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Abstract

In this paper we show how a user can in¯uence recovery of Bayesian networks from a

database by specifying prior knowledge. The main novelty of our approach is that the

user only has to provide partial prior knowledge, which is then completed to a full prior

over all possible network structures. This partial prior knowledge is expressed among

variables in an intuitive pairwise way, which embodies the uncertainty of the user about

his/her own prior knowledge. Thus, the uncertainty of the model is updated in the

normal Bayesian way. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Bayesian nets provide much insight in the conditional (in)dependencies
among the attributes in a database. As such, Bayesian network recovery is an
important tool for data miners. However, a straightforward recovery of these
networks has two major drawbacks from the viewpoint of the user, who deals
with real world data:
· In the ®rst place, minor errors in the data may have large e�ects. For

example, leading to counter-intuitive arrows.
· Secondly, our database might not be a fair random sample. This situation
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arises commonly with data gathered by inquiries that, for some reason, are
not performed over a random sample of the population.
Both problems can be (partially) alleviated by allowing the user to specify a

priori knowledge. In fact, there always exists some domain (expert) knowledge
about a problem. This a priori knowledge should then be combined with the
evidence in the database during the recovery. The resulting network is then
consistent with both the user's a priori knowledge and the database. This last
fact makes that, from the viewpoint of the user, the results are better and more
acceptable.

So, the problem studied in this paper is how to let the user specify his a
priori knowledge and how to use this knowledge to bias the search of the re-
covery algorithm.

Among the di�erent approaches to learn Bayesian networks from data, we
have carried out our work within the Bayesian framework. Therefore, when-
ever we use the term probability, we refer to a Bayesian (subjective) probability.
In order to denote this fact, we will express the (Bayesian) probability of an
event e with p�e j n�, where n indicates the background knowledge that is rel-
evant to the assessment of this probability [3].

The standard Bayesian approach

posterior�model j data� / prior�model� likelihood�model; data�
translates to the posterior of a Bayesian network structure Bs given a database
D:

p�Bs j D; n� / p�Bs;D j n�;
p�Bs j D; n� / p�Bs j n�p�D j Bs; n�:

Let H be the set of parameters related to the Bayesian network structure Bs.
Then

p�D j Bs; n� �
Z

H
p�D j Bs;H; n�f �H j Bs; n� dH;

where the term p�Bs j n� corresponds to the prior of the Bayesian network
structure Bs. The reader may ®nd a detailed description of the method in
[1,4,5,8].

There are three earlier approaches in the Bayesian framework to the
problem of how to let the user specify his a priori knowledge and how to use it
to bias the search. The ®rst, which we will nick-name the partial theory ap-
proach, is by Buntine [1]. The second, which we will nick-name the penalizing
approach, is by Geiger et al. [5]. The third approach, which we will nick-name
the imaginary data approach, is by Gavrin et al. [6].

In the partial theory approach, an initial partial theory provided by the
expert is transformed into a prior probability over the space of theories. This
partial theory consists of:
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· A total ordering � on variables, such that a parent set of a given variable
must be a subset of the variables less than the given one (i.e.,
y 2 px ) y � x).

· A speci®cation of beliefs for every possible arc, that a variable is parent of
another one, measured in units of subjective probability.
The assumption of independence between parent sets is made, and thus a

full prior conditioned on the total ordering of variables is given by

p�Bs j�; n� �
Yn

i�1

p�pi j�; n�;

where

p�pi j�; n� �
Y
y2pi

p�y
 

! xi j�; n�
!
�
Y
y 62pi

�1
 

ÿ p�y ! xi j�; n��
!
:

Madigan and Raftery [8] also propose to elicit prior probabilities for the
presence of every possible link and assuming that the links are mutually in-
dependent. However, they do not attach an order among variables as part of
the prior information.

