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Abstract

We investigate the typechecking problem for XML transformations: statically verifying that every
answer to a transformation conforms to a given output schema, for inputs satisfying a given input
schema. As typechecking quickly turns undecidable for query languages capable of testing equality
of data values, we return to the limited framework where we abstract XML documents as labeled
ordered trees. We focus on simple top-down recursive transformations motivated by XSLT and struc-
tural recursion on trees. We parameterize the problem by several restrictions on the transformations
(deleting, non-deleting, bounded width) and consider both tree automata and DTDs as input and out-
put schemas. The complexity of the typechecking problems in this scenario rangegTit@amto
EXPTIME.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

XML has emerged as the lingua franca of the V[Eb The main difference with semi-
structured data is the possibility to define schemas. In the context of the Web, such schemas
can be used to validate data exchange. In a typical scenario, a user community agrees on a
common schema and on producing only XML data conforming to that schema. This raises
the issue of typechecking: verifying at compile time that every XML document which is
the result of a specified query applied to a valid input, satisfies the output s¢eyaa]
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In the present paper, we focus on typechecking of XML to XML transformations. As types
we adopt the usual document type definitions (DTDs) and their robust extension: regular
tree languagefs,15,19]or, equivalently, specialized DT24,25] The latter serve as a
formal model for XML schemg8].

Obviously, typechecking depends on the transformation language at hand. As shown by
Alon et al.[2,3], when transformation languages have the ability to compare data values, the
typechecking problem quickly turns undecidable. However, Milo, Suciu, and Vianu argued
that XML documents can be abstracted by labeled ordered trees and that the capability of
most XML transformation languages can be encompassddpdabble transducers when
data values are ignordd9]. Further, the authors showed that the typechecking problem
in this context is decidable. More precisely, given two typgandr,, represented by tree
automata, and &-pebble transducef, it is decidable whetheF (r) € 1, for all 7 € 3.
Here,T (1) is the tree obtained by runniri on inputz. The complexity, however, is non-
elementary and cannot be improdg].

In an attempt to lower the complexity, we consider much simpler tree transformations:
those defined by deterministic top-down uniform tree transducers on unranked trees. Such
transformations correspond to structural recursion on tf@eand to simple top-down
XSLT transformationg4,7]. Such transformations are merely used for restructuring and
filtering, not for advanced querying (cf. Example The transducers are called uniform as
they cannot distinguish between the order of siblings. In brief, a transformation consists of
a single top-down traversal of the input tree where every node is replaced by a new tree
(possibly the empty tree).

The present paper gives an account of the complexity of the typechecking problem in
the latter setting. The complexity is measured in the sizes of the input and output schema
plus the size of the transducer. We parameterize the typechecking problem by the kind of
allowed schemas and tree transducers. For instance, for DTDs we allow right-hand sides to
be represented by DFAs, NFAs or formulas from a l@gitspecifying unordered languages.
Tree automata (abstracting XML schema) can be deterministic or non-deterministic.

In Section3, we discuss typechecking without any restriction on transducers. We show
that even for very weak DTDs (e.g., DTDs that use DFAs to represent regular languages)
the typechecking problem isxpTiME-complete. The main dominating factor is the ability
of the transducer to delete interior nodes (cf. Exantpléhere intermediate section nodes
are deleted). Therefore, we focus on non-deleting transformations in the remainder of the
paper. In Sectiod, we distinguish between tree automata and DTDs as schema languages.
In the case of tree automata, the complexity remaixisriME-hard. When considering
DTDs the complexity drops tespPACE when NFAs or DFAs are used to specify right-hand
sides; whers £-formulas are used the complexity dropsctanp. ThePSPACE lower bound
crucially depends on the ability of a transducer to make arbitrary copies of the input tree.
However, in practice this ability is rarely needed. Usually, the number of copies a transducer
makes is rather small (cf. Examplevhere the first rule makes two copies of every chapter).
Therefore, it makes sense to consider the class of transducers making atopuists where
k is a number fixed in advance. We show in Sectiainat even on this class, in the case
of tree automata and DTDs with NFAs, the complexity remaxesriME andpSPACE-hard,
respectively. Only when right-hand sides of rules are represented by DFAs, the typechecking
problem becomes tractable.
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Table 1
The presented results for tree automata: the top row of the table shows the representation of the input and output
schemas and the left column shows the type of tree transducer

NTA DTA
Deleting+ copying EXPTIME EXPTIME
Non-deleting EXPTIME EXPTIME
Non-deleting+ bounded copying EXPTIME In EXPTIME/PSPACE-hard

Table 2
The presented results for DTDs: the top row of the table shows the representation of the input and output schemas
and the left column shows the type of tree transducer

DTD(NFA) DTD(DFA) DTD(SL)
Deleting+ copying EXPTIME EXPTIME EXPTIME
Non-deleting PSPACE PSPACE CONP
Non-deleting+ bounded copying PSPACE PTIME CONP

In conclusion, our inquiries reveal that the complexity of the typechecking problem is
determined by three features: (1) the ability of the transducer to delete interior nodes; (2)
the ability to make an unbounded number of copies of subtrees; and, (3) non-determinism in
the schema languages. Only when we disallow all three features, wegetiacomplexity
for the typechecking problem.

An overview of our results is given in Tabldsand 2. Unless specified otherwise,
all complexities are both upper and lower bounds. The top rows of the tables show the
representation of the input and output schemas and the left columns show the type of tree
transducer. NTA and DTA stand for non-deterministic and deterministic tree automata,
respectively. DTIDX) stands for DTDs that uskE to represent their regular languages. The
exact definitions are given in Secti@n

Related workA problem related to typechecking is type inferefit®,24] This problem
consists in constructing a tight output schema, given an input schema and a transformation.
Of course, solving the type inference problem implies a solution for the typechecking prob-
lem: check containment of the inferred schema into the given one. However, characterizing
output languages of transformations is quite Hadj.

The transducers considered in the present paper are restricted versions of the ones studied
by Maneth and NevefiL6]. They already obtained a non-elementary upper bound on the
complexity of typechecking (due to the use of monadic second-order logic in the definition
of the transducers).

Although the structure of XML documents can be faithfully represented by unranked
trees (these are trees without a bound on the number of children of nodes), Milo, Suciu,
and Vianu chose to study-pebble transducers over binary trees as there is an immediate
encoding of unranked trees into binary ones, as shown in Se&titime top-down variants
of k-pebble transducers are well-studied on binary tf&8s However, these results do not
aid in the quest to characterize precisely the complexity of typechecking transformations on
unranked trees. Indeed, as we show later in Seétithe class of unranked tree transductions
cannot be captured by ordinary transducers working on the binary encodings. Macro tree
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transducers can simulate our transducers on the binary encd@ié)g&], but as very little
is known about their complexity this observation is not of much help. For these reasons, we
chose to work directly with unranked tree transducers.

Tozawa considered typechecking w.r.t. tree automata for a fragment of top-down XSLT
[31]. His frameworkis more general but he only obtains a double exponential time algorithm.
It is not clear whether that upper bound can be improved.

2. Definitions

The material in this paper is sometimes quite technical. To improve readability, we de-
ferred definitions and lemmas that are only needed in proofs to an appendix. In the present
section, we provide background on trees, automata, and uniform tree transducers which are
necessary to understand the results in this paper.

First, we introduce some preliminary definitions. By we denote the set of natural
numbers. We fix a finite alphabét A stringw = wj---w, is a finite sequence af-
symbols. The set of positions, or the domainyois Dom(w) = {1, ..., n}. The length of
w, denoted byw|, is the number of symbols occurring in it. The label of position w is
denoted by lali(i). The size of a sef, is denoted bysS]|.

Asusual, amon-deterministic finite automat§NFA) overXisatupleN = (Q, 2,9, I, F)
where Q is a finite set of states), : Q0 x ¥ — 2¢ is the transition function] € Q is
the set of initial states, anfl C Q is the set of final states. Aun p on N for a string
w € X* is a mapping from Dortw) to Q such thap(1) € (g, lab” (1)) for g € I, and for
i=1...,lwl—1,pG+1 €dph),lab”(i + 1)). Arunisacceptingf p(|lw|) € F.A
string isacceptedf there is an accepting run. The language accepted¥ iy denoted by
L(N). Thesizeof N is defined a$Q| + [2] + 3, ¢ 4ex 10(q, a)l.

A deterministic finite automatofDFA) is an NFA whergd(g, a)| <1 forallg € Q and
ael.

2.1. Trees and hedges

The set of unranked-trees, denoted by, is the smallest set of strings ovErand the
parenthesis symbols ‘) and ‘(' such that ferc X andw € 7;*, o(w) isin Tz. So, atree is
eithere (empty) or is of the fornw(z1 - - - t,,) where each; is a tree. The latter denotes the
tree where the subtrees . . ., 1, are attached to the root labeledWe write o rather than
a(). Note that there is no a priori bound on the number of children of a nodelitree;
such trees are therefoumaranked In the following, whenever we say tree, we always mean
2-tree. Atree languages a set of trees.

