (-) € C1(B; R¥) is positive definite. Then,— F (1) is a diffeo-
morphlsm ofB onto F(B).

By the definition of{w; (¢, &, ‘)}(C’S)ERA Rt for each(¢, £) e RF x R* we haveG (¢, €,
ei,Mlr=0 = ¢;, i.e. (by Lemma 5.3)3E(;,£,0) = E, where E € R* is the identity
matrix. Fix someo > 0 such that each matrix € R¥** that satisfies the inequality
|A — E| < 20 is positive definite. For each > 0 we putZ, := {(¢, &) € R x R¥ |

g1+ 181 <r}.

Lemma 5.5. There exist1(-, -) and e2(-, -) of classC(RF x R¥: 10, +o0[) such that, for
each(z, £) e R x R, we obtain

1
gl(gaé) < Eg(gsé:)s (25)
‘ E;—i(i, E,0)—E| <o, wheneven € B¢ (0), (26)

Proof. Let us first prove the existence of(-, -). To do this it is sufficient to prove that
for eachm € N there existg,, € ]0, 5 Ming g)ez,, €(¢, £)[ such that for everyz, &) € &),
and every: € B, B: (0) we have|| (; &,)) — E|| < o. Without loss of generality, we can
assume that,,, 11 <&,, meN (otherW|se consided,, = minyg;<m &, m € N, instead of
&m). Then the functiory (-, -) given bye1(¢, &) = &mi1 + (Emt2 — Em+D) (S| + [E] —m)
forallm <|¢|+ €| <m+1, m >0, and(¢, £) € R* x R* will satisfy (25), (26).

Indeed, if such{g,};>_, does not exist, there isip € N such that for eaclt
10, %min({,g)egmo (¢, €)[ there exists¢, &) € &y, and € B;(0) satisfying the inequal-
ity || 3F(§ £,1) — E|| > 0. Hence, we get the existence of sequer{¢es sq)}j;o:l C By
and{x, } 2, CB: L min.e)czm 8(“)(0) such that, — 0 asg — +o0, and for allg € N we

have || 2£ £ (gq,éq, A¢) — E|| = 0. Choose a subsequen(z(egql,,sql,)};ozl of {(zq,sq)};‘;l
such that¢g,,, &;,) — (g ,E%)asp — oo for some(¢*, £* ) € Ey,. From Lemma 5.3 and
from the inequality|] 2£ o (qu,éq,,J»q,,) E|| > o we get|| (;*,S*, 0) — E|| > 0. Since
)\ E(c*, &*,0) = E, this contradicts the definition af (-, -, - ) and proves the existence of

e1(-, ) € C(RF x R¥; 10, +00[) such that (25) and (26) hold.

Let us prove the existence e(-, -) € C(R* x R; 10; +o0[) such that (27) holds for
all (¢, &) e R* x Rk, For eachn € N denotes,, = ming g)cz, €1(¢, €). Itis sufficient to
prove the existence dE,};,_; C 10, +oo[ such that for alln € N and (¢, £) € &, we

haveB;, (§) C F(¢,&, B;, (0)).
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Assume the converse, then there existe N and sequencegs,, sq)}‘q”;l C &y and
{ng};2, C R satisfying|n, — & — 0 asq — oo, andn, ¢ F (5. &g, Bz, (0) for all
g € N. Since{(¢,, Eq)}f;ozl is a bounded sequence, there is a subsequgnge éq,,)};’f:l
and a point(¢, &) € &y, such that(¢,,.&,,) — (¢,§) as p — oo. By definition, put
nf =ng,, ¥ =1¢,, §’ =§,,, wheneverp € N. From the definition oE,,,, from (26),
and from Lemma 5.4, it follows thaf'(¢, &, -) is a diffeomorphism OfBgmo (0) onto

F(¢,E, By, (0)). Hence there exists > 0 such thatBs(€) C F(¢,&, B; (0)). The con-