In the penalizing approach, the user builds a prior network from which it is
possible (see [5]) to assess the joint probability distribution of the domain U for
the next case to be seen p�U j Bsc; n� (where Bsc is the complete network). From
this joint probability distribution they then construct informative priors for the
prior distribution of the parameters, yielding the Bayesian Dirichlet equivalent
(BDe) metric.

In principle, the prior distribution of network structures is independent of
this prior network, but they propose an approach where structures that closely
resemble the prior network will tend to have higher prior probabilities, and
these higher probabilities will be achieved by penalizing those networks that
di�er from the prior network.

Let P be the prior network. The number of nodes in the symmetric di�erence
of pi�Bs� and pi�P � is

di � j�pi�Bs� [ pi�P �� n �pi�Bs� \ pi�P ��j:
So, the amount of arcs d in what the prior network and any network Bs di�er is

d �
Xn

i�1

di:

As we pointed out before, the idea is to penalize Bs by a constant factor
0 < j6 1 for each such arc:

p�Bs j n� � cjd;

where c is a normalization constant.
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In the imaginary data approach the user is asked to complete a certain
amount of imaginary cases (each containing a random value in a variable
chosen at random). This amount may depend on the problem domain. With
this set of imaginary data the uniform prior probability over the sample space
of Bayesian networks is updated. This updated distribution is then used as the
prior distribution in the rest of the process.

The approach taken in this paper is that we assume far less prior knowledge
from the user. Given two attributes A and B in the database, the user may
specify his con®dence in the possible connections between A and B in the
network. We do not expect the user to have an opinion about all possible links.
This partial prior knowledge of the user is then completed into a prior prob-
ability distribution on the space of possible networks.

In Section 2, the user's speci®cation of his/her (incomplete) prior knowledge
and its completion into a prior is discussed. In Section 3, we show how this
prior information is actually used to bias the search for the discovered network.
In Section 4, we give some experimental results that illustrate how the user's
prior knowledge biases the search. In the ®nal section we compare our ap-
proach with the three approaches discussed above and we formulate some
problems for further research.

2. The prior

2.1. The user speci®cation

Bayesian networks are graphically de®ned as acyclic digraphs (DAGs), and
our main goal is to let the user de®ne his/her preferences for some of this
graphical objects as a probability distribution over the set of acyclic digraphs.
A naive approach would be to obligate the user to give some prior probability
to every DAG such that the priors for all possible networks sum to 1. This is
impractical for the reason that no expert cannot be precise assessing some prior
probability between 0 and 1 for an object formed by n nodes and (up to)
n�nÿ 1�=2 arcs. We consider that assessing some degree of belief over the
(in)dependency between two variables is natural for the user. We assume that
the knowledge of the user is coherent, i.e., there are no contradictions in his/her
beliefs. This assumption means that the user's beliefs over the three possible
states of a link must yield a probability distribution. This is formally de®ned as
follows.

Let a and b be two nodes (variables) in a Bayesian network, the user may
assess as prior knowledge in the link formed by these two nodes, a probability
distribution over the three possible states of the link (arc in one direction
a! b, arc in opposite direction a b, no arc a � � � b), which holds
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p�a! b j n� � p�a b j n� � p�a � � � b j n� � 1:

In a Bayesian network with n nodes there are Cn;2
1 di�erent links, and for

every link, we consider a probability distribution over three states. For the
links for which the user does not specify a prior, we assume an uniform prior:

p�a! b j n� � p�a b j n� � p�a � � � b j n� � 1

3
:

So, given a partial prior by the user, we may complete the prior for a link
given this uniform distribution and the assumption that the user's beliefs are
coherent. For example, we may see below on the left, a partial prior for a
Bayesian network of three nodes, which may be speci®ed by the user. On the
right we may see its completion.

2.2. From an informal prior to a formal prior

We have shown the way we want the user to specify his/her partial know-
ledge and how to complete it to obtain a full prior. But still this prior is a
collection of prior beliefs over a set of links. We need a full prior for a Bayesian
network. Therefore, we are going now to specify, how to combine these priors
of the links to obtain a full prior for a Bayesian network.