Later, we will allow hedges in the right-hand side of transducer rulesdaeis a finite
sequence of trees. So, the set of hedges, denotég g defined ag*.

For every hedgé € #s, theset of nodes of jdenoted by Dorth), is the subset oN*
defined as follows:

e if 1 = ¢, then Donih) = @; (the empty hedge has no nodes),
o if h =11---1, where each; € Tx, then Donth) = (J;_;{iu | u € Dom(t;)}; (iu refers
to nodeu in theith tree) and,
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e if h = o(w), then Donth) = {¢} U Dom(w) (if & is a tree then its domain consists of
the domain of the hedges and of the root).

In the sequel, we adopt the following convention: we useg, 2, . . . to denote trees and
h, h1, ha, ... to denote hedges. Hence, when we wikite- 11 - - - 1, we tacitly assume that
all t;’s are trees. For every € Dom(h), we denote by lahu) the label ofu in h. For
a hedgeh = 11---t,, top(h) is the string obtained by concatenating the root symbol of
everyt;.

2.2. DTDs

We use extended context-free grammars and tree automata to abstract from DTDs and
the various proposals for XML schemas. We further parameterize the definition of DTDs
by a class of representatiofd of regular string languages like, e.g., the class of DFAs or
NFAs. ForM € M, we denote by (M) the set of strings accepted by.

Definition 1. Let M be a class of representations of regular string languagesower
DTD is a tuple(d, s;) whered is a function that map&-symbols to elements of1 and
sq € X is the start symbol. For simplicity, we usually dengfes,) by d.

A tree satisfiesd if lab’ (¢) = s, and for everyu € Dom(z) with n children laB(u1)
---lalf (un) € L(d(labl (v))). By L(d) we denote the tree language accepted by

As we parameterize DTDs by the formalism used to represent the regular languages, we
denote by DTDM) the class of DTDs where the regular string languages are represented
by elements ofM. Thesizeof a DTD is the sum of the sizes of the elements\dfused to
represent the functioa.

To define unordered languages we make use of the specification langdaugpired by
Neven and SchwentidR1] and also used if2,3]. The syntax of the language is as follows.

Definition 2. Foreveryz € ¥ and natural numbera=" anda ! areatomicS£-formulas
true is also an atomié £-formula. Every atomicS£-formula is anS£-formula and the
negation, conjunction, and disjunction®L-formulas are als& £-formulas.

A string w over X satisfies an atomic formula™ if it has exactlyi occurrences of; w
satisfies: 27 if it has at leasi occurrences of. Further, true is satisfied by every stridg.
Satisfaction of Boolean combinations of atomic formulas is defined in the obvious way. By
wkE¢, we denote thab satisfiesSL-formula¢.

As an example, consider ts&-formula co-producef! — producef L. This expresses
the constraint that a co-producer can only occur when a producer occursiZEmé an
SL-formula is the number of symbols that occur in it (evetip a=' ora=! is written in
binary notation).

So, by DTDEL) we then denote DTDs where right-hand sides are represented by
SL-formulas.

1The empty string is obtained b, a=° and the empty set by true.
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2.3. Tree automata

We recall the definition of non-deterministic tree automata ff6fnWe refer the unfa-
miliar reader td20] for a gentle introduction.

Definition 3. A non-deterministic tree automaton (NTiéatupleB = (Q, 2, 6, F), where
QO is afinite set of state#; € Q is the set of final states, adds a functiond : 0 x > — 22"
such that (g, a) is a regular string language ov@rfor everya € > andqg € Q.

A run of B on a treer is a labelingl : Dom(t) — Q such that for every € Dom(z)
with n children,A(v1) - - - A(vn) € 6(A(v), labl (v)). Note that when has no children, then
the criterion reduces to € 6(A(v), lald (v)). A run isacceptingff the root is labeled with
an accepting state, that is(¢) € F. A tree is accepted if there is an accepting run. The
set of all accepted trees is denotedb§B) and is called aegular tree languageWhen
A(v) = ¢, we sometimes also say thatassigns; to v.

We extend the definition ofé to trees and hedges by defining a function
5*(h) - Hs — (22)* as follows:

e 0%(a) ={q | £ € 0(q. a)};

o 0" (a(ty--ty) =1{q | Iq1 € 6*(t1),...,3g, € 6" (t,) andgy - - - g, € 5(q, a)};
o 0M(t1---1y) = 0" (11) - - 6" (tn).

Note that a tree is accepted by if 6*(r) N F # @.

A tree automaton ibottom-up deterministiit for all ¢, ¢" € Q with g # ¢’ anda € X,
(g, a)Nd(q’, a) = . We denote the set of bottom-up deterministic NTAs by DTA. A tree
automaton igop-down deterministid for all ¢, ¢’ € Q with ¢ # ¢',a € X, andn >0,
d(g, a) contains at most one string of length

Like for DTDs, we parameterize NTAs by the formalism used to represent the regular
languages in the transition functiodg;, a). So, for a class\ of representations of regular
languages, we denote by NTA() the class of NTAs where all transition functions are repre-
sented by elements @f1. Thesizeof an automatom is then| Q|+|Z|+quQ,an |0(q, a)|.
Here, by|d(g, a)| we denote the size of the automaton accepiifag a). Unless explicitly
specified otherwisei(q, a) is always represented by an NFA.

2.4. Transducers

We next define the tree transducers used in this paper. To simplify notation, we restrict to
one alphabet. That is, we consider transductions mappitiges toX-trees. It is straight-
forward to define transductions where the input alphabet differs from the output alphabet
[16].

For a setQ, denote byHs(Q) (7=(Q)) the set of2-hedges (trees) where leaf nodes can
be labeled with elements frof.

Definition 4. A uniform tree transduceis a tuple(Q, X, ¢°, R), whereQ is a finite set of
states is the input and output alphabef € Q is the initial state, ana is a finite set of
rules of the form(g, a) — h, wherea € X, ¢ € Q, andh € Hz(Q). Wheng = ¢°, h is
restricted to7x (Q) \ Q.
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<xsl:template match="a" mode ="p">
<d>
<e/>
</d>
</xsl:template>

<xsl:template match="b" mode ="p">
<c>
<xsl:apply-templates mode="q"/>

</c>
</xsl:template>

</xsl:template>

<xsl:template match="b" mode ="qg">
<d>
<xsl:apply-templates mode="q"/>
</d>
</xsl:template>

Fig. 1. The XSLT program equivalent to the transducer of Exaréple

The restriction on rules with the initial state ensures that the output is always a tree rather
than a hedge. For the remainder of this paper, when we say tree transducer, we always mean
uniformtree transducer.

Example 5. Let T = (Q, X, p, R) whereQ = {p, q}, 2 = {a, b, ¢, d}, and R contains
the rules

(p,a) - d(e) (p,b) — c(g p)
(g,a) > cq (q,b) — d(q)

Our definition of tree transducers corresponds to structural recui@jand a fragment

of top-down XSLT. For instance, the XSLT program equivalent to the above transducer is
given in Fig.1 (we assume the program is started in mpgleNote that the right-hand side

of (g, a) — ¢ g is a hedge, while the other right-hand sides are trees.

The translation defined by = (Q, 2, ¢°, R) on a tree in stateg, denoted byl'? (r), is
inductively defined as follows: if = ¢ thenT9(¢t) := ¢;if t = a(t1---t,) and there is a
rule (g, a) — h € RthenT4(¢) is obtained fronh by replacing every node in % labeled
with p by the hedgd'?(r1) - - - T?(¢,,). Note that such nodescan only occur at leaves. So,
h is only extended downwards. If thereisno r@gea) — h € RthenT4(¢) := . Finally,
define the transformation ofby 7', denoted by (¢), aquO(t).

Fora € X,q € Q and(gq,a) — h € R, we denoteh by rhgg, a). We also use the
abbreviation rhs to stand for right-hand sideg linda are not important, we say thatis
arhs. Thesizeof Tis | Q| + |2] + Xy c 9 aex IThS(g, @)].
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Tp(t)

\
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5

Fig. 2. The translation of = b(b a(a a)b(a)) by the transducef of Exampleb.

Example 6. In Fig. 2 we give the translation of the treelefined as

//\
/\ |

a
by the transducer of Exampte

We discuss two important featurepyinganddeletion The rule(p, b) — c¢(g p) in
the above example copies the children of the current node in the input tree two times: one
copy is processed in stageand the other in state. The symbok is the parent node of the
two copies. So the current node in the input tree corresponds to the latter node. The rule
(g, a) — cq copies the children of the current node only once. However, no parent node is
given for this copy. So, there is no corresponding node for the current node in the input tree.
We, therefore, say that it is deleted. For instari¢&a (b)) = ¢ d whered corresponds to
b and not taa.

