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Abstract

We investigate the typechecking problem for XML transformations: statically verifying that every
answer to a transformation conforms to a given output schema, for inputs satisfying a given input
schema. As typechecking quickly turns undecidable for query languages capable of testing equality
of data values, we return to the limited framework where we abstract XML documents as labeled
ordered trees. We focus on simple top-down recursive transformations motivated by XSLT and struc-
tural recursion on trees. We parameterize the problem by several restrictions on the transformations
(deleting, non-deleting, bounded width) and consider both tree automata and DTDs as input and out-
put schemas. The complexity of the typechecking problems in this scenario ranges fromPTIME to
EXPTIME.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

XML has emerged as the lingua franca of the Web[1]. The main difference with semi-
structured data is the possibility to define schemas. In the context of the Web, such schemas
can be used to validate data exchange. In a typical scenario, a user community agrees on a
common schema and on producing only XML data conforming to that schema. This raises
the issue of typechecking: verifying at compile time that every XML document which is
the result of a specified query applied to a valid input, satisfies the output schema[29,30].
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In the present paper, we focus on typechecking of XML to XML transformations. As types
we adopt the usual document type definitions (DTDs) and their robust extension: regular
tree languages[5,15,19]or, equivalently, specialized DTDs[24,25]. The latter serve as a
formal model for XML schema[8].

Obviously, typechecking depends on the transformation language at hand. As shown by
Alon et al.[2,3], when transformation languages have the ability to compare data values, the
typechecking problem quickly turns undecidable. However, Milo, Suciu, and Vianu argued
that XML documents can be abstracted by labeled ordered trees and that the capability of
most XML transformation languages can be encompassed byk-pebble transducers when
data values are ignored[19]. Further, the authors showed that the typechecking problem
in this context is decidable. More precisely, given two types�1 and�2, represented by tree
automata, and ak-pebble transducerT , it is decidable whetherT (t) ∈ �2 for all t ∈ �1.
Here,T (t) is the tree obtained by runningT on inputt . The complexity, however, is non-
elementary and cannot be improved[19].

In an attempt to lower the complexity, we consider much simpler tree transformations:
those defined by deterministic top-down uniform tree transducers on unranked trees. Such
transformations correspond to structural recursion on trees[6] and to simple top-down
XSLT transformations[4,7]. Such transformations are merely used for restructuring and
filtering, not for advanced querying (cf. Example7). The transducers are called uniform as
they cannot distinguish between the order of siblings. In brief, a transformation consists of
a single top-down traversal of the input tree where every node is replaced by a new tree
(possibly the empty tree).

The present paper gives an account of the complexity of the typechecking problem in
the latter setting. The complexity is measured in the sizes of the input and output schema
plus the size of the transducer. We parameterize the typechecking problem by the kind of
allowed schemas and tree transducers. For instance, for DTDs we allow right-hand sides to
be represented by DFAs, NFAs or formulas from a logicSLspecifying unordered languages.
Tree automata (abstracting XML schema) can be deterministic or non-deterministic.

In Section3, we discuss typechecking without any restriction on transducers. We show
that even for very weak DTDs (e.g., DTDs that use DFAs to represent regular languages)
the typechecking problem isEXPTIME-complete. The main dominating factor is the ability
of the transducer to delete interior nodes (cf. Example7 where intermediate section nodes
are deleted). Therefore, we focus on non-deleting transformations in the remainder of the
paper. In Section4, we distinguish between tree automata and DTDs as schema languages.
In the case of tree automata, the complexity remainsEXPTIME-hard. When considering
DTDs the complexity drops toPSPACE when NFAs or DFAs are used to specify right-hand
sides; whenSL-formulas are used the complexity drops toCONP. ThePSPACE lower bound
crucially depends on the ability of a transducer to make arbitrary copies of the input tree.
However, in practice this ability is rarely needed. Usually, the number of copies a transducer
makes is rather small (cf. Example7where the first rule makes two copies of every chapter).
Therefore, it makes sense to consider the class of transducers making at mostk copies where
k is a number fixed in advance. We show in Section5 that even on this class, in the case
of tree automata and DTDs with NFAs, the complexity remainsEXPTIME andPSPACE-hard,
respectively. Only when right-hand sides of rules are represented by DFAs, the typechecking
problem becomes tractable.
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Table 1
The presented results for tree automata: the top row of the table shows the representation of the input and output
schemas and the left column shows the type of tree transducer

NTA DTA

Deleting+ copying EXPTIME EXPTIME
Non-deleting EXPTIME EXPTIME
Non-deleting+ bounded copying EXPTIME In EXPTIME/PSPACE-hard

Table 2
The presented results for DTDs: the top row of the table shows the representation of the input and output schemas
and the left column shows the type of tree transducer

DTD(NFA) DTD(DFA) DTD(SL)

Deleting+ copying EXPTIME EXPTIME EXPTIME
Non-deleting PSPACE PSPACE CONP
Non-deleting+ bounded copying PSPACE PTIME CONP

In conclusion, our inquiries reveal that the complexity of the typechecking problem is
determined by three features: (1) the ability of the transducer to delete interior nodes; (2)
the ability to make an unbounded number of copies of subtrees; and, (3) non-determinism in
the schema languages. Only when we disallow all three features, we get aPTIME complexity
for the typechecking problem.

An overview of our results is given in Tables1 and 2. Unless specified otherwise,
all complexities are both upper and lower bounds. The top rows of the tables show the
representation of the input and output schemas and the left columns show the type of tree
transducer. NTA and DTA stand for non-deterministic and deterministic tree automata,
respectively. DTD(X) stands for DTDs that useX to represent their regular languages. The
exact definitions are given in Section2.

Related work: A problem related to typechecking is type inference[18,24]. This problem
consists in constructing a tight output schema, given an input schema and a transformation.
Of course, solving the type inference problem implies a solution for the typechecking prob-
lem: check containment of the inferred schema into the given one. However, characterizing
output languages of transformations is quite hard[24].

The transducers considered in the present paper are restricted versions of the ones studied
by Maneth and Neven[16]. They already obtained a non-elementary upper bound on the
complexity of typechecking (due to the use of monadic second-order logic in the definition
of the transducers).

Although the structure of XML documents can be faithfully represented by unranked
trees (these are trees without a bound on the number of children of nodes), Milo, Suciu,
and Vianu chose to studyk-pebble transducers over binary trees as there is an immediate
encoding of unranked trees into binary ones, as shown in Section6. The top-down variants
of k-pebble transducers are well-studied on binary trees[13]. However, these results do not
aid in the quest to characterize precisely the complexity of typechecking transformations on
unranked trees. Indeed, as we show later in Section6, the class of unranked tree transductions
cannot be captured by ordinary transducers working on the binary encodings. Macro tree



156 W. Martens, F. Neven / Theoretical Computer Science 336 (2005) 153–180

transducers can simulate our transducers on the binary encodings[16,11], but as very little
is known about their complexity this observation is not of much help. For these reasons, we
chose to work directly with unranked tree transducers.

Tozawa considered typechecking w.r.t. tree automata for a fragment of top-down XSLT
[31]. His framework is more general but he only obtains a double exponential time algorithm.
It is not clear whether that upper bound can be improved.

2. Definitions

The material in this paper is sometimes quite technical. To improve readability, we de-
ferred definitions and lemmas that are only needed in proofs to an appendix. In the present
section, we provide background on trees, automata, and uniform tree transducers which are
necessary to understand the results in this paper.

First, we introduce some preliminary definitions. ByN we denote the set of natural
numbers. We fix a finite alphabet�. A string w = w1 · · ·wn is a finite sequence of�-
symbols. The set of positions, or the domain, ofw is Dom(w) = {1, . . . , n}. The length of
w, denoted by|w|, is the number of symbols occurring in it. The label of positioni in w is
denoted by labw(i). The size of a setS, is denoted by|S|.

As usual, anon-deterministic finite automaton(NFA) over� is a tupleN = (Q,�, �, I, F )

whereQ is a finite set of states,� : Q × � → 2Q is the transition function,I ⊆ Q is
the set of initial states, andF ⊆ Q is the set of final states. Arun � on N for a string
w ∈ �∗ is a mapping from Dom(w) toQ such that�(1) ∈ �(q, labw(1)) for q ∈ I , and for
i = 1, . . . , |w| − 1, �(i + 1) ∈ �(�(i), labw(i + 1)). A run isacceptingif �(|w|) ∈ F . A
string isacceptedif there is an accepting run. The language accepted byN is denoted by
L(N). Thesizeof N is defined as|Q| + |�| +∑q∈Q,a∈� |�(q, a)|.

A deterministic finite automaton(DFA) is an NFA where|�(q, a)|�1 for all q ∈ Q and
a ∈ �.

2.1. Trees and hedges

The set of unranked�-trees, denoted byT�, is the smallest set of strings over� and the
parenthesis symbols ‘)’ and ‘(’ such that for� ∈ � andw ∈ T ∗� , �(w) is in T�. So, a tree is
eitherε (empty) or is of the form�(t1 · · · tn) where eachti is a tree. The latter denotes the
tree where the subtreest1, . . . , tn are attached to the root labeled�. We write� rather than
�(). Note that there is no a priori bound on the number of children of a node in a�-tree;
such trees are thereforeunranked. In the following, whenever we say tree, we always mean
�-tree. Atree languageis a set of trees.

Later, we will allow hedges in the right-hand side of transducer rules: ahedgeis a finite
sequence of trees. So, the set of hedges, denoted byH�, is defined asT ∗� .