The amount of di�erent objects we want to deal with (i.e., the amount of
acyclic digraphs) is exponential in the number of nodes [9], so the situation asks
for an incremental way of computing the full prior. This is, a way in which,
given priors for a set of components (links) we obtain a prior for an acyclic
digraph (a Bayesian network).

For us, the decomposition of a certain type of graphical object is useful as
far as it allows us to enumerate all possible objects of the sample space (like all
possible acyclic digraphs in our case). Such a decomposition keeps us aware of
the set of objects that contain a given set of components, and then we are able
to estimate the amount of con®dence in the entire space of objects consistent
with the given beliefs of the components.

Our main problem, we are going to discuss now, is that the natural de-
composition of acyclic digraphs does not help us to build the full prior. Acyclic

1 Cn;2 � n
2

� �
.
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digraphs are characterized by the so-called out-points [9]. Every node in a di-
graph has a (possibly empty) set of incoming arcs, and a (possibly empty) set of
outgoing arcs. The cardinality of the former is the in-degree of the node, and
the cardinality of the latter is the out-degree of the node. An out-point is a node
in a digraph with in-degree 0. In other ®elds like operations research, this type
of node is known as source, and its counter-part (the in-point, out-degree 0) as
sink. Every acyclic digraph has at least one out-point, because has no directed
cycles. We can decompose any acyclic digraph of n nodes in sub-DAGs of k
out-points and nÿ k non-outpoints for 16 k6 n.

In our current situation, this decomposition is not useful since does not
match the linkwise form of our prior components, which is also more intuitive
for the user than some out-point-based formalization. We claim below that this
linkwise form stems from the way we made our independence assumption
among beliefs. To provide this intuitive way of decomposing an object let us
assume for a moment that, instead of acyclic digraphs, we are working with
oriented graphs.

An oriented graph [7] is a directed graph with no loops and no cycles of size
two. So, it admits cycles of size greater than two. We can decompose this type
of graphical object in links (pairs of nodes) such that for a given connection in
this link, one-third of the whole space of objects will contain this concrete
connection (arc in a certain direction, arc in the opposite direction, no arc).

To formalize the way we are going to combine the link priors, we should
assume ®rst that the beliefs of the user over di�erent links are independent. In
other words, what the user thinks about the pair of nodes, e.g., aÿ b is not
related to what the user thinks about aÿ c or cÿ d, and so on. By this as-
sumption, we de®ne the combination of beliefs of di�erent links as the product
of their numerical values, which are probabilities. For example, these are the
full priors for three di�erent networks given the partial prior we showed above:

p�a! b c j n� � 3

4
� 3

4
� 1

3
� 3

16
;

p�a! b! c j n� � 3

4
� 1

8
� 1

3
� 1

32
;

p�a � � � b! c j n� � 1

8
� 1

8
� 1

3
� 1

192
:

Gavrin et al. [6] pointed out that the assumption of independence among
links is possibly unreasonable. We agree, but the bene®t of making such as-
sumption is that we require from the user the least amount of work to elicit a
prior distribution.

The e�ect of using oriented graphs instead of acyclic digraphs as decom-
posable objects is that we are considering a sample space bigger than the one
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de®ned by acyclic digraphs. Due to those digraphs which contain one or more
directed cycles. So, some amount of strength of our belief is distributed over a
set of objects that will be never considered in the search we want to bias, the
search for Bayesian networks. Therefore, we do not have a prior distribution
over the set of possible Bayesian networks.