Example 7. We provide a less abstract example of a transformation. The following DTD
(DFA) defines a schema for books:

book — titte ,author T, chapter *
chapter —title ,introduction , section
section —title ,paragraph *,section *
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We use ‘,’ to denote concatenation. F§jdepicts a document conform to the given
schema. The following transducer makes a table of contents by generating for every chapter
of the book a list of its section titles. In addition, a summary of the book consisting of the
titte and introduction of each chapter is added.

(g0, book ) — book (p summary q)
(p, chapter ) — chapter p

(p, title ) — title

(p,section )— p

(g, chapter ) — ¢’

(¢’ title ) — title

(¢’, introduction ) — introduction

The rule(go, book ) — book (p ¢) makes two copies of each chapter, each of which is
processed in statgsandg, respectively. State recursively generates a list of titles. The
rule (p, chapter ) — chapter p allows to list these titles next to the chapter element
rather than below. Note that stgieleletes all intermediate section nodes. Sjajenerates
a list of all chapter titles together with their introductions. By using sjatere make sure
that the title of the book is skipped.

The output of the transformation, applied to the document in Fiig. the following
tree:

title
chapter

title

title

title
title

|

-  —————— chapter
book
~ — e
title
summary
title
introduction

title

introduction
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book
title or C apter\ chapter
) 5 — 1. ) ) — I~ .
title ‘Im se$tlon\ section title “introduction s;scugn
title paragraph S}ectign title paragraph title paragraph
title paragraph

Fig. 3. A document conforming to the schema of Example

2.5. The typechecking problem
We define the problem central to this paper.

Definition 8. A tree transducef typechecksv.r.t. to an input tree languag®, and an
output tree languagg&, if 7(¢) € Sout for everyr € Siy.

Definition 9. GivenSiy, Sout andT , thetypechecking probleronsists in verifying whether
T typechecks w.r.tSiy andSoyt.

Example 10. The transducer in Exampl@ typechecks w.r.t. the input DTD and the
following output DTD:

book — title , (chapter ,title *)*, summary, (title ,introduction ).

We parameterize the typechecking problem by the kind of tree transducers and tree
languages we allow. Lt be a class of transducers afde a class of tree languages.
Then TC[T, S] denotes the typechecking problem whé&tes 7 and Sin, Sout € S. The
size of the input of the typechecking problem is the sum of the sizes of the input and output
schema and the tree transducer.

Next, we define some classes of tree transducers based on the discussion on deletion and
copying following Examplé&. A transducer ision-deletingf no states occur at the top-level
of a rhs. We denote by, the class of all transducers and B4 the class of non-deleting
transducers. A transducg&rhascopying widthk if there are at most occurrences of states
inasequence of siblings in arhs. For instance, the copy width of the transducer in Example
is two. By BW; we denote the class of non-deleting transducers of bounded copying width
k. For a class of representations of regular string languadese write TC[/ ,M] rather
than TC[T, DTD(M)].

3. The general case

Inthe present section, we consider the complexity of the typechecking problem in its most
general setting. Thatis, without any restrictions on transducers: both deletion and unbounded
copying is allowed. We show that the problem igipTIME for the most powerful schema
languages, namely non-deterministic tree automata. However, the problem remains hard for
EXPTIME even for the weakest DTDs: DTDs where right-hand sides are specified by DFAs
or S L-formulas.



W. Martens, F. Neven / Theoretical Computer Science 336 (2005) 153—-180 163

The lower bound is obtained through a reduction from the intersection emptiness problem
of n deterministic tree automata which is known to be haragfmiME [27]. The transducer
starts by making copies of the input tree. Thereafter, it simulates a different tree automaton
on each copy. All processed nodes are deleted. The only generated output is an error symbol
when an automaton rejects. So, the output DTD merely has to check that an error symbol
always appears. The latter can be done by a very simple D Cefiormula.

The EXPTIME upper bound is obtained by a translation to typechecking of non-deleting
transducers. The latter is tackled in the next section.

Theorem 11. (1) TC[Tg, NT A] is in EXPTIME,
(2) TC[T,, SL] is EXPTIME-hard;
(3) TC[T,, DFA] is EXPTIME-hard.

Proof. (1) LetT = (Qr, 2, q% R7) be atransducer and l&t, and Aoyt = (Qa, 2, 4,

F4) be two NTAs representing the input and output schema, respectively. We next describe
a nondeleting transducef and an NTA Bgyt which can be constructed INOGSPACE,

such thatT typechecks w.r.tAj, and Agy iff S typechecks w.r.tAj, and Boyt. From
Theoreml12(1) it then follows that TCJ,,NTA] is in EXPTIME.

Intuitively, S outputs a # wheneveéf would process a deleting state. For instance, the
rule (g, a) — cq is replaced byg, a) — c#(q). We assume that # X. Formally,
S = (Qs, ZU{#,q2 Rs) with 05 = 07, ¢2 = ¢2, and for every ruldg, a) — t1-- -1,
in Rr, Rs contains the rulég, a) — t;---t,, where forevery = 1,....n, 1/ = #()
if ; € Qr and:] = r; otherwise. Then, define the #-eliminating functipias follows:
y(a(h)) is y(h) whena = # anda(y(h)) otherwise; furthery(ty---1,) = y(t1) - - - y(tn).
So, clearly, foralk € 75, T(t) = y(S()).

Next, we construcBoyt such thaty(r) € L(Aoy) iff + € L(Bout). The underlying idea is
quite simple. Inarunon@ - - - t,), Bout aSSigNs a stat@, g2, g, a) to the root when the
NFA for d4 (g, ) halts in statej, when processing t@p#(z1 - - - t,))) starting in statey;.
Here,q1, g2 are states of the automaton (g, a), ¢ is a state ofAgyt anda € 2. The
stateg and the labek are guessed. In a run iy - - - 1,,), with a # #, Boyt assigns a state
g to the root whem oyt assignsy to the root ofy(a(ty - - - t,)).

Let foreverya € ¥ andg € Q4, N9 = (Q99, Q 4, 6%, 179, F1-%) be the NFA such
thatds (g, a) = L(N??). We tacitly assume that aft?-¢ are disjoint. DefineBoyt = (Qp,
2U{#}, 0B, Fp),whereQp = QaU{(q1.92.9.a) | g € Qa,a € X, q1,92 € Q9“},and
Fp = F4.

Itremainsto definég. Thereto, fix; € Q4 anda € 2. Letl, F C Q%9“. LetM?-“(I, F)
be the automaton behaving in the same waiy/&$ with the initial and final states replaced
with I andF, respectively; further, whenreading atugje, g2, p, b) in stateg; the automa-
ton jumps to statg, whenp = ¢ andb = a, and rejects otherwise. Clearb9% (I, F) is
LOGSPACE constructible fronW?-¢. We then simply definéz (¢, a) := M?4(11:%, F1:%)
and d5((q1. g2. p. b). #) = MP*({q1}, {¢2}) for all statesq, (q1.42. p.b) € Qp and
a € 2. Itis not difficult to see thap(t) € L(Aow) iff ¢ € L(Bouwy)-

(2) We use areduction from the intersection emptiness problem of top-down deterministic
ranked binary tree automata (i = 1, ..., n), which is known to be hard faxxpTIME [27].

The problem is stated as follows, given top-down deterministic ranked binary tree automata
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A1, ..., A, is(i_; L(A;) = #? We define a transducé&rand two DTDs/in anddoyt such
that(\;_; L(A;) = @ iff T typechecks w.r.tdj; anddoyt. In the construction, we exploit
the copying power of transducers to makeopies of the input tree: one for eadh. By
using deleting states, we can execute efchn its copy of the input tree without producing
output. When am; does not accept, we output arror symbol under the root of the output
tree. The output DTD should then only check thaeamr symbol always appears.

Top-down deterministicanked binary tree automata are NTAs which operate on an
alphabet that is partitioned in internal labels and leaf labels. If a latsshn internal label,
the regular language¥q, a) are empty or only contain one string of length two and if it
is a leaf label, the regular languag®g, a) are empty or only contain the empty string.
So, such automata are defined over full binary trees, that is, all inner nodes have precisely
two children. Further, there is only one start state. Letifee 1, ..., n, the top-down
deterministic ranked binary tree automatatqe= (Q;, 2, 9;, {qé}).

First, we define the alphabet of the transducer.Xet {a1, ..., a;} and define; =
{aj; | a; € X}, fori = 1,2. The transducer is defined over the alphabgt= 2; U
2> U {$, error, ok}. The intuition is as follows, the root symbol of the input tree is labeled
with $ and has only one child, which corresponds to the root of a possible input far the
binary tree automata. Every other internal node has two children: a left and a right child
labeled with an element af; and X5, respectively. Using labels froh; and 2, allows
the transducer to distinguish a left from a right child by simply inspecting its label. Note
that the partitioning of leaf nodes and internal nodek &iso allows us to distinguish leaf
labels from internal labels ix'y.