For every hedgeh ∈ H�, theset of nodes of h, denoted by Dom(h), is the subset ofN∗
defined as follows:
• if h = ε, then Dom(h) = ∅; (the empty hedge has no nodes),
• if h = t1 · · · tn where eachti ∈ T�, then Dom(h) =⋃n

i=1{iu | u ∈ Dom(ti)}; (iu refers
to nodeu in theith tree) and,
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• if h = �(w), then Dom(h) = {ε} ∪ Dom(w) (if h is a tree then its domain consists of
the domain of the hedgesw and of the rootε).

In the sequel, we adopt the following convention: we uset, t1, t2, . . . to denote trees and
h, h1, h2, . . . to denote hedges. Hence, when we writeh = t1 · · · tn we tacitly assume that
all ti ’s are trees. For everyu ∈ Dom(h), we denote by labh(u) the label ofu in h. For
a hedgeh = t1 · · · tn, top(h) is the string obtained by concatenating the root symbol of
everyti .

2.2. DTDs

We use extended context-free grammars and tree automata to abstract from DTDs and
the various proposals for XML schemas. We further parameterize the definition of DTDs
by a class of representationsM of regular string languages like, e.g., the class of DFAs or
NFAs. ForM ∈M, we denote byL(M) the set of strings accepted byM.

Definition 1. Let M be a class of representations of regular string languages over�. A
DTD is a tuple(d, sd) whered is a function that maps�-symbols to elements ofM and
sd ∈ � is the start symbol. For simplicity, we usually denote(d, sd) by d.

A tree t satisfiesd if labt (ε) = sd and for everyu ∈ Dom(t) with n children labt (u1)
· · · labt (un) ∈ L(d(labt (u))). By L(d) we denote the tree language accepted byd.

As we parameterize DTDs by the formalism used to represent the regular languages, we
denote by DTD(M) the class of DTDs where the regular string languages are represented
by elements ofM. Thesizeof a DTD is the sum of the sizes of the elements ofM used to
represent the functiond.

To define unordered languages we make use of the specification languageSL inspired by
Neven and Schwentick[21] and also used in[2,3]. The syntax of the language is as follows.

Definition 2. For everya ∈ � and natural numberi, a=i anda� i areatomicSL-formulas;
true is also an atomicSL-formula. Every atomicSL-formula is anSL-formula and the
negation, conjunction, and disjunction ofSL-formulas are alsoSL-formulas.

A stringw over� satisfies an atomic formulaa=i if it has exactlyi occurrences ofa; w
satisfiesa� i if it has at leasti occurrences ofa. Further, true is satisfied by every string.1

Satisfaction of Boolean combinations of atomic formulas is defined in the obvious way. By
w��, we denote thatw satisfiesSL-formula�.

As an example, consider theSL-formula co-producer�1→ producer�1. This expresses
the constraint that a co-producer can only occur when a producer occurs. Thesizeof an
SL-formula is the number of symbols that occur in it (everyi in a=i or a� i is written in
binary notation).

So, by DTD(SL) we then denote DTDs where right-hand sides are represented by
SL-formulas.

1 The empty string is obtained by
∧

a∈� a=0 and the empty set by¬ true.
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2.3. Tree automata

We recall the definition of non-deterministic tree automata from[5]. We refer the unfa-
miliar reader to[20] for a gentle introduction.

Definition 3. A non-deterministic tree automaton (NTA)is a tupleB = (Q,�, �, F ), where
Q is a finite set of states,F ⊆ Q is the set of final states, and� is a function� : Q×�→ 2Q∗

such that�(q, a) is a regular string language overQ for everya ∈ � andq ∈ Q.

A run of B on a treet is a labeling� : Dom(t) → Q such that for everyv ∈ Dom(t)

with n children,�(v1) · · · �(vn) ∈ �(�(v), labt (v)). Note that whenv has no children, then
the criterion reduces toε ∈ �(�(v), labt (v)). A run isacceptingiff the root is labeled with
an accepting state, that is,�(ε) ∈ F . A tree is accepted if there is an accepting run. The
set of all accepted trees is denoted byL(B) and is called aregular tree language. When
�(v) = q, we sometimes also say thatB assignsq to v.

We extend the definition of� to trees and hedges by defining a function
�∗(h) : H�→ (2Q)∗ as follows:
• �∗(a) = {q | ε ∈ �(q, a)};
• �∗(a(t1 · · · tn)) = {q | ∃q1 ∈ �∗(t1), . . . , ∃qn ∈ �∗(tn) andq1 · · · qn ∈ �(q, a)};
• �∗(t1 · · · tn) = �∗(t1) · · · �∗(tn).
Note that a treet is accepted byB if �∗(t) ∩ F �= ∅.

A tree automaton isbottom-up deterministicif for all q, q ′ ∈ Q with q �= q ′ anda ∈ �,
�(q, a)∩ �(q ′, a) = ∅. We denote the set of bottom-up deterministic NTAs by DTA. A tree
automaton istop-down deterministicif for all q, q ′ ∈ Q with q �= q ′, a ∈ �, andn�0,
�(q, a) contains at most one string of lengthn.

Like for DTDs, we parameterize NTAs by the formalism used to represent the regular
languages in the transition functions�(q, a). So, for a classMof representations of regular
languages, we denote by NTA(M) the class of NTAs where all transition functions are repre-
sented by elements ofM.Thesizeof an automatonB is then|Q|+|�|+∑q∈Q,a∈� |�(q, a)|.
Here, by|�(q, a)| we denote the size of the automaton accepting�(q, a). Unless explicitly
specified otherwise,�(q, a) is always represented by an NFA.

2.4. Transducers

We next define the tree transducers used in this paper. To simplify notation, we restrict to
one alphabet. That is, we consider transductions mapping�-trees to�-trees. It is straight-
forward to define transductions where the input alphabet differs from the output alphabet
[16].

For a setQ, denote byH�(Q) (T�(Q)) the set of�-hedges (trees) where leaf nodes can
be labeled with elements fromQ.

Definition 4. A uniform tree transduceris a tuple(Q,�, q0, R), whereQ is a finite set of
states,� is the input and output alphabet,q0 ∈ Q is the initial state, andR is a finite set of
rules of the form(q, a) → h, wherea ∈ �, q ∈ Q, andh ∈ H�(Q). Whenq = q0, h is
restricted toT�(Q) \Q.
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<xsl:template match="a" mode ="p">
<d>

<e/>
</d>

</xsl:template>

<xsl:template match="b" mode ="p">
<c>

<xsl:apply-templates mode="q"/>
<xsl:apply-templates mode="p"/>

</c>
</xsl:template>

<xsl:template match="a" mode ="q">
<c/>
<xsl:apply-templates mode="q"/>

</xsl:template>

<xsl:template match="b" mode ="q">
<d>

<xsl:apply-templates mode="q"/>
</d>

</xsl:template>

Fig. 1. The XSLT program equivalent to the transducer of Example5.

The restriction on rules with the initial state ensures that the output is always a tree rather
than a hedge. For the remainder of this paper, when we say tree transducer, we always mean
uniform tree transducer.

Example 5. Let T = (Q,�, p, R) whereQ = {p, q}, � = {a, b, c, d}, andR contains
the rules

(p, a)→ d(e) (p, b)→ c(q p)

(q, a)→ c q (q, b)→ d(q)

Our definition of tree transducers corresponds to structural recursion[6] and a fragment
of top-down XSLT. For instance, the XSLT program equivalent to the above transducer is
given in Fig.1 (we assume the program is started in modep). Note that the right-hand side
of (q, a)→ c q is a hedge, while the other right-hand sides are trees.

The translation defined byT = (Q,�, q0, R) on a treet in stateq, denoted byT q(t), is
inductively defined as follows: ift = ε thenT q(t) := ε; if t = a(t1 · · · tn) and there is a
rule (q, a)→ h ∈ R thenT q(t) is obtained fromh by replacing every nodeu in h labeled
with p by the hedgeT p(t1) · · · T p(tn). Note that such nodesu can only occur at leaves. So,
h is only extended downwards. If there is no rule(q, a)→ h ∈ R thenT q(t) := ε. Finally,
define the transformation oft by T , denoted byT (t), asT q0

(t).
For a ∈ �, q ∈ Q and(q, a) → h ∈ R, we denoteh by rhs(q, a). We also use the

abbreviation rhs to stand for right-hand side. Ifq anda are not important, we say thath is
a rhs. Thesizeof T is |Q| + |�| +∑q∈Q,a∈� |rhs(q, a)|.
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T p(t)
⇓
c

T q(b) T q(a(aa)) T q(b(a)) T p(b) T p(a(aa)) T p(b(a))

⇓
c

d

T q(ε)

c T q(a) T q(a) d

T q(a)

c

T q(ε) T p(ε)

d

e

c

T q(a) T p(a)

⇓
c

d c c T q(ε) c T q(ε) d

c T q(ε)

c d

e

c

c T q(ε) d

e⇓
c

d c c c d

c

c d

e

c

c d

e

Fig. 2. The translation oft = b(b a(a a)b(a)) by the transducerT of Example5.

Example 6. In Fig. 2 we give the translation of the treet defined as

b

b a

a a

b

a

by the transducer of Example5.

We discuss two important features:copyinganddeletion. The rule(p, b) → c(q p) in
the above example copies the children of the current node in the input tree two times: one
copy is processed in stateq and the other in statep. The symbolc is the parent node of the
two copies. So the current node in the input tree corresponds to the latter node. The rule
(q, a)→ c q copies the children of the current node only once. However, no parent node is
given for this copy. So, there is no corresponding node for the current node in the input tree.
We, therefore, say that it is deleted. For instance,T q(a(b)) = c d whered corresponds to
b and not toa.