The solution we give to this problem is to compute the amount of weight we
miss, and then we distribute it uniformly or proportionally over the set of
acyclic digraphs. Let An be the set of acyclic digraphs of n nodes. Let On be the
set of oriented graphs of n nodes. Let Cn � On ÿAn be the set of digraphs that
contain one or more directed cycle. Let Sn � f �Cn� be the sum of the prior
values of the objects contained in Cn. The function f computes this sum given
the set of digraphs with cycles, but for the moment we will not specify f. Using
Sn we can construct a prior distribution over the set of possible Bayesian
networks of n nodes in two ways:
· Uniformly let An be the cardinality of An. The amount of strength we sum to

every acyclic digraph in An is

c � Sn

An
:

· Proportionally we multiply every acyclic digraph by the value

c � 1

1ÿ Sn
:

In this way, the full prior for a Bayesian network B � �Bs;Bp�, where
Bs � �E; V � and E is the set of edges and V is the set of vertex such that Bs is an
acyclic digraph, may take one of these forms:

p�Bs j n� � c�
Y

vi;vj2V
i6�j


 vj j n;

p�Bs j n� � c
Y

vi;vj2V
i 6�j

p�vi
 vj j n�;

where p�vi
 vj� stands for the prior probability of certain connection (vi ! vj

or vi  vj or vi � � � vj) speci®ed in E about the link �vi; vj�.

3. Using the prior

3.1. Constants do not matter

The aim of building a prior out of the background knowledge of some user,
is to bias the search for a Bayesian network towards a model that contains the
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preferences expressed in this prior. Whenever there is no much evidence in the
data against the user's beliefs, in that case the search will not be biased. Since
the central role of the prior relies in the search process, it is easy to realize that
the previous formulation of our prior is signi®cantly simpli®ed as follows. Let
B1

s and B2
s be two Bayesian network structures involved in our search for a

Bayesian network, with priors p�B1
s j n� and p�B2

s j n�. Let B1
s � �E1; V � and

B2
s � �E2; V �, where E1;E2 are the sets of edges, and V the set of vertex. As we

already know, the Bayesian posterior that guides the search is proportional to
the prior, so the larger prior, the better posterior. For some two Bayesian
networks B1

s and B2
s , in some point of the search they are compared, and let's

say that B2
s has a better prior than B1

s , thus

p�B1
s j n� < p�B2

s j n�:
Let's expand the inequality with one of our formulas for the prior

c�
Y

vi ;vj2V
i6�j

1�vi
 vj j n� < c�
Y

vi;vj2V
i6�j

p2�vi
 vj j n�;

it is clear that the constants cancel themselves, and they do not modify the
comparison among the priors. Therefore, we can use the improper prior

p�Bs j n� �
Y

vi;vj2V i6�j

p�vi
 vj j n�:

Clearly, this also holds in the case we expand the inequality with

p�Bs j n� � c
Y

vi;vj2V i6�j

p�vi
 vj j n�:

3.2. The new local measure

Robinson [9] showed that number of acyclic digraphs grows exponentially in
the number of nodes. Since the Bayesian network structures are acyclic di-
graphs (DAGs), it is infeasible to enumerate all of them and identify the
structure with the highest posterior. Chickering [3] proves in his Ph.D. thesis
that to learn Bayesian networks from data using the Bayesian posterior
(concretely the BDe posterior [5]) is NP-complete. The way that the Bayesian
posterior is developed and the assumptions made to ®nd the ®nal closed for-
mula, a�ord to suit a range of search operators and search strategies. This
makes it possible to learn Bayesian networks from data.

Acyclic digraphs may be splitted in sub-DAGs (one for every node), where
each sub-DAG contains one sink node and its parent set of nodes. This de-
composition is made within the development of the Bayesian posterior at the
moment we factorize the probability of a case in a database through the chain
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rule and the assumption of completeness in the database. Chickering [3] calls
the scoring functions that hold this property decomposable scoring functions.
We recall below his de®nition.

De®nition 3.1 (Decomposable scoring function) Given a network structure, a
measure on that structure is decomposable if it can be written as a product of
measures, each of which is a function only of one node and its parents.

In this way, we treat separately every component, modifying and qualifying
it, to combine later all the components in one Bayesian network. Thus, it is
important that any further development in the learning process, as a prior to
bias the search, is given in such a way that makes possible to compute it locally
for every component and to combine it later with the rest of components. We
will show that this is possible with the prior we give.