Next, we define the input DTD. Formally, for every internal symbal X7 \ {error, ok},
definedin(a) = \/szl(Cil AC?). Here,(CEA Cj2) is theS £-formula expressing that there
are two children, one Iabeled/ with 1 and one withz; > meaning that the first child ig;
and the second ig;. Formally, fori, j = 1,...,k,

=4 =5y
c}:< A (al’l;l’)> and cf.:( A (aw”)),
=1,... .k =1,... .k

=1,..., =4,...,

wheredy; is the Kronecker deltady; = 1 if ¢ = i andd,; = O otherwise). Further, for
every leaf symbok € X7 \ {error, ok}, definediy (a) as the empty string. Finally, the start
symbol ofdi, is $ and definelin ($) = \/*_, C}. The size ofdin(a) is O(|1Z3).

The transducer = (Qr, 27, q?, R7) simulates in parallel the tree automata on the
input tree. When an automaton rejects, the transducer produces an error symbol. However,
using deleting states, it only produces output when a leaf node is reached. In this way only
avery simple DTD is needed to check whether an error occurred. The transducer is defined
as follows: Q7 = (J/_,(Q} U 0?), whereQ! = {¢/ | ¢ € Q;} for j = 1, 2. The intuition
is that states irQ-i’ should only be used to process tfth child. We tacitly assume that the
setsQ; are disjoint.Ry consists of the following rules:
° (q?, $ — $(qc-',l - ¢qp)- Recall tha% is the initial state of4;. So, this rule piga $ as

the root symbol of the output tree and starts the in-parallel simulation of tke
e Forallm,m" € {1,2} withm # m"andj € {1, ..., k}, add the ruleg™, a; ) — «.

Left children cannot be processed by right states and vice versa.
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o Letme(1,2},jef{l,....k},i e{l,...,n},andg™ € Q7. If a; is an internal symbol
andé;(q,a;) = ¢r, then we add the rulgg™, a;,,) — €12, If a; is a leaf symbol
andd;(q, a;) = ¢, then we add the rulgs”, a; ) — ok. In both cases, i§; (¢, a;) is
empty, we add the ruley™, a; ,,) — error.

Finally, definedout($) := error>1. Here, $ is the start symbol. It remains to verify the
correctness. Supposec ();_; , L(A)), thent’ € L(din) and T (¢') contains no error-
labeled node wherg is obtained from &) by changing the label of every first (second)
child labeledz; by a; 1 (a;2). Conversely, it € L(din) and7 (z) does not contain an error
symbol, thent’ € () L(A;) wheret’ is obtained fronr by dropping the $-labeled symbol,
rearranging children according to their index-number and then dropping the indices.

The proof of (3) follows from the one for (2) as the used can easily be expressed by
DFAs of the same sizes.l

4. Non-deleting transformations

The lower bound of the previous section severely depends on the ability of transducers
to delete interior nodes and to make an unbounded number of copies of subtrees. In an
attempt to lower the complexity, we restrict to non-deleting transformations in the present
section. We observe that when schemas are represented by tree automata, the complexity
remainsexpTIME-hard. When tree languages are represented by DTDs, the complexity of
the typechecking problem drops SPACE and is hard foPsPACE even when right-hand
sides of rules are represented by DFAs. When emplogifgormulas the complexity is
CONP. In summary, we prove the following results:

Theorem 12(1) T C[7Tng, NTA] is EXPTIME-complete
(2) TC[Tng, DTA] is EXPTIME-cOMplete

(3) TC[Tnd, NFA] is PSPACE-complete

(4) TC[7Tnda, DFA] is PSPACE-complete

(5) TC[Tnd, SL] is conP-complete.

We prove the different parts of the above theorem in the following subsections.

4.1. Tree automata

The proof establishing the upper bound is similar in spirit to a prof#2h, which shows
that containment of Query Automata iSERPTIME.

Theorem 12(1). T C[7Tng, NTA] is EXPTIME-complete.

Proof. Hardness is immediate as containment of NTAs is already hamkianMe [26].
We, therefore, only prove membershipERPTIME. Let T = (Qr, 2, q?, R7) be a non-
deleting tree transducer and f = (Qin, 2, din, Fin) and Aout = (Qout, 2, dout> Fout)
be the NTAs representing the input and output schema, respectively.
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Py:=0;
i:=1;
Py i={(61(a), f) | a € B,Yg € Qr : f(g) = 6 (T7(a)) };
while P, # Pi_; do
P={(S,1) | 3(S0, 1) -+ (Sns fo) € Py, Fa €%
S={p|3rk€Sk,k=1,...,n,71- T4 € din(p,a)},

Va € Qr : £(a) = dou(ths(a,a)lp — fi(p) -+ falp) | € Q1)) };
i:=1+1;
end while
P:=F;

Fig. 4. The algorithm of Theoreit2(1) computingP.

In brief, our algorithm computes the set

P={(S, )| SC Oin, f:0r — (2%u)* 3t such that
S =65 (1) and¥g € Qr, f(q) = 55, (T1(1))}.

Note that sincef (¢) = d5,(T%(¢)) andz is a tree? the length off (¢) is bounded by the
size of the largest rhs ifi. Therefore, the number of functiorfswe consider is bounded
by (2!QouthITI1O71 Intuitively, in the definition ofP, r can be seen as a witness(6f f).
Indeed, S is the set of states reachable Ry, at the root ofz, while for each state

of the transducerf (¢) is the sequence of sets of states reachabld y at the root of
T1(t). So, the given instance doast typecheck iff there exists a5, f) € P such that
Fn NS # ¢ and Foyt N f(q?) = @. As 747 (1) is always a treef(q?) is a subset of
Qout- In Fig. 4, an algorithm for computing@ is depicted. We will show that this algorithm
is in EXPTIME. Hence, typechecking is ilxpTIME. We explain the notation in Figt. By
rhs(g, a)[p < fi(p)--- fu(p) | p € Q7], we denote the hedge obtained from(ghs:)
by replacing every occurrence of a stateby the sequencgi(p)--- f,(p). By Sout :
Hs(22¢) — (22¢)* we denote the transition function extended to hedgé#:i22ow). To
be precise, fou € X, Sout(a) = {q | € € dout(g, a)}; for P C Qout, SOUI(P) = P; for
h=a(y---tn), 59ut(h) = {Q | Vi = 1’;' .»n,3g; € dout(ti) 1 q1- - qn € dout(g, a)}; and
forh =11---t,, Oout(h) = dout(f1) - - - dout(#,). The correctness of the algorithm follows
from the following lemma which is proved by induction on the number of iterations of the
while loop.

Lemma 13. A pair (S, f) has a witness tree of depihff (S, f) € P;.

Proof. Immediate fori = 1.

For the induction step, suppose that, for samevery pair is inP;_1 iff it has a wit-
ness of depthi — 1. Let (S, f) € P;, then, by definition, there is aln € X and a string
(81, f1) - (Sp, fu) € PrysothatS .= {p | 3Ir; € S;,j =1,....,n,r1---1y €
din(p.a)} and for everyqg € Qr, f(q) = douthsg.a)lp <« fi(p)- - fu(p)
| p € OrD. Hence,a(r1---t,) is a witness of(S, f), where each; is a witness for

(Sj, fi)-

2Recall thatr'? (1) is the translation of started in statq.
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Conversely, suppose thé, /) has awitness treg(r - - - 1,,) of depthi. By the induction
hypothesis, there exist tupl€S1, f1), ..., (Su, fu) € P;—1 such that; is a witness for

(S;j, fj) foreachj = 1,..., n. Considering the definition cfifout, it is then clear that the
algorithm of Fig.4 puts(S, f)in P,. O

It remains to show that the algorithm isipTIME. The setP; can be computed in time
polynomial in the sizes of\iy, Aoy, andT. As P; C P, 4 for all i, and there are!2n! .
(2!Qouth)ITHICTI pairs (S, f), the loop can only make an exponential number of iterations.
So, it suffices to show that each iteration can be dorex#TIME. Actually, we argue that
it can be checked ipsSPACE whether a tuplés, f) € P;.

Let (S, f) be a pair. We describe separately h$wand f are checked. It should be clear
how the two algorithms can be merged into @seACE algorithm. We start witls.

(1) Foreveryg € Qin anda € 2, let N9 be the NFA accepting those strin§s - - - Ry €
(22n)* for which there are; € R; such that1---r; € din(q, a). It is too expensive
to actually construct the automatadit-¢ as the alphabet is exponentially bigger than
the one ofdi, (¢, a). However, the set of states is the same. It is important to note that
given a sefR; and a state, the set of all states reachable frgniy readingR; can be
computed irPSPACE.

So, we need to check the existence ofzaa 2 and a stringZ := S1--- S, that is
accepted (rejected) by?“ forall g € S (¢ € Qin \ S). The latter can be achieved
in PSPACE by guessing am € X and then guessing one symbol at a time while
executing allN?-%’s in parallel for everyg € Qin. Indeed, for every automaton we
remember the set of states that can be reached by reading the préfiseei so far.
Initially, these sets are the respective initial states. Then, whenever § eguessed,
for each automaton the set of states reachable from a state from the remembered set by
readings;, is computed. By the discussion above the latter ISHACE.