Emg
tinuous functionF (-, -, -) is uniformly continuous on the compact s&f,, x B;, (0);

andn? — &, ¢? — ¢, and§” — & asp — oc. Therefore, there existgo € N such that
for eachp > po, p € N, and each. Bgmo(O) we have|F (¢P, 6P, 1) — F(£, €, )] < 5,

and|n? — | < §. By F~1(¢, €, ) we denote the map dB; (&) to B;,, (0) that is inverse
to the diffeomorphism — F(¢, &, ) of B, (0) to F(Z,&, By, (0)). For eachp > po,

p €N, consider the map aB; (§) to R¥ given byn — n — F(¢P, &P, F~X(z, &, 1)) + n?,
this continuous function maps the closed bBdl>(n?) C Bs(§) into itself. Then, from
the Brouwer fixed point theorem, we get the existencenpfe B;/2(n?) such that
n? =F(P, &P, F7Y(Z, &, n})). Finally, definer’, = F~1(Z, €, %), then, we obtain that
for eachp > po, p € N there existsi) € B;, (0) such thaty” = F(¢7,£7,47). This
chJntradicts the definition qfnl’};":l, {;P}j’le, {SP};Ozl. The proof of Lemma 5.5 is com-
plete. O

To simplify the notation, lety = (¢, a, &, B) € R¥*2 mean; € R¥, o € R, £ e R,
andp e RL.

Lemma 5.6. For eachA(, -, -, ) € C(R%*2; 10, +o0[) there exists a family
fvatx, )} craez

of controls of clas€'1(7; RY) such that

(@) The mapy — va(x, -) is of classC(R%*2; c1(1; RY)).
(b) For eachy = (¢, «, &, B) € R¥*2 we have

va(x,to) =a, valx, T) = B; (28)
loate ) =veo Ol L gry <400, [vabt ) egiry < RGO, (29)
whereR(x) =2max |«|, |8], max |[v,(¢, &, ) i + 1 (30)

’ /\eBm(:,s)(O)H ’ HC(I’RI)]

The proof of Lemma 5.6 is based on the theorem on the partitions of unity, and is similar
to the construction of the familiga; (&, J}gern from the proof of Lemma 5.2. We omit
the proof of Lemma 5.6 due to space limits.

To each functionA(-, -, -, -) of classC (R%%2; 10, +-o0[) assign the family of controls
{va(X, )}, er2+2 Obtained from Lemma 5.6 such that conditions (a) and (b) of Lemma 5.6
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hold. Then, to each = (A1, ..., Ax)T € R¥ assign the family{v4 5 (x, )}y er2+2 of con-
trols of classC(7; RY) given byda ;. (x, 1) = va(x. 1) +Z’;=1xjwj(§, £,1),forallrel
and x = (¢, a, &, B) € R¥*2, For eachy = (¢,a, &, B) € R¥*2 and eachi € R¥ such
thats — y(¢,¢,04.2(x, ) is defined for allr € I, we put by definition:ya ,(x,t) =

y(t. ¢, 92,(x. "), t € I; and then, for each = (u1, ..., )" € R¥, by 24 5. (x, ) we
denote the trajectory of the system

dg
i) = y(t Fan(x: 1), 04 (x.0)z(t) + — ™ (s $ar G0 1, Dan G0 D)W ()

t
)
+/|:%(t, 8,925 8), D4 (x,9))z(s)

fo

a . A
+ %(r, 8, Yar(X,8), UA,A(X»S))w(S)] ds, tel, (31)

defined by the control,(¢,£,) := Z’;zlujwj(g,s,-) and by the initial condition
Za.u. (X o) = 0 € R¥. Define the families

{FA(Xa -)}X:({,a,g,ﬁ)ERZk+2 and {GA(Xv T .)}X:(C,a,g,ﬁ)eRZk+2

of maps fromrR* andR¥ x R¥, respectively, tdR* as follows: for eacly € R%*2, eachu e
Rk, and each. € R¥ such that — y(t, ¢, 94, (x, -)) is defined for alk € 1, by definition,
put Fa(x, ) = 54206 T)y Ga(x, 1, A) = Za..0.(x, T). In addition, we introduce the

following notation: for eachy = (¢, a, &, B) € R%**2 we put|x| = [¢| + || + |&] + |,
and for eachr > 0 by 7; we denote the séf;, := {x € R%+2 | |x| <r}.

Lemma5.7. There exists a functioa (-, -, -, -) € C(R%*2; 10, +o00[) such that the follow-
ing statements hold

(a) For each (x,2) in 21 :={({, &, &, B, 1) € R¥**2 x RF | ) € By (r6)(0)}, the tra-
jectoryt — y(1,¢,04.2(x, ) is defined for alls € I, and, therefore F4(x, A) and
G a(x, -, ») are well defined.