We can group links depending on whether they represent arcs for a concrete
network with a sink node. Let k be the amount of links where the user assessed
some subjective probability. Let S0 be the set of links with subjective proba-
bility derived from the prior given by the user, that for the network Bs, rep-
resent no arc. Let pp

i be the set of parent nodes of the node xi in the sub-DAG
formed by the set of links speci®ed as prior knowledge by the user. We can
express p�Bs j n� as follows:

p�Bs j n� � 1

3

� �Cn;2ÿk Yn

i�1

Yjpp
i j

j�1

p�pp
ij

24 ! xi�
35 Y
�x;y�2S0

p�x � � � y�:

In this situation local changes are possible by changing single terms in the
two main products. We may see that the second main product is not a function
of one node and its parents. This term must be computed globally for every
network, thus the expression, as a whole, is not fully decomposable. However,
its complexity is O�jS0j� because it depends on how much information is
provided by the user. Therefore, in practice jS0j is substantially smaller than
Cn;2 and then the overhead in the computation caused by this global term is
negligible.

3.3. The algorithm

In ®rst place we will give a simple algorithm to complete a prior given by the
user. Let Su be a set of vectors �x; y; t; p� given by the user, where x; y are two
variables such that x 6� y, t is an element of f ;!; � � �g specifying the type of
prior information, and p is the subjective probability that exists a connection of
type t between x and y. We will denote by Sc the set of vectors that complete the
prior, the set that contains all the prior information is denoted by Sp. We will
build Sc as follows:
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let Sc � ;
for v � �x; y; t; p� 2 Su do

let v0 � �x; y; t0; p0�
let v00 � �x; y; t00; p00�
let t [ t0 [ t00 � f ;!; � � �g
if v0 2 Su and v00 62 Su and v00 62 Sc then

p00 � 1:0ÿ p ÿ p0

Sc  Sc [ v00

else if v00 2 Su and v0 62 Su and v0 62 Sc then

p0 � 1:0ÿ p ÿ p00

Sc  Sc [ v0

else if v0; v00 62 Su and v0; v00 62 Sc then

p0 � p00 � �1:0ÿ p�=2:0
Sc  Sc [ v0 [ v00

endif

Sc  Sc [ v
endfor

For computational reasons we will work with the logarithmic form of the
prior

log p�Bs j n� � �Cn;2 ÿ k� log
1

3

� �
�
Xn

i�1

Xjpp
i j

j�1

log p�pp
ij

24 ! xi�
35

�
X
�x;y�2S0

log p�x � � � y�:

Then, for a given node xi we will compute the corresponding part of the
prior p�Bs� using the following function:

function computeLocalPrior�xi; pi; Sp� do
let pp

i  fy : y 2 pi ^ �y; xi;!; p� 2 Spg
prior  0
for xj 2 pp

i do

let v � �xj; xi;!; p� : v 2 Sp

prior prior � log p
endfor

return prior
endfunction

When the values of the priors of the components are combined (by summing
them), we should compute the term corresponding to those links speci®ed in
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the user's prior, where there is no arc in the network that is currently quali®ed,
i,e., X

�x;y�2S0

log p�x � � � y�:

4. Experimental results

In this section our aim is twofold: to make clear how the prior works and to
show an example that reproduces a situation we may ®nd dealing with real
world data. Both experiments have been realized using synthetic data thus we
can evaluate the correctness of the results.

The Bayesian posterior used in this experimentation is the BDe with unin-
formative priors for the parameters, also known as BDeu [1,5]. This posterior
assumes complete ignorance about the parameters of the Bayesian network,
and the prior network involved in the posterior (do not confuse with our prior
about the structure) is the empty network. The equivalent sample size that
assesses the con®dence of the user in this previous settings is also completely
uninformative. The BDeu posterior assigns equivalent values to equivalent
networks. A comprehensive and self-contained explanation of this settings is
beyond the scope of this article. We recommend the reader to consult [1,5].