(2) Checkingf is more technical. We use the guessed in the previous step. Denote
rhs(g, a)lp < fi(p)--- fu(p) | p € Q1] by &, .. Now, we need to check for all
g € Q7 whetherf(¢) = 5out(5q,a). Forall p € Qoutandb € X, let MP? be the NFA
accepting string®y - - - Ry € (220ou)* for which there are; € R;,i = 1,...,k, such
thatry - - - ¢ € dout(p, b). Again, we will not construct the latter automata. It is enough
to realize that given a state and Rrnc Qoyt, the set of states reachable from this state
by readingR can be computed iPSPACE.

First, assume every rig, a) is of the formb (g1 - - - q¢). Then,¢, , is of the form
b(wy---we) With w; = fi(g;) - -- fu(q;). SO, to check thaf (g) = dout(&y q), WE
need to verify thaty = wy ---w, is accepted (rejected) by ?-? for all p € f(q)

(p € f(q)). However, like in (1), our algorithm successively guesses rigswhile
forgetting the previous ones and should, hence, be able to run the automataon

this way. Asw consists of¢ parts we guesé sets of statesPi’”b, i=0,...,¢ where
Pé”b is the set of initial states af/7-*. The meaning of these sets is the following:
every automatom?-® reaches precisely the statesRﬂ’b after readingw1 - - - w;_1.
The algorithm can verify the latter criterion by running”? on eachw; separately

started in the stateBi’ﬁi and verifying whethePl.’”b is reached. Running/”-* on w;
can be done imsPACE as described in (1).
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When right-hand sides of rules can be arbitrary tre€g (@), we guess for every
inner node: in arhgg, a) a subser; " of Qout. Whenu is the root, therR“ = £(q).
Intuitively, these sets represent precisely the sets of states that can be reached at a node
by Aout. For leaf nodes, we defineR“ asdy () and as the sequenge(p) - - - f(p)
whenu is labeled withc and p, respectively. We then need to verify for every inner
nodeu labeled withb with n children, thatr?, - . . R{," is accepted (rejected) by 7+
forall p € R (p ¢ RY“). Again, the latter is checked as described above.
Finally, when right-hand sides of rules can be hedges, one needs to take into account
that f (¢) can be a sequence of sets of statds.
In the remainder of this section, we examine what happens when tree automata are
restricted to be deterministic. From the above result, it is immediate that,dCDTA]
is in EXPTIME. Hardness is obtained through a reduction from the intersection emptiness
problem of top-down deterministic ranked binary tree automata and is similar to the one
in Theoreml11(2): Aj, defines the same set of treesdgsdoes with the exception thatt,
enforces an ordering of the children. The transducer in the proof of Thebl@nstarts the
in parallel simulation of the automata, but then, using deleting states, delays the output
until it has reached the leaves of the input tree. In the present setting, we can not use deleting
states. Instead, we copy the input tree and overwrite the leaves with error symbols when an
automaton rejects. The output automaton then checks whether at least one error occurred.

Theorem 12(2). T C[Tnd, DTA] is EXPTIME-complete.

Proof. Fori =1,...,n,letA; = (Q;, 2, 0;, {q{)}) be top-down deterministic ranked bi-
nary tree automata. The transducer is defined over the alphiabet> 1 UX,U{$, error, ok}.
Here,X; ={a; |a € 2}, fori =1, 2.

First, we definedin = (Qin, 27, Sin, (g}, whereQin = {¢l, ¢2}. The intuition is that
Ajn accepts all trees($ where each node imin r has a left and a right child labeled with
elements o, andX,, respectively if lab(x) is an internal label, and has no children if
laly (u) is a leaf label. The transition function is defined as follows:

° 5in((]i}1, $ = Qi]r:]'

e Jin(gqiy, ai)) = gtg? fori = 1,2if a; € X; is an internal label.

° 5in(qiin,aj) = (¢ for all aj € Zq,’,l‘ % J.

e Sin(qi,,a;) =efori =1,2if q; € X; is aleaf label.

Note thatAj, is bottom-up deterministic.

The transducer = (Q7, 27, q?, R7) is defined similarly as in Theoretil(2): Q7 =
U'_1(Qtu 0?), whereQ¥ = {¢* | ¢ € Q;}.Again, the intuition is that states @ should
only be used to process thiéh child. R consists of the following rules:

° (q?, $ — $(q& ---q¢)- So, this rule put a $ as theoot symbol of the output tree and
starts the in-parallel simulation of thg’s.

e Forallj, j" € {1,2} with j # j’, add the ruleg’, @) — «.

e Letje{1,2},i {1, ...,n},andg’ € Q. If a; is an internal symbol and (¢, a) =
¢r, then we add the rulgy/, aj) — aj(ﬁlrz). If a; is a leaf symbol and; (¢, a) = ¢,
then we add the rulg;/, aj) — ok. In both cases, ¥, (¢, a) is empty, we add the rule
(qj, aj) — error.
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Finally, we define the output automatdi,: = (Qout. 27, Oouts {ge}) Which accepts all
trees with at least one error-labeled leaf. Formallyu: = {4, g.} anddoyt is defined as
follows: i € {1, 2},
5out(61m $) = CI::-
5out((le’ $) = qutqe qut-

Oout(qo. ai) = g foralla; € ;.

Oout(Ge, ai) = Qb qe Qb foralla; € ;.
dout(qe, €r1ON = &.

dout(go, OK) = &.

Again, Aoyt is bottom-up deterministic. [

4.2. DTDs

When we consider DTD(NFA)s to represent input schemas the complexity drops to
PSPACE. We reduce the typechecking problem to the emptiness problem of NTAs where
transition functions are represented by loop-free two-way alternating string automata, de-
noted 2AFAT. The complexity of the latter problem is iFsPACE (Theorem19 in the
appendix). Alternating and string automata are discussed in the appendix (Pet)idn
particular, the constructed NTA accepts precisely those trees which satisfy the input DTD
but are transformed by the transducer to trees outside the output DTD. Hence, the instance
typechecks if and only if the NTA accepts the empty language. The proof makes use of
two-way non-deterministic string automata, denoted 2NFA, which are also defined in the
appendix.

Theorem 12(3). T C[7Tnd, NFA] is PSPACE-cOmplete.

Proof. The hardness result is immediate as containment of regular expressions is known
to beprspACE-hard[28]. For the other direction, |&f be a non-deleting tree transducer. Let
din anddoy be the input and output DTDs, respectively. We construct an NTA(2ARA
such thatL.(B) = {t € L(din) | T(t) € L(dou)}- Moreover, the size oB is polynomial
in the size ofT, din, anddpyt. Thus,L(B) = @ iff T typechecks w.r.tdj, anddout. By
Theoreml9(2), the former is irPSPACE.
To explain the operation of the automaton, we introduce the following notiong. het
a state ofl anda € X then defing;(a) = top(rhsq, a)). For a stringw = a; - - - a,,, we
defineg (w) := g (a1) - - - q(a,). For a hedgé: and a DTDd, we say that partly satisfies
d if for everyu € Dom(h), lab’ (ul) - - - lab" (un) € L(d(lab*(u))) whereu hasn children.
Note that there is no requirement on the root nodes of the tréesdiance, the term partly.
Intuitively, the automatorB works as follows on € 7x: (1) B checks that € L(djn);
(2) at the same timeB non-deterministically picks a node € Dom(¢) and a state in
which v is processedB then accepts ift does not partly satisfyoyt, whererh is obtained
from rha(g, a) by replacing every statg by the stringp(lab' (v1) - - - lab’ (vn)). Here, we
assume that is labeleds and has: children. Asdg, is specified by NFAs and we have to
check thatdy is not partly satisfied, we need to check membership in the complement of
a regular expression. We therefore use alternation to specify the transition funcion of
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Additionally, asT can copy its input, it is convenient to use two-way automata. The latter

will become clear in the actual construction.

Formally, letT = (Qr, 2, q?, Rr). DefineB = (Qp, 2, Fg, 0p) as follows. The
set of stateg)? is the union of the following setsX, {(a,q) | a € X,q € Qr}, and
{(a,q,check | a € X,q € Qr}. If there is an accepting run on a treethen a node
labeled with a state of the form (a, ¢), (a, ¢, check has the following meaning:

a: v is labeled withu and the subtree rooted apartly satisfiesi,.

(a, g): same as in previous case with the following two additionsu () processed by
T in stateg; and, (2) a descendant ofwill produce a tree that does not partly satigfy;:.

(a, g, check: same as the previous case only nevtself will produce a tree that does
not partly satisfylyyt.