Example 7. We provide a less abstract example of a transformation. The following DTD
(DFA) defines a schema for books:

book → title , author +, chapter +
chapter → title , introduction , section +
section → title , paragraph +, section ∗
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We use ‘,’ to denote concatenation. Fig.3 depicts a document conform to the given
schema. The following transducer makes a table of contents by generating for every chapter
of the book a list of its section titles. In addition, a summary of the book consisting of the
title and introduction of each chapter is added.

(q0,book )→ book (p summary q)

(p, chapter )→ chapter p

(p, title )→ title

(p, section )→ p

(q, chapter )→ q ′

(q ′, title )→ title

(q ′, introduction )→ introduction

The rule(q0,book ) → book (p q) makes two copies of each chapter, each of which is
processed in statesp andq, respectively. Statep recursively generates a list of titles. The
rule (p, chapter )→ chapter p allows to list these titles next to the chapter element
rather than below. Note that statep deletes all intermediate section nodes. Stateq generates
a list of all chapter titles together with their introductions. By using stateq ′, we make sure
that the title of the book is skipped.

The output of the transformation, applied to the document in Fig.3 is the following
tree:

book

title

chapter

title

title

title

title

chapter

title

title

summary

title

introduction

title

introduction
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book

title author chapter

title introduction section

title paragraph section

title paragraph

section

title paragraph

chapter

title introduction section

title paragraph

Fig. 3. A document conforming to the schema of Example7.

2.5. The typechecking problem

We define the problem central to this paper.

Definition 8. A tree transducerT typechecksw.r.t. to an input tree languageSin and an
output tree languageSout, if T (t) ∈ Sout for everyt ∈ Sin.

Definition 9. GivenSin,Sout andT , thetypechecking problemconsists in verifying whether
T typechecks w.r.t.Sin andSout.

Example 10. The transducer in Example7 typechecks w.r.t. the input DTD and the
following output DTD:

book → title , (chapter , title ∗)∗, summary, (title , introduction )∗.

We parameterize the typechecking problem by the kind of tree transducers and tree
languages we allow. LetT be a class of transducers andS be a class of tree languages.
Then TC[T ,S] denotes the typechecking problem whereT ∈ T andSin, Sout ∈ S. The
size of the input of the typechecking problem is the sum of the sizes of the input and output
schema and the tree transducer.

Next, we define some classes of tree transducers based on the discussion on deletion and
copying following Example6.A transducer isnon-deletingif no states occur at the top-level
of a rhs. We denote byTg the class of all transducers and byTnd the class of non-deleting
transducers. A transducerT hascopying widthk if there are at mostk occurrences of states
in a sequence of siblings in a rhs. For instance, the copy width of the transducer in Example7
is two. ByBWk we denote the class of non-deleting transducers of bounded copying width
k. For a class of representations of regular string languagesM, we write TC[T ,M] rather
than TC[T , DTD(M)].

3. The general case

In the present section, we consider the complexity of the typechecking problem in its most
general setting.That is, without any restrictions on transducers: both deletion and unbounded
copying is allowed. We show that the problem is inEXPTIME for the most powerful schema
languages, namely non-deterministic tree automata. However, the problem remains hard for
EXPTIME even for the weakest DTDs: DTDs where right-hand sides are specified by DFAs
or SL-formulas.
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The lower bound is obtained through a reduction from the intersection emptiness problem
of n deterministic tree automata which is known to be hard forEXPTIME [27]. The transducer
starts by makingn copies of the input tree. Thereafter, it simulates a different tree automaton
on each copy. All processed nodes are deleted. The only generated output is an error symbol
when an automaton rejects. So, the output DTD merely has to check that an error symbol
always appears. The latter can be done by a very simple DFA orSL-formula.

TheEXPTIME upper bound is obtained by a translation to typechecking of non-deleting
transducers. The latter is tackled in the next section.

Theorem 11. (1) T C[Tg,NTA] is in EXPTIME;
(2) T C[Tg,SL] is EXPTIME-hard;
(3) T C[Tg,DFA] is EXPTIME-hard.

Proof. (1) LetT = (QT ,�, q0
T , RT ) be a transducer and letAin andAout = (QA,�, �A,

FA) be two NTAs representing the input and output schema, respectively. We next describe
a non-deleting transducerS and an NTABout which can be constructed inLOGSPACE,
such thatT typechecks w.r.t.Ain andAout iff S typechecks w.r.t.Ain andBout. From
Theorem12(1) it then follows that TC[Tg,NTA] is in EXPTIME.

Intuitively, S outputs a # wheneverT would process a deleting state. For instance, the
rule (q, a) → c q is replaced by(q, a) → c #(q). We assume that #�∈ �. Formally,
S = (QS,� ∪ {#}, q0

S, RS) with QS = QT , q0
S = q0

T , and for every rule(q, a)→ t1 · · · tn
in RT , RS contains the rule(q, a) → t ′1 · · · t ′n, where for everyi = 1, . . . , n, t ′i = #(ti)
if ti ∈ QT and t ′i = ti otherwise. Then, define the #-eliminating function� as follows:
�(a(h)) is �(h) whena = # anda(�(h)) otherwise; further,�(t1 · · · tn) := �(t1) · · · �(tn).
So, clearly, for allt ∈ T�, T (t) = �(S(t)).

Next, we constructBout such that�(t) ∈ L(Aout) iff t ∈ L(Bout). The underlying idea is
quite simple. In a run on #(t1 · · · tn), Bout assigns a state(q1, q2, q, a) to the root when the
NFA for �A(q, a) halts in stateq2 when processing top(�(#(t1 · · · tn))) starting in stateq1.
Here,q1, q2 are states of the automaton for�A(q, a), q is a state ofAout anda ∈ �. The
stateq and the labela are guessed. In a run ona(t1 · · · tn), with a �= #,Bout assigns a state
q to the root whenAout assignsq to the root of�(a(t1 · · · tn)).

Let for everya ∈ � andq ∈ QA, Nq,a = (Qq,a,QA, �
q,a, I q,a, F q,a) be the NFA such

that�A(q, a) = L(Nq,a). We tacitly assume that allQq,a are disjoint. DefineBout = (QB,

�∪ {#}, �B, FB), whereQB = QA ∪ {(q1, q2, q, a) | q ∈ QA, a ∈ �, q1, q2 ∈ Qq,a}, and
FB = FA.

It remains to define�B . Thereto, fixq ∈ QA anda ∈ �. LetI, F ⊆ Qq,a . LetMq,a(I, F )

be the automaton behaving in the same way asNq,a with the initial and final states replaced
with I andF , respectively; further, when reading a tuple(q1, q2, p, b) in stateq1 the automa-
ton jumps to stateq2 whenp = q andb = a, and rejects otherwise. Clearly,Mq,a(I, F ) is
LOGSPACE constructible fromNq,a . We then simply define�B(q, a) := Mq,a(I q,a, F q,a)

and �B((q1, q2, p, b),#) := Mp,b({q1}, {q2}) for all statesq, (q1, q2, p, b) ∈ QB and
a ∈ �. It is not difficult to see that�(t) ∈ L(Aout) iff t ∈ L(Bout).

(2)We use a reduction from the intersection emptiness problem of top-down deterministic
ranked binary tree automataAi (i = 1, . . . , n), which is known to be hard forEXPTIME [27].
The problem is stated as follows, given top-down deterministic ranked binary tree automata
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A1, . . . , An, is
⋂n

i=1 L(Ai) = ∅? We define a transducerT and two DTDsdin anddout such
that

⋂n
i=1 L(Ai) = ∅ iff T typechecks w.r.t.din anddout. In the construction, we exploit

the copying power of transducers to maken copies of the input tree: one for eachAi . By
using deleting states, we can execute eachAi on its copy of the input tree without producing
output. When anAi does not accept, we output anerror symbol under the root of the output
tree. The output DTD should then only check that anerror symbol always appears.

Top-down deterministicranked binary tree automata are NTAs which operate on an
alphabet that is partitioned in internal labels and leaf labels. If a labela is an internal label,
the regular languages�(q, a) are empty or only contain one string of length two and if it
is a leaf label, the regular languages�(q, a) are empty or only contain the empty string.
So, such automata are defined over full binary trees, that is, all inner nodes have precisely
two children. Further, there is only one start state. Let fori = 1, . . . , n, the top-down
deterministic ranked binary tree automata beAi = (Qi,�, �i , {qi

0}).
First, we define the alphabet of the transducer. Let� = {a1, . . . , ak} and define�i =
{aj,i | aj ∈ �}, for i = 1,2. The transducer is defined over the alphabet�T = �1 ∪
�2 ∪ {$,error,ok}. The intuition is as follows, the root symbol of the input tree is labeled
with $ and has only one child, which corresponds to the root of a possible input for then

binary tree automata. Every other internal node has two children: a left and a right child
labeled with an element of�1 and�2, respectively. Using labels from�1 and�2 allows
the transducer to distinguish a left from a right child by simply inspecting its label. Note
that the partitioning of leaf nodes and internal nodes in� also allows us to distinguish leaf
labels from internal labels in�T .