To show how the prior works, we will consider a small sample space of
Bayesian networks (three nodes). We will bias the probability distribution of
this sample space using our prior. This means that we will be changing the local
maxima that a search process would achieve.

Let us consider we have two databases, db1 and db2, with 10 000 cases each.
These databases re¯ect the independencies shown in Fig. 1.

They are claiming two di�erent independence assertions: db1 infers I�a; ;; c�,
and db2 infers I�a; b; c�. We have mixed them in proportions from 0% to 100%,
and in the Fig. 2 we may see the di�erent probability distributions p�Bs j D; n�
over the set of possible DAGs. These two pictures show how the shape of the
distribution changes through the di�erent proportions of evidence towards the
two original models from which we sample the data. The vertical axis indicates
the value of probability, and the horizontal indicates the Bayesian network.
The one generating db1 is on the second position in the horizontal axis, and the

Fig. 1. Bayesian network structures corresponding to two di�erent databases.
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ones (we use a score equivalent Bayesian measure) generating db2 are on the
13th, 14th and 15th positions in the horizontal axis. The last six positions of
the horizontal axis correspond to the six complete Bayesian networks of three
variables.

Let us take the database with a proportion of 70% of db1 and 30% of db2.
This mixture of evidence bene®ts the six equivalent models that have all three
variables mutually dependent (the complete network). We know that 70% of
the database contains evidence that a and c are marginally independent while b
is conditionally dependent on a and c. Therefore, by using prior information in
the structure we want to see whether the existing evidence plus our prior
knowledge allow us to bias the original distribution. We can achieve that by
using the following prior:

In this prior we incorporate our notion of marginal independence between a
and c by providing prior probability in the lack of an arc in either direction in
the link formed by a and c.

The distribution is biased in such a way that we could achieve a di�erent
local maxima in the search process, as we can see in Fig. 3.

Now, we want to show the prior working under more realistic circum-
stances. We have implemented this prior within an algorithm that uses the
Bayesian posterior we described at the beginning of this section. Further, the
learning algorithm uses as search strategy, a beam search with a beam of width
3, that in this case guarantees us to ®nd always the highest posterior. The

Fig. 2. Distributions of p�Bs j D; n� for proportions of db1 from 0% to 100%.
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neighbour operator used by the beam search generates at every step of the
search all possible networks with one arc more, one arc less and one arc re-
versed. For a more detailed description of the implementation of the learning
algorithm the reader may consult [2].

Let us consider the Bayesian network of Fig. 4, as a possible model for a
synthetic insurance domain. In this Bayesian network all arcs which direction is
compelled are marked with C, and those that are reversible are marked with R,
which in this case is just one.

From this network we sample a database of 100 000 records, by computing
the entire probability distribution of tuples given the bayesian network of
Fig. 4, and then each case is sampled by generating a random number between
0 and 1.

Fig. 3. Biased distribution by the e�ect of prior knowledge.

Fig. 4. Bayesian network for an insurance domain on the left, and distributions of Gaussian noise

over a sample of 100 000 records for three di�erent variances on the right.
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In the generation of this sample, we introduce Gaussian noise with three
di�erent variances. Thus, we obtain three di�erent databases with three dif-
ferent levels of noise. The e�ect of the noise is to disturb the selection of the
proper tuple at each sampling of the probability distribution built from the
Bayesian network. More concretely, given a random number between 0 and 1,
we pick up the ®rst tuple for which the accumulated probability is smaller than
this random number. Given a normal value from the Gaussian distribution
(with mean 0), this normal value may shift the selection of the tuple according
to the random number. In Fig. 4 we may see how this noise is distributed. The
horizontal axis gives the length of the shift caused by the noise, the vertical axis
gives the amount of tuples that has been shifted. Those tuples with a null tuple
shift are not disturbed by the noise. Thus, we may see that for a variance of 1.0,
the 30% of the database is touched by noise. It means that in those tuples at
least one value is di�erent from what it should had been.