The set of final states iBp := {(a, q?) | a € X}. The transition function is defined as
follows: foralla,b € X, q € QOr:

(1) op(a,b) =dp((a,q),b) = dp((a,q, check, b) = @ forall a # b;

(2) dp(a,a) = din(a) anddp((a, q), a) consists of those strings - - - a, such that there is
precisely one indey € {1, ..., n} for whicha; = (b, p) ora; = (b, p, check where
p occurs in rhég, a) and for alli # j, a; € 2; further,ay---aj_1baji1---a, €
L(din(a)). Note thatog((a, g), a) is defined in such a way that it ensures that all
subtrees partly satsifyi; and that at least one subtree will generate a violation of
dout- Clearly, 0p(a, a) anddg((a, q), a) can be represented by NFAs whose size is
polynomial in the size of the input.

(3) Finally, 65((a, g, check,a) = {a1---a, | a1---a, € din(a) andh does not partly
satisfy L(dout)}. Here, h is obtained from rh@, a) by replacing every statg by
play---ap).

It remains to argue thaltz((a, ¢, check, a) can be computed by a 2AEAA of poly-
nomial size. We sketch the construction of this automaton. First, for évery2 and
m € {out in}, let A% be the NFA accepting,, (b).

For everyv in rhs(q, a), lets, be concatenation of the labels of the children obefine
the 2NFA N, as follows: suppose, is of the formzopiz1--- pez¢e Wherez; € 2* and
pi € Or,thenas ---a, € L(N,) if and only if

lab
zop1(ar---ap)z1--- pelar---an)ze € L(AG: @)

As s, is fixed, N,, can recognize this language by reading - - a,, ¢ times while simulat-

ing A{f‘g(”). More precisely, the automaton simulatelﬁff(”) onz;_1piai---a,) onthe

(i + Dth pass. Note thaV, does not loop.

It remains to describe the construction of the 24FA On inputas - - - a,, A first checks
whethera; - - - a, € L(A{,) by simulatingA{,. Hereafter A goes back to the beginning of
the input string, guesses an internal nede rhs(¢g, a) and simulates the complement of
N,.As N, is a 2NFA that does not loop is a 2AFA" whose size is linear in the size of
the N,’s. This completes the construction Bf [

The next result shows that typechecking remaissace-hard even when NFAs are
replaced by DFAs. The main source of complexity is the ability of transducers to make an
arbitrary number of copies.
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Theorem 12(4). T C[Tnd, DFA] is PSPACE-cOmplete.

Proof. The intersection emptiness problem of deterministic finite automata is stated as fol-
lows: given a sequence of DFA8; = (Q;, 2, d;,si, Fi),i =1,...,n,is(i_ L(M;) =

¢#? This problem is known to bespACE-hard[12]. We define a transducér = (Qr, 2 U

{#o, ..., #. ), qg, R7) and two DTDsdi, anddoyt such thafl” typechecks w.r.tdi, anddoyt

iff /oy L(M;) = 0.

The DTD diy has as start symbal and defines a tree of depth one where the string
formed by the children of the root is an arbitrary stringifi. The transducer makes
copies of this string separated by the delimitgrg3 = {q, q?} andRr contains the rules
(q?, s) — s(#ogtq - - - #,—19#,) and(q, a) — a, for everya € 2. Finally, doyt defines a
tree of depth one with start symhobkuch thatigy(s) =

{Howitrwoty - - - #,_1wy#, | 3j € {1,..., n} such thatM; does not accepb;}.

Clearly, doyt(s) can be represented by a DFA whose size is polynomial in the sizes of the
M;’s. Indeed, the DFA just simulates evea¥y on the string following # 1 till it encounters
#;. It verifies that at least on#; rejects. [

Next, we focus ors L-expressions as right-hand sides of DTDs. The complexity drops
to conp. Lemmasl?7 and18 are stated and proven in the appendix.

Theorem 12(5). TC[Tng, SL]is coNP-complete.

Proof. First, we prove the hardness result by a reduction from validity of propositional
formulas which is known to be complete foone [23]. Let ¢ be a propositional formula
over the variable®s, ..., v,. Set2 := {aa, ..., a,}. Definedi, as the DTD with start
symbolai defining depth one trees where the string formed by the children of the root can
be arbitrary. Intuitively, every string is a truth assignmenty; is true iff at least oney;
occurs inw. The transducef is the identity, andioy(a1) = ¢’ whered' is the formula
obtained fromp where every occurrence of is replaced bytl.> Yfori = 1,...,n.Clearly,
this instance typechecks iff is valid.

Next, we prove the upper bound. L& = (Q7, 2, q?, R7) and let (din, sin) and
(dout, Sout) be the input and output DTD respectively. We describsrmalgorithm guessing
a counterexample. In brief, we would like to guess an input treatisfyingdi,, a hode
v € Dom(¢) labeled witha and a statg € Q1 in whichwv is processed such th&f (a(w))
does not satisfyiyt. Here,w is the string obtained by concatenating the labels of the chil-
dren ofv. An immediate problem is that we cannot simply guess a whole te¢he size of
the latter might be exponential in the sizedyf. Therefore, we simply guess a path ending
in v which can be extended to a tree satisfyifygand a string of children with the desired
property. We explain this next.

First, we introduce some notation. For a DT® s;) anda € X, we denote byi¢ the
DTD d with start symbok, that is,(d, ). Let k be the largest number occurring in any
SL-formulaindiy or doyt. Setr := (k + 1) - | 2].
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The algorithm consists of three main parts:
(1) First, we sequentially guess a subbedf the derivable symbolg € X' | L(di’;) # 0},
(2) Next, we guess a path of a treedp. In particular, we guess a sequence of pairs
(ai,qgi) € Dx Qr,i =0,...,m,withm<|X]|-|Qr|, such that
(@) ao = sin andqo = ¢2;
(b) there is atree € L(din) and a node € Dom(r) such thatg - - - a,, is the concate-
nation of the labels of the nodes on the path from the root t:nd,
(c) foralli =0,...,m: T visitsq; in stateg;.
(3) Finally, we guess a string € D* of length at most such that7%" (a,, (w)) does
not partly satisfydout. As r can be exponentially large, we do not gueséself, but
a representation ab. Here, partly satisfaction is as defined in the proof of Theorem
12(3).
We describe in detail how the three parts can be implemented and show that the verification
of the guesses can be donepinME. As all the guesses can be done at the beginning, we
obtain anxp algorithm.
(1) We computeD as follows.
(a) Guessing phasguess a sequence of different symbals.., b, in 2. So,m’ < |2].
Guess vectorsy, ..., v,y Where eachy; = (¢4,..., ¢ ) e{0,....k+ 1)1 In-

tuitively, the vectomw; corresponds to the strinlé1 e bf"_‘f. So, we interchangeably
talk about the vector and the string Note that somég. may be zero.
(b) Checking phasdroreach = 1, ..., m/, testthat the string; satisfiesii, (b;). Note
that this can be done TIME.
Let S; = {b; | j<i}. From Lemmal?, it follows that if there is a stringv in S}
such thatw satisfiesdjn (b;) then there is one such that each symbol occurs at most
k + 1 times. Hence, it suffices to guess vector§dn . ., k + 1} ~L. Finally, a simple
induction shows thab C {b € X | L(d}) # 7).
(2) The requirement (a) can easily be checked. (c) can be checked by verifyigg,that
rhs(g;, a;) for all i. Let D = {b1, ..., bip|}. To test (b), it suffices to guess a vector
vi = (L1, ..., Lp) €10,...,k+ 1}/PI foreveryi € {0, ..., m — 1} such that; # 0

whena; 1 = b; and test Whethdff_l . ~bf,§’|‘ satisfiesiin (a;). As every symbol is iD,
the path can be expanded to a tree satisfyjndBy Lemmal?, it follows that guessing
vectors of that size suffices. The upper bouyad- |Qr| onm can be obtained by a
simple pumping argument.

(3) Before we describe the last part of the algorithm, we make the link explicit between
the transducef’, the functionf and thec’s described in Lemmd8. We start with
some notation. Lej be a state of” anda € X then defingy(a) := top(rhs(q, a)). For
a stringw = as - - - a,, we defineg(w) := g(a1) ---q(ay). Fora € X andw € X%,
we also define #w) to be the number of’s occurring inw. Letg € Qr,a € 2
and letu be a node in rhg, a). Letz = zop1z1- - - pez¢ be the concatenation of the
labels of the children of, such thatp; € Q7 andz; € 2*. For everys € 2*, define

1% (s) as the string obtained fromby replacing every; by the stringp; (s). Now,
we define the’s corresponding to,“ (s). For everyb € X, setc” := #,(z) and for
everye € X, setcé’ = Zﬁ.:l#;,(pj(e)). Clearly, for everyb € X and everys € X*,

#y(fil () =P+ 3 e (ch - #(9)).
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So, the algorithm guesses a nade rhs(g,,, a,,,). We do not guess a string but
rather a vectorifl, . .., k+1}'*| representing such a string (as in the previous bullets).
We check whether,/“" (w) does not satisfyloyt(a) where the label of: is a. Take
fasfim ¢, asdin(an), andeg, asdoyt(a). Then from Lemmad.8, it follows that it
suffices to guess a string represented by a vectgt,in ., k 4+ 1}/¥!. This completes
the description of the algorithm.[

5. Transducers of bounded width

As can be inferred from Theorefr?, disallowing deletion lowers the complexity of the
typechecking problem in the presence of DTDs. Unfortunately, the problem still remains
intractable. In the context of DTD(DFA)s, the high complexity is a consequence of the
copying power of transducers (cf. the proof of Theorg®)). Therefore, we bound in
advance the width of transducers by only considering transducers in theleggor
a fixedk (cf. Section2.5). In the case of DTD(DFA)s we then finally obtain a tractable
scenario.