Next, we define the input DTD. Formally, for every internal symbola ∈ �T \ {error,ok},
definedin(a) =∨k

i,j=1(C
1
i ∧C2

j ). Here,(C1
i ∧C2

j ) is theSL-formula expressing that there
are two children, one labeled withai,1 and one withaj,2 meaning that the first child isai
and the second isaj . Formally, fori, j = 1, . . . , k,

C1
i =

( ∧
&=1,...,k

(a
=�&i

&,1 )

)
and C2

j =
( ∧

&=1,...,k
(a
=�&j

&,2 )

)
,

where�&i is the Kronecker delta (�&i = 1 if & = i and�&i = 0 otherwise). Further, for
every leaf symbola ∈ �T \ {error,ok}, definedin(a) as the empty string. Finally, the start
symbol ofdin is $ and definedin($) =∨k

i=1 C
1
i . The size ofdin(a) is O(|�|3).

The transducerT = (QT ,�T , q
0
T , RT ) simulates in parallel then tree automata on the

input tree. When an automaton rejects, the transducer produces an error symbol. However,
using deleting states, it only produces output when a leaf node is reached. In this way only
a very simple DTD is needed to check whether an error occurred. The transducer is defined
as follows:QT =⋃n

i=1(Q
1
i ∪Q2

i ), whereQj
i = {qj | q ∈ Qi} for j = 1,2. The intuition

is that states inQj
i should only be used to process thej th child. We tacitly assume that the

setsQi are disjoint.RT consists of the following rules:
• (q0

T ,$)→ $(q1
0 · · · qn

0). Recall thatqi
0 is the initial state ofAi . So, this rule puts a $ as

the root symbol of the output tree and starts the in-parallel simulation of theAi ’s.
• For allm,m′ ∈ {1,2} with m �= m′ andj ∈ {1, . . . , k}, add the rule(qm, aj,m′)→ ε.

Left children cannot be processed by right states and vice versa.
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• Letm ∈ {1,2}, j ∈ {1, . . . , k}, i ∈ {1, . . . , n}, andqm ∈ Qm
i . If aj is an internal symbol

and�i (q, aj ) = &r, then we add the rule(qm, aj,m) → &1r2. If aj is a leaf symbol
and�i (q, aj ) = ε, then we add the rule(qm, aj,m)→ ok. In both cases, if�i (q, aj ) is
empty, we add the rule(qm, aj,m)→ error.

Finally, definedout($) := error�1. Here, $ is the start symbol. It remains to verify the
correctness. Supposet ∈ ⋂i=1...n L(Ai), then t ′ ∈ L(din) andT (t ′) contains no error-
labeled node wheret ′ is obtained from $(t) by changing the label of every first (second)
child labeledaj by aj,1 (aj,2). Conversely, ift ∈ L(din) andT (t) does not contain an error
symbol, thent ′ ∈ ⋂L(Ai) wheret ′ is obtained fromt by dropping the $-labeled symbol,
rearranging children according to their index-number and then dropping the indices.

The proof of (3) follows from the one for (2) as the usedSL can easily be expressed by
DFAs of the same sizes.�

4. Non-deleting transformations

The lower bound of the previous section severely depends on the ability of transducers
to delete interior nodes and to make an unbounded number of copies of subtrees. In an
attempt to lower the complexity, we restrict to non-deleting transformations in the present
section. We observe that when schemas are represented by tree automata, the complexity
remainsEXPTIME-hard. When tree languages are represented by DTDs, the complexity of
the typechecking problem drops toPSPACE and is hard forPSPACE even when right-hand
sides of rules are represented by DFAs. When employingSL-formulas the complexity is
CONP. In summary, we prove the following results:

Theorem 12.(1) T C[Tnd,NTA] is EXPTIME-complete;
(2) T C[Tnd,DTA] is EXPTIME-complete;
(3) T C[Tnd,NFA] is PSPACE-complete;
(4) T C[Tnd,DFA] is PSPACE-complete;
(5) T C[Tnd,SL] is CONP-complete.

We prove the different parts of the above theorem in the following subsections.

4.1. Tree automata

The proof establishing the upper bound is similar in spirit to a proof in[22], which shows
that containment of Query Automata is inEXPTIME.

Theorem 12(1). T C[Tnd,NTA] is EXPTIME-complete.

Proof. Hardness is immediate as containment of NTAs is already hard forEXPTIME [26].
We, therefore, only prove membership inEXPTIME. Let T = (QT ,�, q0

T , RT ) be a non-
deleting tree transducer and letAin = (Qin,�, �in, Fin) andAout = (Qout,�, �out, Fout)

be the NTAs representing the input and output schema, respectively.
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Fig. 4. The algorithm of Theorem12(1) computingP .

In brief, our algorithm computes the set

P = {(S, f ) | S ⊆ Qin, f : QT → (2Qout)∗, ∃t such that

S = �∗in(t) and∀q ∈ QT , f (q) = �∗out(T
q(t))}.

Note that sincef (q) = �∗out(T
q(t)) andt is a tree,2 the length off (q) is bounded by the

size of the largest rhs inT . Therefore, the number of functionsf we consider is bounded
by (2|Qout|)|T ||QT |. Intuitively, in the definition ofP , t can be seen as a witness of(S, f ).
Indeed,S is the set of states reachable byAin at the root oft , while for each stateq
of the transducer,f (q) is the sequence of sets of states reachable byAout at the root of
T q(t). So, the given instance doesnot typecheck iff there exists an(S, f ) ∈ P such that
Fin ∩ S �= ∅ andFout ∩ f (q0

T ) = ∅. As T q0
T (t) is always a tree,f (q0

T ) is a subset of
Qout. In Fig.4, an algorithm for computingP is depicted. We will show that this algorithm
is in EXPTIME. Hence, typechecking is inEXPTIME. We explain the notation in Fig.4. By
rhs(q, a)[p ← f1(p) · · · fn(p) | p ∈ QT ], we denote the hedge obtained from rhs(q, a)

by replacing every occurrence of a statep by the sequencef1(p) · · · fn(p). By �̂out :
H�(2Qc)→ (2Qc)∗ we denote the transition function extended to hedges inH�(2Qout). To
be precise, fora ∈ �, �̂out(a) := {q | ε ∈ �out(q, a)}; for P ⊆ Qout, �̂out(P ) := P ; for
h = a(t1 · · · tn), �̂out(h) := {q | ∀i = 1, . . . , n, ∃qi ∈ �̂out(ti) : q1 · · · qn ∈ �̂out(q, a)}; and
for h = t1 · · · tn, �̂out(h) = �̂out(t1) · · · �̂out(tn). The correctness of the algorithm follows
from the following lemma which is proved by induction on the number of iterations of the
while loop.

Lemma 13. A pair (S, f ) has a witness tree of depthi iff (S, f ) ∈ Pi .

Proof. Immediate fori = 1.
For the induction step, suppose that, for somei, every pair is inPi−1 iff it has a wit-

ness of depthi − 1. Let (S, f ) ∈ Pi , then, by definition, there is ana ∈ � and a string
(S1, f1) · · · (Sn, fn) ∈ P ∗i−1 so thatS := {p | ∃rj ∈ Sj , j = 1, . . . , n, r1 · · · rn ∈
�in(p, a)} and for everyq ∈ QT , f (q) := �∗out(rhs(q, a)[p ← f1(p) · · · fn(p)

| p ∈ QT ]). Hence,a(t1 · · · tn) is a witness of(S, f ), where eachtj is a witness for
(Sj , fj ).

2 Recall thatT q(t) is the translation oft started in stateq.
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Conversely, suppose that(S, f ) has a witness treea(t1 · · · tn) of depthi. By the induction
hypothesis, there exist tuples(S1, f1), . . . , (Sn, fn) ∈ Pi−1 such thattj is a witness for

(Sj , fj ) for eachj = 1, . . . , n. Considering the definition of̂�out, it is then clear that the
algorithm of Fig.4 puts(S, f ) in Pi . �

It remains to show that the algorithm is inEXPTIME. The setP1 can be computed in time
polynomial in the sizes ofAin, Aout, andT . As Pi ⊆ Pi+1 for all i, and there are 2|Qin| ·
(2|Qout|)|T ||QT | pairs(S, f ), the loop can only make an exponential number of iterations.
So, it suffices to show that each iteration can be done inEXPTIME. Actually, we argue that
it can be checked inPSPACE whether a tuple(S, f ) ∈ Pi .

Let (S, f ) be a pair. We describe separately howS andf are checked. It should be clear
how the two algorithms can be merged into onePSPACE algorithm. We start withS.
(1) For everyq ∈ Qin anda ∈ �, letNq,a be the NFA accepting those stringsR1 · · ·Rk ∈

(2Qin)∗ for which there areri ∈ Ri such thatr1 · · · rk ∈ �in(q, a). It is too expensive
to actually construct the automatonNq,a as the alphabet is exponentially bigger than
the one of�in(q, a). However, the set of states is the same. It is important to note that
given a setRi and a stateq, the set of all states reachable fromq by readingRi can be
computed inPSPACE.

So, we need to check the existence of ana ∈ � and a stringZ := S1 · · · Sn that is
accepted (rejected) byNq,a for all q ∈ S (q ∈ Qin \ S). The latter can be achieved
in PSPACE by guessing ana ∈ � and then guessingZ one symbol at a time while
executing allNq,a ’s in parallel for everyq ∈ Qin. Indeed, for every automaton we
remember the set of states that can be reached by reading the prefix ofZ seen so far.
Initially, these sets are the respective initial states. Then, whenever a newSi is guessed,
for each automaton the set of states reachable from a state from the remembered set by
readingSi , is computed. By the discussion above the latter is inPSPACE.