If we recover the network with the highest posterior from the database with
noise ruled by a variance of 1.0, we obtain the Bayesian network of Fig. 5. This
®gure also shows the P-value of a v2 test for independency and Cramer's V-
value, for the two extra arc that have appeared. According to the P-value, the
relation between color and job appears to be signi®cant but the degree of as-
sociation given by Cramer's V-value is not strong. In the other case the relation
between age and gender does not seem to be even signi®cant. Another di�er-
ence is that the two arcs between job, and age and gender are now reversible
because the latter extra arc leads them to be covered. 2

Our goal is ®rst to see whether we can bias the search and obtain the original
model using prior knowledge. Second, to ®nd out how strong our prior

Fig. 5. The database contains 30% of tuples touched by noise.

2 An arc is covered when the parent set of the sink coincides with the parent set of the source.
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knowledge must be to achieve the ®rst purpose. Thus, we can get a feeling of
how the evidence about the original model is deteriorated by such amount of
noise in the database. It is also important to realize in which minimal con®g-
uration of prior knowledge we can obtain the original model.

By trying di�erent values combined in di�erent ways over the arcs that have
been modi®ed we have found out the following. To remove the extra arc be-
tween color and job is necessary to assess p�color � � � job j n� � 0:95, while to
remove the extra arc between age and gender, it does not su�ce to assess only
p�age � � � gender j n� � 0:95. In fact, for the current model underlying this data,
that is not the way of removing it. To remove this extra arc, and to ®x as
compelled the arcs between job and age and gender as they originally were, one
should assess p�gender ! job j n� � 0:4.

The degree of association between gender and job is the second strongest
one and the search process adds an arc between these two variables at the
second step of the beam search. By setting this prior we are expressing our
preference over a model where a compelled arc should appear pointing to job,
that is to say, the arc should not be covered, and this implies that the arc
between age and job should not be covered either, thus both of them pointing
to job. Because of the strong association between gender and job that leads the
process to link them in the second step of the search, a correction towards the
right model in this step leads the whole search to achieve the model we ex-
pected. If the amount of evidence would account di�erently for this link, we
would have to set our prior knowledge in a di�erent way. The assertions of
(conditional) independence contained in the recovered model (the I-map) are
then the sum of the evidence of the database plus our prior knowledge about
the model.

When one considers databases of the size we have been using now, the ev-
idence about a certain fact may be very large. We have seen that the P-value for
a signi®cant relation was practically 0. The size of a database may help to
smooth the e�ect of noisy tuples. So, we are now going to show what happens
if we introduce the same proportion of noise, but in a sample ten times smaller:
a database of 10 000 records. Under this condition we obtain the Bayesian
network of the Fig. 6.

In this case, we are not able to bias the search towards the original model,
even if we believe, let's say in 9/10, that the missed arc between previousdamage
and insurancetype exists. Let Bs be the original Bayesian network structure and
B0s the Bayesian network structure of Fig. 6. The log-likelihoods of these two
networks are:

log p�Bs;D j n� � ÿ115518:77;

log p�B0s;D j n� � ÿ115414:45;

diff � ÿ104:32:
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So, we would have to believe in 0.999..99 about 100 nines to bias the search.
Of course, such belief would not make sense, and the only conclusion we may
draw is that sometimes, and in this case, we cannot win. There is enough ev-
idence in the database against a direct relation between the two variables
mentioned before.

Finally, we will treat the case of having a database that is a bad random
sample of a certain underlying model. We have simulated this by generating a
sample of 10 000 records using the built-in random generator of the standard C
library 3 (the rand�� function) to sample from the model. In this case the
Bayesian network with the highest posterior is showed in Fig. 7.