(b) For eachy = (¢, a, &, B) € R¥*2 the maph — Fa(x, A) is differentiable for allx €
Bey(c.6)(0), and for everyu € R¥, we have?Za 3FA e2La (y M= Galx, i, 1)

(c) The mapsx, 1) — Fa(x,A) and(x, ) — BFA (x, ) are of classe€ (£21; R¥) and
C(£21; R¥*%), respectively.

(d) Foreach(x, 1) € £21 we have

e2(¢,8)

|Fa(x,2) — F(&,6,0)| < 5

H BFA

oF
3_)\(4” ) (32)



758 V.1. Korobov et al. / J. Math. Anal. Appl. 309 (2005) 743-760

The construction of aA(-, -, -, -) such that conditions (a)—(c) hold is similar to that
of (-, -) from Lemma 5.3. To comply with item (d) of Lemma 5.7, we use the same ar-
gument as [18, proof of Theorem 4, Step 5]. The input—output map of system (8) (as a
map of Lo (I; RY) to C(I; R¥)) being continuous w.r.t. the norms of spaéag/; RY) and
C(I; R¥), respectively, the left-hand sides of the inequalities from (32) are small enough
wheneverva(x, -) — ve.5) (), :r1) IS Small enough angt € £21. Then, the construc-
tion of the desiredA(-, -, -, -) becomes similar to that ef (-, -) andea(-, -) in Lemma 5.5.

We must omit the proof of Lemma 5.7 due to space limits.

Now we can complete the proof of Theorem 4.1. Using (26), item (d) of Lemma 5.7,
the definition ofo, and Lemma 5.4, we obtain that for ea@h, &, 8) € R%*2 the map
FA(g o, &, B, ) is adiffeomorphism oB;, . £ (0) onto the seFA(g o, &, B, Bey(r,6)(0)).
Furthermore, from (26), it follows that for each, &) € R* x R* the mapF (¢, &, ) is a
diffeomorphism ofB,, ;) (0) onto its imageF (¢, &, B, (¢,£)(0)) as well. ByF~1(¢, &, )
we denote the diffeomorphism df(¢, &, B, (;,£)(0)) onto B, ) (0) that is inverse to
F(¢,&,-). From statement (c) of Lemma 5.7, (27), and (32), it follows that for each
(¢, a, &, B) € R¥*2 the mapy — Fa(¢,a, 5B F~ Lz, &, n) is well defined and con-
tinuous at eachy € Bg,(; £)(§), and |y — Fa(C, €, B, F ¢, &) < ng) for all
N € Bey(r,£)(§). Therefore, from the statement of [20, p. 277], we get the existence of

’7* = ’7*@7057-‘3» ﬂ) € BSz({',E)(s) SUCh thats = F’\A({’a’s’ ﬂv Fﬁl(gagv ’7*)) For eaCh
(¢ o, &, B) € R**F2 putrA*(¢,a, £, B) = F1(¢, &, 1" (¢, o, €, B)); then,

E=Fa(t, o8, B,0°(¢. 0.8, B)). (33)

In addition, by the construction,*(¢, o, &, B) € Bg, (7,6 (0), and the mapf“A(;, o, &, B,)

is a diffeomorphism ofB;,; £ (0) onto its image. From this, we get the uniqueness of
A&, 0, &, B) € Bgy(r,6)(0) such that (33) holds. From statement (c) of Lemma 5.7 and
from the implicit function theorem, we obtain that the map> A*(x) is continuous at
eachy € R%*2 For each¢,a, £, B) € R¥**2 let i, 4.¢ ) (-) be the control given by

ﬁ(g,a,g,ﬂ)(t) = ﬁA,A*(;,a,S,ﬂ)(Cs o, &, B,1) forallrel. (34)

Itis clear that the family

{’3@,0:,5,/3)(') }(;,a,g,ﬁ)eRZHZ

given by (34) satisfies the statement of Theorem 4.1. Indeed, condition (e) of Theorem 4.1
follows from (33) and from the definition of »: condition (d) follows from the continuity

of A*(-,-,-,), item (a) of Lemma 5.6, and the definition ©b; (¢, &, )} £)err xr¥- Fi-

nally, statement (c) follows from (28) and from the fact that all théz, &, -) satisfy the
homogeneous boundary conditions. This completes the proof of Theorem.1.
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