(2) Checkingf is more technical. We use thea guessed in the previous step. Denote
rhs(q, a)[p ← f1(p) · · · fn(p) | p ∈ QT ] by 	q,a . Now, we need to check for all

q ∈ QT whetherf (q) = �̂out(	q,a). For allp ∈ Qout andb ∈ �, letMp,b be the NFA
accepting stringsR1 · · ·Rk ∈ (2Qout)∗ for which there areri ∈ Ri , i = 1, . . . , k, such
thatr1 · · · rk ∈ �out(p, b). Again, we will not construct the latter automata. It is enough
to realize that given a state and anR ⊆ Qout, the set of states reachable from this state
by readingR can be computed inPSPACE.

First, assume every rhs(q, a) is of the formb(q1 · · · q&). Then,	q,a is of the form

b(w1 · · ·w&) with wj = f1(qj ) · · · fn(qj ). So, to check thatf (q) = �̂out(	q,a), we
need to verify thatw = w1 · · ·w& is accepted (rejected) byMp,b for all p ∈ f (q)

(p �∈ f (q)). However, like in (1), our algorithm successively guesses newfi ’s while
forgetting the previous ones and should, hence, be able to run the automata onw in
this way. Asw consists of& parts we guess& sets of statesPp,b

i , i = 0, . . . , &, where

P
p,b
0 is the set of initial states ofMp,b. The meaning of these sets is the following:

every automatonMp,b reaches precisely the states inP
p,b
i after readingw1 · · ·wi−1.

The algorithm can verify the latter criterion by runningMp,b on eachwi separately
started in the statesPp,b

i−1 and verifying whetherPp,b
i is reached. RunningMp,b onwi

can be done inPSPACE as described in (1).
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When right-hand sides of rules can be arbitrary trees inT (QT ), we guess for every
inner nodeu in a rhs(q, a) a subsetRq,a

u of Qout. Whenu is the root, thenRq,a
u = f (q).

Intuitively, these sets represent precisely the sets of states that can be reached at a nodeu

byAout. For leaf nodesu, we defineRq,a
u as�∗out(c) and as the sequencef1(p) · · · fn(p)

whenu is labeled withc andp, respectively. We then need to verify for every inner
nodeu labeled withb with n children, thatRq,a

u1 · · ·Rq,a
un is accepted (rejected) byMp,b

for all p ∈ R
q,a
u (p �∈ R

q,a
u ). Again, the latter is checked as described above.

Finally, when right-hand sides of rules can be hedges, one needs to take into account
thatf (q) can be a sequence of sets of states.�

In the remainder of this section, we examine what happens when tree automata are
restricted to be deterministic. From the above result, it is immediate that TC[Tnd, DTA]
is in EXPTIME. Hardness is obtained through a reduction from the intersection emptiness
problem of top-down deterministic ranked binary tree automata and is similar to the one
in Theorem11(2): Ain defines the same set of trees asdin does with the exception thatAin
enforces an ordering of the children. The transducer in the proof of Theorem11(2) starts the
in parallel simulation of then automata, but then, using deleting states, delays the output
until it has reached the leaves of the input tree. In the present setting, we can not use deleting
states. Instead, we copy the input tree and overwrite the leaves with error symbols when an
automaton rejects. The output automaton then checks whether at least one error occurred.

Theorem 12(2). T C[Tnd,DTA] is EXPTIME-complete.

Proof. For i = 1, . . . , n, let Ai = (Qi,�, �i , {qi
0}) be top-down deterministic ranked bi-

nary tree automata.The transducer is defined over the alphabet�T = �1∪�2∪{$,error,ok}.
Here,�i = {ai | a ∈ �}, for i = 1,2.

First, we defineAin = (Qin,�T , �in, {q1
in}), whereQin = {q1

in, q
2
in}. The intuition is that

Ain accepts all trees $(t) where each node inu in t has a left and a right child labeled with
elements of�1 and�2, respectively if labt (u) is an internal label, andu has no children if
labt (u) is a leaf label. The transition function is defined as follows:
• �in(q

1
in,$) = q1

in.
• �in(q

i
in, ai) = q1

inq
2
in for i = 1,2 if ai ∈ �i is an internal label.

• �in(q
i
in, aj ) = ∅ for all aj ∈ �j , i �= j .

• �in(q
i
in, ai) = ε for i = 1,2 if ai ∈ �i is a leaf label.

Note thatAin is bottom-up deterministic.
The transducerT = (QT ,�T , q

0
T , RT ) is defined similarly as in Theorem11(2): QT =⋃n

i=1(Q
1
i ∪Q2

i ), whereQk
i = {qk | q ∈ Qi}.Again, the intuition is that states inQj

i should
only be used to process thej th child.RT consists of the following rules:
• (q0

T ,$)→ $(q1
0 · · · qn

0). So, this rule puts a $ as theroot symbol of the output tree and
starts the in-parallel simulation of theAi ’s.
• For all j, j ′ ∈ {1,2} with j �= j ′, add the rule(qj , a′j )→ ε.

• Let j ∈ {1,2}, i ∈ {1, . . . , n}, andqj ∈ Q
j
i . If aj is an internal symbol and�i (q, a) =

&r, then we add the rule(qj , aj )→ aj (&
1r2). If aj is a leaf symbol and�i (q, a) = ε,

then we add the rule(qj , aj )→ ok. In both cases, if�i (q, a) is empty, we add the rule
(qj , aj )→ error.
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Finally, we define the output automatonAout = (Qout,�T , �out, {qe}) which accepts all
trees with at least one error-labeled leaf. Formally,Qout = {qo, qe} and�out is defined as
follows: i ∈ {1,2},
• �out(qo,$) = q∗o .
• �out(qe,$) = Q∗outqeQ

∗
out.• �out(qo, ai) = q∗o for all ai ∈ �i .

• �out(qe, ai) = Q∗outqeQ
∗
out for all ai ∈ �i .

• �out(qe,error) = ε.
• �out(qo,ok) = ε.

Again,Aout is bottom-up deterministic. �

4.2. DTDs

When we consider DTD(NFA)s to represent input schemas the complexity drops to
PSPACE. We reduce the typechecking problem to the emptiness problem of NTAs where
transition functions are represented by loop-free two-way alternating string automata, de-
noted 2AFAlf . The complexity of the latter problem is inPSPACE (Theorem19 in the
appendix). Alternating and string automata are discussed in the appendix (SectionA.1). In
particular, the constructed NTA accepts precisely those trees which satisfy the input DTD
but are transformed by the transducer to trees outside the output DTD. Hence, the instance
typechecks if and only if the NTA accepts the empty language. The proof makes use of
two-way non-deterministic string automata, denoted 2NFA, which are also defined in the
appendix.

Theorem 12(3). T C[Tnd,NFA] is PSPACE-complete.

Proof. The hardness result is immediate as containment of regular expressions is known
to bePSPACE-hard[28]. For the other direction, letT be a non-deleting tree transducer. Let
din anddout be the input and output DTDs, respectively. We construct an NTA(2AFAlf ) B
such thatL(B) = {t ∈ L(din) | T (t) �∈ L(dout)}. Moreover, the size ofB is polynomial
in the size ofT , din, anddout. Thus,L(B) = ∅ iff T typechecks w.r.t.din anddout. By
Theorem19(2), the former is inPSPACE.

To explain the operation of the automaton, we introduce the following notions. Letq be
a state ofT anda ∈ � then defineq(a) = top(rhs(q, a)). For a stringw = a1 · · · an, we
defineq(w) := q(a1) · · · q(an). For a hedgeh and a DTDd, we say thath partly satisfies
d if for everyu ∈ Dom(h), labh(u1) · · · labh(un) ∈ L(d(labh(u))) whereu hasn children.
Note that there is no requirement on the root nodes of the trees inh. Hence, the term partly.

Intuitively, the automatonB works as follows ont ∈ T�: (1) B checks thatt ∈ L(din);
(2) at the same time,B non-deterministically picks a nodev ∈ Dom(t) and a stateq in
which v is processed;B then accepts ifh does not partly satisfydout, whereh is obtained
from rhs(q, a) by replacing every statep by the stringp(labt (v1) · · · labh(vn)). Here, we
assume thatv is labeleda and hasn children. Asdout is specified by NFAs and we have to
check thatdout is not partly satisfied, we need to check membership in the complement of
a regular expression. We therefore use alternation to specify the transition function ofB.
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Additionally, asT can copy its input, it is convenient to use two-way automata. The latter
will become clear in the actual construction.

Formally, letT = (QT ,�, q0
T , RT ). DefineB = (QB,�, FB, �B) as follows. The

set of statesQB is the union of the following sets:�, {(a, q) | a ∈ �, q ∈ QT }, and
{(a, q, check) | a ∈ �, q ∈ QT }. If there is an accepting run on a treet , then a nodev
labeled with a state of the forma, (a, q), (a, q, check) has the following meaning:

a: v is labeled witha and the subtree rooted atv partly satisfiesdin.
(a, q): same as in previous case with the following two additions: (1)v is processed by

T in stateq; and, (2) a descendant ofv will produce a tree that does not partly satisfydout.
(a, q, check): same as the previous case only nowv itself will produce a tree that does

not partly satisfydout.
The set of final states isFB := {(a, q0

T ) | a ∈ �}. The transition function is defined as
follows: for all a, b ∈ �, q ∈ QT :
(1) �B(a, b) = �B((a, q), b) = �B((a, q, check), b) = ∅ for all a �= b;
(2) �B(a, a) = din(a) and�B((a, q), a) consists of those stringsa1 · · · an such that there is

precisely one indexj ∈ {1, . . . , n} for whichaj = (b, p) or aj = (b, p, check) where
p occurs in rhs(q, a) and for all i �= j , ai ∈ �; further, a1 · · · aj−1baj+1 · · · an ∈
L(din(a)). Note that�B((a, q), a) is defined in such a way that it ensures that all
subtrees partly satsifydin and that at least one subtree will generate a violation of
dout. Clearly,�B(a, a) and�B((a, q), a) can be represented by NFAs whose size is
polynomial in the size of the input.