Similar to the ®rst case, the two extra arcs are covering the arc between
damage and age and this latter one becomes reversible. We can recover the
original model setting probabilities on the modi®ed arcs towards their proper
form, but by looking for the minimal amount of prior knowledge we need, we
can ®nd out which portion of evidence has been deteriorated. In this case, this
portion a�ects the compelled nature of the link between damage and age.

By setting a prior probability in this link of p�age! damage j n� � 0:4 we
recover the correct model. Provide that this value is only slightly over the ig-
norance threshold 1/3, it means that the original evidence is not too deterio-
rated, and that it is more sensible to consider the original model as the one that
generated the data, which in fact is true.

The relation that now is present in the model, between cartype and damage is
signi®cant �P -value � 1:687106 eÿ 10�, but with a weak degree of association
(Cramer's V� 0.06387).

3 Which is known to be pretty bad.

Fig. 6. Sample of 10 000 records, where 30% are touched by noise.
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5. Discussion

In the formalization of our approach to incorporate prior knowledge, we
work within the framework of Bayesian statistics. This keeps the induction
process sound. The beliefs of the user are requested to be coherent, this means
that the user should think in terms of which are his/her preferences among
three existing possibilities of connection between two variables. In the dis-
cussion of the construction of a full prior we have seen that independence
assumptions over prior knowledge are coupled with the nature of the models
we try to induce. Our approximation of the full prior by using oriented graphs
looks good given the results in the experimentation with synthetic data. Of
course it would be desirable to ®nd a better coupling between Bayesian net-
works (acyclic digraphs) and independence assumptions over prior knowledge.

If we compare our work with the existing approaches, the most important
di�erence is that we do not expect the user to have prior knowledge about the
whole network structure. Partial prior information can be taken into account
as well. Compared with the partial theory approach, where a total ordering on
the variables is required, an important di�erence is that the user's prior belief
can be negated by the facts in the database. That is, the user may think that A is
a parent of B with a 99% probability, but if the database overwhelmingly
supports that B is a parent of A, then in the ®nal network, B will be a parent of
A, while in the partial approach the order overrides any evidence.

Compared with the penalizing approach, an important di�erence is that we
achieve our aims not by penalizing networks that di�er much from the user's
prior belief, but by Bayesian updating of the user's prior belief with the facts
from the database. Penalizing overrides the user's uncertainty about how
variables are linked. Finally, compared with the imaginary data approach, our
solution requires the least amount of work of the user.

Fig. 7. Bad random sample.
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The fact that the database can override the prior belief of the user could be
also seen as a weakness of the approach taken in this paper. In the previous
section we have seen that in a rather small database the user already needs a
very high con®dence in his knowledge to ``win'' from the data. Although this is
a straightforward e�ect of Bayesian updating it may appear counter-intuitive
to the user. Currently, we are working on an approach in which the user may
specify his prior beliefs by a (partial) database. This will allow the user to state
that he can think of 100 000 cases in which A is the parent of B. We hope that
the user will feel more con®dent in supplying such a number of cases rather
than a prior probability of 99.999%. Given this (partial) database, the prior
probability can be computed in a way very similar to that in the current paper.
We are taking into account as well how the notion of equivalent sample size,
used by Geiger et al. [5] for their prior network, is related to this idea, and also
how is related to the imaginary data approach from Gavrin et al. [6].

Another extension we are working on is to allow the user to specify his prior
knowledge in chunks larger than single links, thus trying to relax the as-
sumption of independence among links. It is very well possible that the user
beliefs that A is a parent of B, if C is also a parent of B but that he has another
opinion if C turns out to be a child of B. In principle, this problem is not much
di�erent from the one studied in this paper, the major di�erence lies in the
completion of the prior probability.

Concerning the use of this prior, much more experimentation must be done,
mainly in front of real world problems. This is the only way to know the added
value of prior knowledge in data analysis and interpretation of results. Garvin
et al. [6] provided an experiment where they show how prior knowledge can
improve predictive performance.
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