Theorem 14. (1) TC[BW;y, NTA] is EXPTIME-complete
(2) TC[BWy, NFA] is pSPACE-complete
(3) TC[BWy, DFA] is PTIME-complete
(4) TC[BWYy, SL] is coNnp-complete.

The lower bounds of (1), (2), and (4) follow immediately from the construction in the
proofs of Theoreni2(1), (3), and (5).

Theorem 14(3). TC[BWq, DFA] is PTIME-complete.

Proof. A pTIME lower bound is obtained by a reduction framTH SYSTEMS [9]. PATH
SYSTEMS is the following decision problem. Given a skfa setA € P of axiomas, a set
R < P2 of inference rules and some € P, is p provable fromA using R? Let p be
the start symbol ofii,. Further, for everya, b, ¢) € R, din(c) = {ab}; for everya € A,
din(a) = {e}. Let L(doyt) be empty and lef’ be the transducer that copies the input tree.
ThenT typechecks w.r.di, anddyy iff p has no proof.

Inthe proof of Theorert2(3), TC[7ng,NFA] is reduced to the emptiness of NTA(2AE)s.
In that proof, alternation was needed to express negation of NFAs; two-wayness was
needed becausE could make arbitrary copies of the input tree. However, when trans-
ducers can make only a bounded number of copies and DFAs are usé&i\VEI)FA] can
be LoGsPaCE-reduced to emptiness of NTA(NFA)s. From Theor#@{l), it then follows
that TC[BWy,DFA] is in PTIME. [

6. Ranked versus unranked

We briefly motivate why we use unranked transducers rather than their more deeply
studied ranked counterparts.
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Fig. 5. An unranked tree and its binary encoding.
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Fig. 6. (a) and (b) are unranked trees. (c) and (d) are their binary encodings respectively.

It is known that unranked trees can be uniformly encoded as binary trees. However,
we argue that unranked tree transducers cannot be simulated by deterministic top-down
ranked tree transducers on binary trees using the standard encoding. As mentioned in the
introduction, macro tree transducers can simulate our transducers on the binary encodings
[11,16] but as very little is known about their complexity this observation is not of much
help.

For an illustration of the standard encoding, see, e.g.,3-iflhe encoding is denoted
by encand the decoding bglec Intuitively, the first child of a node remains the first child
of that node in the encoding, but it is explicitly encoded as a left child. The remaining
children are right descendants of the first child. Note that we allow a node to have a right
child without having a left child, but this issue can easily be resolved by inserting dummy
symbols in the encoding.

A formal definition of deterministic top-down ranked tree transducers can be found in
[13]. In Fig. 6, we show two tree languages s arbitrary) and their binary encodings.

Let L1, Ly, L3 and L4 be the tree languages represented by the trees in 6{ajs6(d),
respectively.
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The languagd.; can be transformed th, by the tree transducef = (Q, 2, ¢°, R)
whereQ = {¢°, ¢*, ¢}, X = {a, b, ¢}, andR contains the rules

% a) = al@®q)  (¢".b)—>b  (¢°.b) - c.

Basically,b" is transformed té" ¢". However, as we argue neXtz cannot be transformed
to L4 by a deterministic top-down ranked tree transducer. For artrieg pathz) be the
set of all strings formed by concatenating the labels of a pathfrom the root to a
leaf. For a tree languagk, define the string language path = {pathr) | r € L}.
Given a regular tree languadeand a deterministic top-down ranked tree transduter
the language pati® (L)), whereR(L) = {R(¢) | t € L}, is regularf13, Corollary 20.13]
Since patL4) = {ab"c" | n>1} andLgzis aregular tree languagg, cannot be the result
of applying a deterministic top-down ranked tree transducérto

7. Conclusion

Motivated by simple transformations obtained by using structural recursion or XSLT, we
studied typechecking for top-down XML transformers in the presence of both DTDs and tree
automata. In this setting the complexity of the typechecking problem rangegfismto
EXPTIME. In particular, when tree automata are used in specifying schema languages, there
is no hope for tractable algorithms. Indeed, in all considered scenarios, the typechecking
problem remainsxpTIME-hard. The situation differs when we look at DTDs. We identified
three sources of complexity: (1) deletion; (2) unbounded copying; and, (3) non-determinism
in schema languages. Hence, we only obtainetde typechecking algorithm when no
deletion is allowed, the amount of copying is fixed in advance, and when DTD(DFA) are
used to represent schemas.

Though the presented results shed some light on precisely which features determine the
complexity of typechecking, it fails to identify relevant fragments for which typecheck-
ing is tractable. Indeed, although it makes sense to limit copying in advance, disallowing
deleting completely is not very sensible as deleting occurs in many simple transformations
(cf. Example?).

Establishing tractable and practically relevant fragments is the topic of a subsequent paper
[17]. Building further on the results of this paper, we obtain relevant tractable scenarios by
enforcing combined restrictions on the deleting and copying power of transducers and by
considering restricted DTDs. We also incorporate XPath expressions. As a byproduct of our
new results we obtain that the complexity of TB4,,DTA] is EXPTIME-hard.

Appendix A.
A.1. Alternating string automata

We discuss two-way alternating string autona®. To prevent automata falling off the
input string, we use delimitets and<i not occurring inx. By 2.  we denoteX U {>>, <1}.
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We tacitly assume that and<i only occur on the left and right end of the string, respec-
tively.

Definition 15. A two-way alternating automatois a tupleA = (Q, XY=, 0,1, F,r,U)
where

Q is a finite set of states;

I, F, U are subsets ap and are the sets of initial, final and universal states, respectively;
r € Q\ F isthe rejecting state;

5:0 x Xpogq — 22%t<— >} |s the transition function.

A configuratiorof A onastringy = >ws - - - w,_1<isapair(j, g), wherej € Dom(w)
andg € Q. Intuitively, j is the current tape position agds the current state. A configuration
(j, q) isinitial (acceptingif g € I (¢ € F)andj = 1 (j = |w]|). A configuration(j, ¢) is
universal(existentia) if ¢ € U (¢ € Q — U). Giveny = (j, ¢) andy’ = (j', ¢’), we define
thesteprelationt- on configurations as followsty’ iff (¢’, d) € d(q, a), lab”(j) = a, and
j=j—-1,j=j,orj=j+1iffd =«,d =—, ord =, respectively. We assume
that an automaton never attempts to move to the left (right) of a delimiiet). Further,
we assume that only reaches a final state at the delimieand that a computation branch
of A only rejects by reachingat the delimiteri. Note that because of this last convention,
the transition function of a two-way alternating finite automaton is complete, that is, for
alla e 2U{>},q € 0,(q,a) #@andforallg € O\ ({r}UF), (g, <) # @. For
a configurationy, ay-run of A on a stringw is a (possibly infinite) tree where nodes are
labeled with configurations as follows:

(1) the root is labeled with;

(2) everyinner node labeled with an existential configuratibas exactly one chilg and
7k’ and,

(3) letforany universal configuration{y,, ..., y,,} := {7/ | y '}, then every inner node
labeled withy has exactlyn children labeledy, ..., ,,.

An acceptingy-run is ay-run which does not contain an infinite path and where every

leaf node is labeled with an accepting configuratiomuA is ay-run wherey is an initial

configuration. The language acceptedAys defined ad.(A) := {w € 2* | there is an

accepting run ofA on>w<1}. Thesizeofa A is |X| + |Q| + quQ,an |6(q, a)l.

We denote by 2AFA the class of all two-way alternating finite automata. We sayithat
loopson w if there is a run onw which contains an infinite path. An automaton is then
loop-freewhen it never loops. We denote the class of loop-free two-way alternating finite
automata by 2AFA. Note that 2AFA accept only regular string languag#4]. A two-way
non-deterministic automaton, denoted 2NFA, is a 2AFA wliére ¢.

The construction in the next lemma is a slight adaptation of a construction from Vardi
[32]. In Theoreml9, we use an on-the-fly construction of the automatboonstructed in
this proof. Although the lemma appears in the literature without a restriction to loop-free
automatd10], it is not clear how to adapt it to an on-the-fly algorithm.