(3) Finally, �B((a, q, check), a) = {a1 · · · an | a1 · · · an ∈ din(a) andh does not partly
satisfy L(dout)}. Here,h is obtained from rhs(q, a) by replacing every statep by
p(a1 · · · an).

It remains to argue that�B((a, q, check), a) can be computed by a 2AFAlf A of poly-
nomial size. We sketch the construction of this automaton. First, for everyb ∈ � and
m ∈ {out, in}, letAb

m be the NFA acceptingdm(b).
For everyv in rhs(q, a), let sv be concatenation of the labels of the children ofv. Define

the 2NFANv as follows: supposesv is of the formz0p1z1 · · ·p&z& wherezi ∈ �∗ and
pi ∈ QT , thena1 · · · an ∈ L(Nv) if and only if

z0p1(a1 · · · an)z1 · · ·p&(a1 · · · an)z& ∈ L(A
labh(v)
out ).

As sv is fixed,Nv can recognize this language by readinga1 · · · an & times while simulat-

ing A
labh(v)
out . More precisely, the automaton simulatesA

labh(v)
out on zi−1pi(a1 · · · an) on the

(i + 1)th pass. Note thatNv does not loop.
It remains to describe the construction of the 2AFAlf A. On inputa1 · · · an,A first checks

whethera1 · · · an ∈ L(Aa
in) by simulatingAa

in. Hereafter,A goes back to the beginning of
the input string, guesses an internal nodev in rhs(q, a) and simulates the complement of
Nv. As Nv is a 2NFA that does not loop,A is a 2AFAlf whose size is linear in the size of
theNv ’s. This completes the construction ofB. �

The next result shows that typechecking remainsPSPACE-hard even when NFAs are
replaced by DFAs. The main source of complexity is the ability of transducers to make an
arbitrary number of copies.
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Theorem 12(4). T C[Tnd,DFA] is PSPACE-complete.

Proof. The intersection emptiness problem of deterministic finite automata is stated as fol-
lows: given a sequence of DFAsMi = (Qi,�, �i , si , Fi), i = 1, . . . , n, is

⋂n
i=1 L(Mi) =

∅? This problem is known to bePSPACE-hard[12]. We define a transducerT = (QT ,� ∪
{#0, . . . ,#n}, q0

T , RT ) and two DTDsdin anddout such thatT typechecks w.r.t.din anddout
iff
⋂n

i=1 L(Mi) = ∅.
The DTD din has as start symbols and defines a tree of depth one where the string

formed by the children of the root is an arbitrary string in�∗. The transducer makesn
copies of this string separated by the delimiters #i : QT = {q, q0

T } andRT contains the rules
(q0

T , s)→ s(#0q#1q · · ·#n−1q#n) and(q, a)→ a, for everya ∈ �. Finally,dout defines a
tree of depth one with start symbols such thatdout(s) =

{#0w1#1w2#2 · · ·#n−1wn#n | ∃j ∈ {1, . . . , n} such thatMj does not acceptwj }.

Clearly,dout(s) can be represented by a DFA whose size is polynomial in the sizes of the
Mi ’s. Indeed, the DFA just simulates everyMi on the string following #i−1 till it encounters
#i . It verifies that at least oneMi rejects. �

Next, we focus onSL-expressions as right-hand sides of DTDs. The complexity drops
to CONP. Lemmas17and18are stated and proven in the appendix.

Theorem 12(5). T C[Tnd, SL] is CONP-complete.

Proof. First, we prove the hardness result by a reduction from validity of propositional
formulas which is known to be complete forCONP [23]. Let � be a propositional formula
over the variablesv1, . . . , vn. Set� := {a1, . . . , an}. Definedin as the DTD with start
symbola1 defining depth one trees where the string formed by the children of the root can
be arbitrary. Intuitively, every stringw is a truth assignment:vi is true iff at least oneai
occurs inw. The transducerT is the identity, anddout(a1) = �′ where�′ is the formula
obtained from� where every occurrence ofvi is replaced bya�1

i for i = 1, . . . , n. Clearly,
this instance typechecks iff� is valid.

Next, we prove the upper bound. LetT = (QT ,�, q0
T , RT ) and let (din, sin) and

(dout, sout) be the input and output DTD respectively. We describe anNP algorithm guessing
a counterexample. In brief, we would like to guess an input treet satisfyingdin, a node
v ∈ Dom(t) labeled witha and a stateq ∈ QT in whichv is processed such thatT q(a(w))

does not satisfydout. Here,w is the string obtained by concatenating the labels of the chil-
dren ofv. An immediate problem is that we cannot simply guess a whole treet as the size of
the latter might be exponential in the size ofdin. Therefore, we simply guess a path ending
in v which can be extended to a tree satisfyingdin and a string of childrenw with the desired
property. We explain this next.

First, we introduce some notation. For a DTD(d, sd) anda ∈ �, we denote byda the
DTD d with start symbola, that is,(d, a). Let k be the largest number occurring in any
SL-formula indin or dout. Setr := (k + 1) · |�|.
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The algorithm consists of three main parts:
(1) First, we sequentially guess a subsetD of the derivable symbols{b ∈ � | L(db

in) �= ∅}.
(2) Next, we guess a path of a tree indin. In particular, we guess a sequence of pairs

(ai, qi) ∈ D ×QT , i = 0, . . . , m, with m� |�| · |QT |, such that
(a) a0 = sin andq0 = q0

T ;
(b) there is a treet ∈ L(din) and a nodev ∈ Dom(t) such thata0 · · · am is the concate-

nation of the labels of the nodes on the path from the root tov; and,
(c) for all i = 0, . . . , m: T visitsai in stateqi .

(3) Finally, we guess a stringw ∈ D∗ of length at mostr such thatT qm(am(w)) does
not partly satisfydout. As r can be exponentially large, we do not guessw itself, but
a representation ofw. Here, partly satisfaction is as defined in the proof of Theorem
12(3).

We describe in detail how the three parts can be implemented and show that the verification
of the guesses can be done inPTIME. As all the guesses can be done at the beginning, we
obtain anNP algorithm.
(1) We computeD as follows.

(a) Guessing phase: guess a sequence of different symbolsb1,…,bm′ in �. So,m′� |�|.
Guess vectorsv1, . . . , vm′ where eachvi = (&i1, . . . , &

i
i−1) ∈ {0, . . . , k + 1}i−1. In-

tuitively, the vectorvi corresponds to the stringb
&i1
1 · · · b

&ii−1
i−1 . So, we interchangeably

talk about the vector and the stringvi . Note that some&ij may be zero.
(b) Checking phase: For eachi = 1, . . . , m′, test that the stringvi satisfiesdin(bi). Note

that this can be done inPTIME.
Let Si = {bj | j � i}. From Lemma17, it follows that if there is a stringw in S∗i
such thatw satisfiesdin(bi) then there is one such that each symbol occurs at most
k + 1 times. Hence, it suffices to guess vectors in{0, . . . , k + 1}i−1. Finally, a simple
induction shows thatD ⊆ {b ∈ � | L(db

in) �= ∅}.
(2) The requirement (a) can easily be checked. (c) can be checked by verifying thatqi+1 ∈

rhs(qi, ai) for all i. Let D = {b1, . . . , b|D|}. To test (b), it suffices to guess a vector
vi = (&1, . . . , &|D|) ∈ {0, . . . , k + 1}|D| for everyi ∈ {0, . . . , m− 1} such that&j �= 0

whenai+1 = bj and test whetherb&1
1 · · · b&|D||D| satisfiesdin(ai). As every symbol is inD,

the path can be expanded to a tree satisfyingdin. By Lemma17, it follows that guessing
vectors of that size suffices. The upper bound|�| · |QT | on m can be obtained by a
simple pumping argument.

(3) Before we describe the last part of the algorithm, we make the link explicit between
the transducerT , the functionf and thec’s described in Lemma18. We start with
some notation. Letq be a state ofT anda ∈ � then defineq(a) := top(rhs(q, a)). For
a stringw = a1 · · · an, we defineq(w) := q(a1) · · · q(an). For a ∈ � andw ∈ �∗,
we also define #a(w) to be the number ofa’s occurring inw. Let q ∈ QT , a ∈ �
and letu be a node in rhs(q, a). Let z = z0p1z1 · · ·p&z& be the concatenation of the
labels of the children ofu, such thatpi ∈ QT andzi ∈ �∗. For everys ∈ �∗, define
f

q,a
u (s) as the string obtained fromz by replacing everypi by the stringpi(s). Now,

we define thec’s corresponding tof q,a
u (s). For everyb ∈ �, setcb := #b(z) and for

everye ∈ �, setcbe :=
∑&

j=1 #b(pj (e)). Clearly, for everyb ∈ � and everys ∈ �∗,
#b(f

q,a
u (s)) = cb +∑e∈�(cbe · #e(s)).
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So, the algorithm guesses a nodeu in rhs(qm, am). We do not guess a stringw but
rather a vector in{1, . . . , k+1}|�| representing such a string (as in the previous bullets).
We check whetherf qm,am

u (w) does not satisfydout(a) where the label ofu is a. Take
f asf qm,am

u , �1 asdin(am), and�2 asdout(a). Then from Lemma18, it follows that it
suffices to guess a string represented by a vector in{1, . . . , k + 1}|�|. This completes
the description of the algorithm.�

5. Transducers of bounded width

As can be inferred from Theorem12, disallowing deletion lowers the complexity of the
typechecking problem in the presence of DTDs. Unfortunately, the problem still remains
intractable. In the context of DTD(DFA)s, the high complexity is a consequence of the
copying power of transducers (cf. the proof of Theorem12(4)). Therefore, we bound in
advance the width of transducers by only considering transducers in the classBWk for
a fixedk (cf. Section2.5). In the case of DTD(DFA)s we then finally obtain a tractable
scenario.

Theorem 14. (1) T C[BWk,NTA] is EXPTIME-complete;
(2) T C[BWk,NFA] is PSPACE-complete;
(3) T C[BWk,DFA] is PTIME-complete;
(4) T C[BWk,SL] is CONP-complete.

The lower bounds of (1), (2), and (4) follow immediately from the construction in the
proofs of Theorem12(1), (3), and (5).

Theorem 14(3). T C[BWk,DFA] is PTIME-complete.

Proof. A PTIME lower bound is obtained by a reduction fromPATH SYSTEMS [9]. PATH
SYSTEMS is the following decision problem. Given a setP , a setA ⊆ P of axiomas, a set
R ⊆ P 3 of inference rules and somep ∈ P , is p provable fromA usingR? Letp be
the start symbol ofdin. Further, for every(a, b, c) ∈ R, din(c) = {ab}; for everya ∈ A,
din(a) = {ε}. Let L(dout) be empty and letT be the transducer that copies the input tree.
ThenT typechecks w.r.t.din anddout iff p has no proof.

In the proof ofTheorem12(3),TC[Tnd,NFA] is reduced to the emptiness of NTA(2AFAlf )s.
In that proof, alternation was needed to express negation of NFAs; two-wayness was
needed becauseT could make arbitrary copies of the input tree. However, when trans-
ducers can make only a bounded number of copies and DFAs are used, TC[BWk,DFA] can
beLOGSPACE-reduced to emptiness of NTA(NFA)s. From Theorem19(1), it then follows
that TC[BWk,DFA] is in PTIME. �

6. Ranked versus unranked

We briefly motivate why we use unranked transducers rather than their more deeply
studied ranked counterparts.
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Fig. 6. (a) and (b) are unranked trees. (c) and (d) are their binary encodings respectively.

It is known that unranked trees can be uniformly encoded as binary trees. However,
we argue that unranked tree transducers cannot be simulated by deterministic top-down
ranked tree transducers on binary trees using the standard encoding. As mentioned in the
introduction, macro tree transducers can simulate our transducers on the binary encodings
[11,16], but as very little is known about their complexity this observation is not of much
help.

For an illustration of the standard encoding, see, e.g., Fig.5. The encoding is denoted
by encand the decoding bydec. Intuitively, the first child of a node remains the first child
of that node in the encoding, but it is explicitly encoded as a left child. The remaining
children are right descendants of the first child. Note that we allow a node to have a right
child without having a left child, but this issue can easily be resolved by inserting dummy
symbols in the encoding.

A formal definition of deterministic top-down ranked tree transducers can be found in
[13]. In Fig. 6, we show two tree languages (n is arbitrary) and their binary encodings.
Let L1, L2, L3 andL4 be the tree languages represented by the trees in Figs.6(a)–6(d),
respectively.
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The languageL1 can be transformed toL2 by the tree transducerT = (Q,�, q0, R)

whereQ = {q0, qb, qc}, � = {a, b, c}, andR contains the rules

(q0, a)→ a(qbqc) (qb, b)→ b (qc, b)→ c.

Basically,bn is transformed tobncn. However, as we argue next,L3 cannot be transformed
to L4 by a deterministic top-down ranked tree transducer. For a treet , let path(t) be the
set of all strings formed by concatenating the labels of a path int from the root to a
leaf. For a tree languageL, define the string language path(L) = {path(t) | t ∈ L}.
Given a regular tree languageL and a deterministic top-down ranked tree transducerR,
the language path(R(L)), whereR(L) = {R(t) | t ∈ L}, is regular[13, Corollary 20.13].
Since path(L4) = {abncn | n�1} andL3 is a regular tree language,L4 cannot be the result
of applying a deterministic top-down ranked tree transducer toL3.

7. Conclusion

Motivated by simple transformations obtained by using structural recursion or XSLT, we
studied typechecking for top-down XML transformers in the presence of both DTDs and tree
automata. In this setting the complexity of the typechecking problem ranges fromPTIME to
EXPTIME. In particular, when tree automata are used in specifying schema languages, there
is no hope for tractable algorithms. Indeed, in all considered scenarios, the typechecking
problem remainsEXPTIME-hard. The situation differs when we look at DTDs. We identified
three sources of complexity: (1) deletion; (2) unbounded copying; and, (3) non-determinism
in schema languages. Hence, we only obtained aPTIME typechecking algorithm when no
deletion is allowed, the amount of copying is fixed in advance, and when DTD(DFA) are
used to represent schemas.

Though the presented results shed some light on precisely which features determine the
complexity of typechecking, it fails to identify relevant fragments for which typecheck-
ing is tractable. Indeed, although it makes sense to limit copying in advance, disallowing
deleting completely is not very sensible as deleting occurs in many simple transformations
(cf. Example7).

Establishing tractable and practically relevant fragments is the topic of a subsequent paper
[17]. Building further on the results of this paper, we obtain relevant tractable scenarios by
enforcing combined restrictions on the deleting and copying power of transducers and by
considering restricted DTDs. We also incorporate XPath expressions. As a byproduct of our
new results we obtain that the complexity of TC[BWk,DTA] is EXPTIME-hard.

Appendix A.

A.1. Alternating string automata

We discuss two-way alternating string automata[14]. To prevent automata falling off the
input string, we use delimiters� and� not occurring in�. By ��� we denote�∪{�,�}.
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We tacitly assume that� and� only occur on the left and right end of the string, respec-
tively.

Definition 15. A two-way alternating automatonis a tupleA = (Q,���, �, I, F, r, U)

where
• Q is a finite set of states;
• I, F,U are subsets ofQ and are the sets of initial, final and universal states, respectively;
• r ∈ Q \ F is the rejecting state;
• � : Q× ���→ 2Q×{←,−,→} is the transition function.

A configurationofA on a stringw = �w2 · · ·wn−1� is a pair(j, q), wherej ∈ Dom(w)

andq ∈ Q. Intuitively,j is the current tape position andq is the current state.A configuration
(j, q) is initial (accepting) if q ∈ I (q ∈ F ) andj = 1 (j = |w|). A configuration(j, q) is
universal(existential) if q ∈ U (q ∈ Q−U ). Given� = (j, q) and�′ = (j ′, q ′), we define
thestep-relation� on configurations as follows:���′ iff (q ′, d) ∈ �(q, a), labw(j) = a, and
j ′ = j − 1, j ′ = j , or j ′ = j + 1 iff d =←, d = −, or d =→, respectively. We assume
that an automaton never attempts to move to the left (right) of a delimiter� (�). Further,
we assume thatA only reaches a final state at the delimiter� and that a computation branch
of A only rejects by reachingr at the delimiter�. Note that because of this last convention,
the transition function of a two-way alternating finite automaton is complete, that is, for
all a ∈ � ∪ {�}, q ∈ Q, �(q, a) �= ∅ and for allq ∈ Q \ ({r} ∪ F), �(q,�) �= ∅. For
a configuration�, a �-run of A on a stringw is a (possibly infinite) tree where nodes are
labeled with configurations as follows:
(1) the root is labeled with�;
(2) every inner node labeled with an existential configuration� has exactly one child�′ and

���′; and,
(3) let for any universal configuration�, {�1, . . . , �m} := {�′ | � � �′}, then every inner node

labeled with� has exactlym children labeled�1, . . . , �m.
An accepting�-run is a�-run which does not contain an infinite path and where every
leaf node is labeled with an accepting configuration. Arun is a�-run where� is an initial
configuration. The language accepted byA is defined asL(A) := {w ∈ �∗ | there is an
accepting run ofA on�w�}. Thesizeof aA is |�| + |Q| +∑q∈Q,a∈� |�(q, a)|.

We denote by 2AFA the class of all two-way alternating finite automata. We say thatA

loopson w if there is a run onw which contains an infinite path. An automaton is then
loop-freewhen it never loops. We denote the class of loop-free two-way alternating finite
automata by 2AFAlf . Note that 2AFAlf accept only regular string languages[14].A two-way
non-deterministic automaton, denoted 2NFA, is a 2AFA whereU = ∅.

The construction in the next lemma is a slight adaptation of a construction from Vardi
[32]. In Theorem19, we use an on-the-fly construction of the automatonN constructed in
this proof. Although the lemma appears in the literature without a restriction to loop-free
automata[10], it is not clear how to adapt it to an on-the-fly algorithm.