Lemma 16. Let A be an2AFA// | then there exists an NFAX whose size is exponential in
the size ofA such thatL(N) = L(A).
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Proof. Let A = (Qa,Z5q. 04, Ia, Fa,ra, Us) be an 2AFA. We construct an NFA
N = (On, Zea, 0w, In, Fy) with Q = (224 x 294), Iy = (@, U) | U N 1 # 0},
Fy ={(U,9) | UNFs # @andry ¢ U}. For ease of expositiony also operates over
delimited strings. Intuitively, whew is in state(U, V) when processing thgh symbol of
inputw = ws - - - wy, then for every state € V, A must acceptv; - - - w, when started in
p on position;. Note thatw; = > andw, = <. The setU is the setV of positionj — 1.
Initial and final states are of the for@, U) and (U, ) as the two-way automaton cannot
move past the left and right delimiter, respectively.

The transition function is defined as follows. For eveby, V), (T, U) € Qy anda €
2oa, (U, V)€ da((T,U),a) iff for every p in U — F4 the following holds:

o if pis an existential state then there exists a paird’) € 04(p, a) such thatpy’ € T if

d =<«,p eUifd =—,andp’ € Vif d =—; and,

e if pis auniversal state then for all paiig’, d’) € 6(p,a), p’ e Tifd =<, p € U if

d =—,andp’ e Vifd =—.

Clearly, the size oN is exponential in the size of. It remains to show that(A) = L(N).
Clearly,>e<t € L(A) iff >e< € L(N). Therefore, letw = >wy---w,< forn > 0.
Suppose that there is an accepting rwof A on inputw. DefineQo =0, Q; = {p | (i, p)
isalabelinr}fori =1,...,n+1, Qni2 = {p | 0+ 2, p) is a leaf label inr}, and
On+3 = @. Itis easy to check thatQo, Q1) € Iy andp is an accepting run foN on w
wherep(i) = (Q;, Qiy1) fori =1,...,n+ 2.

For the other direction, suppogés an accepting run a¥ onw. Then, let(Q;, Q;+1) =
p(i) for everyi € Dom(w). Fori € Dom(w), definem (i) asi — 1,i, andi + 1, whend is
«~, —, —, respectively. We define the depth of a configuratiog) whereg € Q;, denoted
depth, q), inductively as follows: ify € F4 then deptli, g) = 0; otherwise, depiti, g)
is

max{deptt(j, ¢) + 11 (¢',d) € da(g. lab" (i), ¢’ € Q; andmq(i) = j}.

As A does not loop this notion is well-defined. By induction on the depth of configurations
vy = (i, q), it is easy to construct an acceptipgun of height deptti, ¢). The claim then
follows for an initial configuration(1, ¢) withg € Q1N I4.
When a 2AFA is not loop-free, then the de@tly) is not well-defined for all strings, and
the construction of a run for the 2AFA from a run of the NFA might lead to an infinite tree.
O

A.2. Unordered string languages

By #, (y) we denote the number ofs occurring iny for x € X andy € 2*. The following
lemma is a useful tool in proving results abdusf.

Lemma 17. Let ¢ be anSL-formula and letk be the largest integer occurring ig.
Lets, s’ € 2* be as follows

o if #,(s) > k then#, (s") > k;

o otherwise#,(s) = #,(s').

Thens F ¢ iff s E ¢.
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Ri:={¢qeQ|JacX ccilqga)l};
for ¢ :== 2 to |Q| do
Ri:={q€Q|3aeX d(ga)NR_, #0}
end for
= Rig);

Fig. 7. Computing the s&t of reachable states.

Proof. We can assume that negationgpionly occur in front of atomic formulas. We call
an atomicS £-formula or a negation of an atomitC-formula aliteral.

To prove the lemma, simply observe that for each X, such that #(s) > k, s satisfies
all literals of the formz =’ and—a=/ ands violates all literals of the formra ! anda=/
wherei, j € {0, ..., k}. The same holds for. [

We make use of the next lemma in the proof of Theod&(®).

Lemma 18. Let¢, and¢p, beSL-formulas and lek be the largest integer occurring i

or ¢,. Let f : 2* — X* be a function so that for evetye X there exists a fixed sequence
of natural numbers?, (cb),cx for which#,(f(s)) = c® + 3 ,c5(ch x #,(s)) for every

s € X*. If there is a strings = ¢, then there is a string’ € X* such that

o s'F

o f(sE @, iff f(s)F ¢y, and

e each symbol occurs maximalty+ 1 times ins’.

Proof. Intuitively, the functionf characterizes the effect of our tree transformations on
a string of siblings in the input tree. Letbe a string such thatk ¢, and there exists a
symbol that occurs more thanr+- 1 times ins. We construct’ from s by deletingx arbitrary
occurrences of every symhothat occur& + 1+ x times ins. So,k+ 1 occurrences remain.
Since by Lemma?7, s" = ¢4, we only need to show that(s") E ¢, iff f(s) E ¢,. Therefore,
take an arbitrary symbadl € 2. Then #(f(s)) = ¢® + 3,5 (c2 - #,(s)). If foralla € X

that occur more thakhtimes ins, cg = 0,then#(f(s)) = #,(f(s")). If thisis not the case,
takea € X that occurs more thahtimes ins anch # 0. Then #(f(s)) >#,(s) > k and
#,(f(s) =#,(s") > k, so, according to Lemm&7, f(s)F ¢, iff f(sVEp,. O

A.3. Complexity of tree automata

We prove the following theorem which is a useful tool for obtaining upper bounds on the
complexity of the typechecking problem.

Theorem 19. (1) Emptiness of NTANFA) is in PTIME;
(2) Emptiness of NT@AFA) is in PSPACE.

Proof. (1) LetB = (Q, X, 9, F) be an NTA(NFA). The algorithm in Figi computes the
set of reachable statés := {g | It € Ty : ¢ € 6"(¢)} in a bottom-up manner. Clearly,
L(B) = @iff RNF = . NotethatR; C R, 1 andR1 = {6*(a) | a € X}. We argue that the
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algorithm is inpTIME. Clearly, R1 can be computed ipTIME. Further, the for-loop makes
a linear number of iterations. Every iteration is a linear number of non-emptiness tests of
the intersection of an NFA witiR* ; whereR; 1 C Q. Clearly, the latter is imTIME.

(2) From the proof of Theoret(1), it follows that emptiness of an NTA can be reduced
to a polynomial number of tests of the following form:

(i) € € 0(q,a); and,
(i) 6(g,a) N R | #0.
We show that whe# (g, a) is represented by a 2AHA both tests can be done IRPACE.

Let B = (0, X, 6, F) be an NTA(2AFA") and let for everyy € Q anda € X, A%% =
(099, Qp g, 07¢, 194 F9-¢ ra-@ 4:9) be the 2AFA representing(¢, a). Denote by
N4%-% the NFA equivalent toA?-¢ given by the construction of Lemnib. Of course, we
cannot construaV?-¢ in polynomial space as itis exponentially bigger thlrf*. Therefore,
we will constructN?-¢ on the fly. We denote the transition function@f ¢ by 5‘1{,’“.

We first argue that giveniae R} ; and two statesr’, U), (U, V) of N9, we can check

in PSPACE that (U, V) € 6%“((T, U), b). Indeed, we just have to check for all elements
p € U the constraints mentioned in Lemrié. That is, if p is existential, we check that
there is ap’, d’) € 64" (p,b) suchthap’ € T, p’ € U, or p’ € V depending ow". If p
is a universal state, we have to verify that for@l, d’) € 6%“(p.b), p' € T, p' € U, or
p’ € V depending ord’. These two tests merely involve set membership and require only
constant space.
We first describe the algorithm to check (i). We need to check whetheis accepted
by N?-¢. To this end, we guess statdy, U1), (T2, U2), (T3, U3) such that the first state is
an initial state; the last state is an accepting state; @dl2) € 5;{,’“((T1, U1),>) and
(T3, U3) € 6% (T2, U2), <). By the previous discussion, the latter can be domssacE.
Next, we describe the algorithm to check (ii). GivBnL1 € Q, ¢ € Q anda € X, we
need to check whethegre R;. The latter reduces to verifying whether there is some string
by---b, in R, thatis accepted b7 or, equivalentlyN%:¢.
(1) Initialization step We start by guessing an initial statg, U) and a statéU, V) such
that(U, V) € 6%“((T, U), ). We write the statéU, V) on the tape.
(2) lteration stepLet (U, V) be the state written on the tape. We guess a §tdteV’) such
that(U’, V') € 64 (U, V), <). If (U', V') is final, then we know thak} , N A7:¢ =
¢ and accept. Otherwise, we ergg€, V') and guess a symbél € R; 1 and a state
(U”, V") such thatU”, v") € 64“((U, V), b). We erasgU, V), write (U”, V") on
the tape and resume at the beginning of the iteration step.
Clearly, R} ; N A%¢ # ¢ iff there is a run of the algorithm that accepts. Further, by the
discussion above, the algorithm only uses polynomial spakce.
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