Lemma 16. LetA be an2AFAlf , then there exists an NFAN whose size is exponential in
the size ofA such thatL(N) = L(A).
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Proof. Let A = (QA,���, �A, IA, FA, rA,UA) be an 2AFAlf . We construct an NFA
N = (QN,���, �N, IN , FN) with QN = (2QA × 2QA), IN = {(∅, U) | U ∩ IA �= ∅},
FN = {(U,∅) | U ∩ FA �= ∅ andrA �∈ U}. For ease of exposition,N also operates over
delimited strings. Intuitively, whenN is in state(U, V ) when processing thej th symbol of
inputw = w1 · · ·wn, then for every statep ∈ V , A must acceptw1 · · ·wn when started in
p on positionj . Note thatw1 = � andwn = �. The setU is the setV of positionj − 1.
Initial and final states are of the form(∅, U) and(U,∅) as the two-way automaton cannot
move past the left and right delimiter, respectively.

The transition function is defined as follows. For every(U, V ), (T , U) ∈ QN anda ∈
���, (U, V ) ∈ �A((T ,U), a) iff for every p in U − FA the following holds:
• if p is an existential state then there exists a pair(p′, d ′) ∈ �A(p, a) such thatp′ ∈ T if

d ′ =←, p′ ∈ U if d ′ = −, andp′ ∈ V if d ′ =→; and,
• if p is a universal state then for all pairs(p′, d ′) ∈ �(p, a), p′ ∈ T if d ′ =←, p′ ∈ U if

d ′ = −, andp′ ∈ V if d ′ =→.
Clearly, the size ofN is exponential in the size ofA. It remains to show thatL(A) = L(N).
Clearly,�ε� ∈ L(A) iff �ε� ∈ L(N). Therefore, letw = �w1 · · ·wn� for n > 0.
Suppose that there is an accepting runr of A on inputw. DefineQ0 = ∅, Qi = {p | (i, p)
is a label inr} for i = 1, . . . , n + 1, Qn+2 = {p | (n + 2, p) is a leaf label inr}, and
Qn+3 = ∅. It is easy to check that(Q0,Q1) ∈ IN and� is an accepting run forN onw

where�(i) = (Qi,Qi+1) for i = 1, . . . , n+ 2.
For the other direction, suppose� is an accepting run ofN onw. Then, let(Qi,Qi+1) =

�(i) for everyi ∈ Dom(w). Fori ∈ Dom(w), definemd(i) asi− 1, i, andi+ 1, whend is
←,−,→, respectively. We define the depth of a configuration(i, q) whereq ∈ Qi , denoted
depth(i, q), inductively as follows: ifq ∈ FA then depth(i, q) = 0; otherwise, depth(i, q)
is

max{depth(j, q ′)+ 1 | (q ′, d) ∈ �A(q, labw(i)), q ′ ∈ Qj andmd(i) = j}.
AsA does not loop this notion is well-defined. By induction on the depth of configurations
� = (i, q), it is easy to construct an accepting�-run of height depth(i, q). The claim then
follows for an initial configuration(1, q) with q ∈ Q1 ∩ IA.

When a 2AFA is not loop-free, then the depth(i, q) is not well-defined for all strings, and
the construction of a run for the 2AFA from a run of the NFA might lead to an infinite tree.

�

A.2. Unordered string languages

By #x(y)we denote the number ofx’s occurring iny for x ∈ � andy ∈ �∗. The following
lemma is a useful tool in proving results aboutSL.

Lemma 17. Let � be anSL-formula and letk be the largest integer occurring in�.
Let s, s′ ∈ �∗ be as follows:
• if #a(s) > k then#a(s

′) > k;
• otherwise, #a(s) = #a(s

′).
Thens �� iff s′ ��.
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Fig. 7. Computing the setR of reachable states.

Proof. We can assume that negations in� only occur in front of atomic formulas. We call
an atomicSL-formula or a negation of an atomicSL-formula aliteral.

To prove the lemma, simply observe that for eacha ∈ �, such that #a(s) > k, s satisfies
all literals of the forma� i and¬a=j ands violates all literals of the form¬a� i anda=j
wherei, j ∈ {0, . . . , k}. The same holds fors′. �

We make use of the next lemma in the proof of Theorem12(5).

Lemma 18. Let�1 and�2 beSL-formulas and letk be the largest integer occurring in�1
or �2. Letf : �∗ → �∗ be a function so that for everyb ∈ � there exists a fixed sequence
of natural numberscb, (cba)a∈� for which #b(f (s)) = cb +∑a∈�(cba × #a(s)) for every
s ∈ �∗. If there is a strings ��1 then there is a strings′ ∈ �∗ such that
• s′ ��1
• f (s′)��2 iff f (s)��2, and
• each symbol occurs maximallyk + 1 times ins′.

Proof. Intuitively, the functionf characterizes the effect of our tree transformations on
a string of siblings in the input tree. Lets be a string such thats ��1 and there exists a
symbol that occurs more thank+1 times ins. We constructs′ from s by deletingx arbitrary
occurrences of every symbola that occursk+1+x times ins. So,k+1 occurrences remain.
Since by Lemma17, s′ ��1, we only need to show thatf (s′)��2 iff f (s)��2. Therefore,
take an arbitrary symbolb ∈ �. Then #b(f (s)) = cb +∑a∈�(cba · #a(s)). If for all a ∈ �
that occur more thank times ins, cba = 0, then #b(f (s)) = #b(f (s′)). If this is not the case,
takea ∈ � that occurs more thank times ins andcba �= 0. Then #b(f (s))�#a(s) > k and
#b(f (s′))�#a(s

′) > k, so, according to Lemma17, f (s)��2 iff f (s′)��2. �

A.3. Complexity of tree automata

We prove the following theorem which is a useful tool for obtaining upper bounds on the
complexity of the typechecking problem.

Theorem 19. (1) Emptiness of NTA(NFA) is in PTIME;
(2) Emptiness of NTA(2AFAlf ) is in PSPACE.

Proof. (1) LetB = (Q,�, �, F ) be an NTA(NFA). The algorithm in Fig.7 computes the
set of reachable statesR := {q | ∃t ∈ T� : q ∈ �∗(t)} in a bottom-up manner. Clearly,
L(B) = ∅ iff R∩F = ∅. Note thatRi ⊆ Ri+1 andR1 = {�∗(a) | a ∈ �}. We argue that the
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algorithm is inPTIME. Clearly,R1 can be computed inPTIME. Further, the for-loop makes
a linear number of iterations. Every iteration is a linear number of non-emptiness tests of
the intersection of an NFA withR∗i−1 whereRi−1 ⊆ Q. Clearly, the latter is inPTIME.

(2) From the proof of Theorem19(1), it follows that emptiness of an NTA can be reduced
to a polynomial number of tests of the following form:
(i) ε ∈ �(q, a); and,

(ii) �(q, a) ∩ R∗i−1 �= ∅.
We show that when�(q, a) is represented by a 2AFAlf , both tests can be done inPSPACE.

Let B = (Q,�, �, F ) be an NTA(2AFAlf ) and let for everyq ∈ Q anda ∈ �, Aq,a =
(Qq,a,Q��, �q,a, I q,a, F q,a, rq,a, Uq,a) be the 2AFAlf representing�(q, a). Denote by
Nq,a the NFA equivalent toAq,a given by the construction of Lemma16. Of course, we
cannot constructNq,a in polynomial space as it is exponentially bigger thanAq,a . Therefore,
we will constructNq,a on the fly. We denote the transition function ofNq,a by �q,a

N .
We first argue that given ab ∈ R∗i−1 and two states(T , U), (U, V ) of Nq,a , we can check

in PSPACE that (U, V ) ∈ �q,a
N ((T , U), b). Indeed, we just have to check for all elements

p ∈ U the constraints mentioned in Lemma16. That is, ifp is existential, we check that
there is a(p′, d ′) ∈ �q,a

N (p, b) such thatp′ ∈ T , p′ ∈ U , orp′ ∈ V depending ond ′. If p
is a universal state, we have to verify that for all(p′, d ′) ∈ �q,a

N (p, b), p′ ∈ T , p′ ∈ U , or
p′ ∈ V depending ond ′. These two tests merely involve set membership and require only
constant space.

We first describe the algorithm to check (i). We need to check whether�� is accepted
by Nq,a . To this end, we guess states(T1, U1), (T2, U2), (T3, U3) such that the first state is
an initial state; the last state is an accepting state; and,(T2, U2) ∈ �q,a

N ((T1, U1),�) and
(T3, U3) ∈ �q,a

N ((T2, U2),�). By the previous discussion, the latter can be done inPSPACE.
Next, we describe the algorithm to check (ii). GivenRi−1 ⊆ Q, q ∈ Q anda ∈ �, we

need to check whetherq ∈ Ri . The latter reduces to verifying whether there is some string
b1 · · · bn in R∗i−1 that is accepted byAq,a or, equivalently,Nq,a .
(1) Initialization step: We start by guessing an initial state(T , U) and a state(U, V ) such

that(U, V ) ∈ �q,a
N ((T , U),�). We write the state(U, V ) on the tape.

(2) Iteration step: Let (U, V ) be the state written on the tape. We guess a state(U ′, V ′) such
that(U ′, V ′) ∈ �q,a

N ((U, V ),�). If (U ′, V ′) is final, then we know thatR∗i−1∩Aq,a �=
∅ and accept. Otherwise, we erase(U ′, V ′) and guess a symbolb ∈ Ri−1 and a state
(U ′′, V ′′) such that(U ′′, V ′′) ∈ �q,a

N ((U, V ), b). We erase(U, V ), write (U ′′, V ′′) on
the tape and resume at the beginning of the iteration step.

Clearly,R∗i−1 ∩ Aq,a �= ∅ iff there is a run of the algorithm that accepts. Further, by the
discussion above, the algorithm only uses polynomial space.�
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