
International Journal of Gerontology | September 2007 | Vol 1 | No 3 103

ROLE OF METALLOPROTEINASES IN PLAQUE RUPTURE

Andrew C Newby*

University of Bristol, Bristol Heart Institute, Bristol Royal Infirmary, Bristol, UK.

SUMMARY

Rupture of the fibrous cap over an atherosclerotic plaque is the main cause of myocardial infarctions and
strokes. Plaques vulnerable to rupture have a relatively thin fibrous cap, are highly inflamed and contain less
structural collagen. This suggests that increased production of proteases, including metalloproteinases (MMPs),
in response to inflammation is responsible for weakening the plaque cap. If so, then MMPs or the inflammatory
mediators that lead to their overexpression are attractive targets for plaque stabilizing therapy. On the other
hand, remodeling of extracellular matrix and cell surface proteins promotes migration and proliferation of
endothelial and smooth muscle cells which could promote vascular repair and therefore plaque stability.
Greater understanding of the role of individual MMPs and the regulation of their production is therefore
needed to refine therapeutic approaches. [International Journal of Gerontology 2007; 1(3): 103–111]
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Vascular Biology of the Metalloproteinases
(MMPs)

The MMPs are a family of at least 24 proteins with
diverse substrate specificities that include extracellular
matrix (ECM) and cell surface proteins1. While most
MMPs are secreted, the six membrane-type MMPs (MT-
MMPs) are integral membrane proteins with catalytic
domains on the cell surface (Figure 1). MMP activity is
increased by transcription and translation of MMP genes
and by proform activation; it is kept in check by complex
formation with four tissue inhibitors of MMPs (TIMPs)
(Figure 1)1.

Degradation of ECM components by MMPs could
reduce plaque size and promote plaque instability2.
For example, collagenases (MMP-1, MMP-2, MMP-8,
MMP-13 and MMP-14) cleave fibrillar type I and III col-
lagens, which provide most tensile strength (Figure 2).
MMP-9 and MMP-12 degrade elastin, while stromelysins
and matrilysins (e.g., MMP-3 and MMP-7) have a broad

specificity that includes cleaved collagens and the core
proteins of proteoglycans (Figure 2). Apart from
removing excess ECM, MMPs also promote infiltration
of immune-inflammatory cells3 and the sprouting of
endothelial cells that underlies angiogenesis4; both of
these are associated with plaque growth and increased
vulnerability to rupture5. On the other hand, some
MMPs (particularly MMPs-2, MMP-9, MMP-12 and
MMP-14) promote migration and proliferation of vas-
cular smooth muscle cells, which although they pro-
mote plaque growth increase stability of the fibrous
cap6. A key mechanism mediating increased migration
is simply relieving the constraints caused by adhesion of
cells to their basement membranes7. Other more subtle
mechanisms promote proliferation. These include
shedding cadherins, which causes loss of cell–cell con-
tacts and translocation of the transcriptional regulator,
β-catenin, to the cell nucleus (Figure 2). The result is
altered transcription of key cell cycle genes including
cyclin D1 and p21 cyclin dependent kinase inhibitor8,9.
Remodeling of the ECM also permits binding to cell
surface integrin receptors and activation of signaling
from focal adhesions (Figure 2). This ultimately mediates
downregulation of both p21 and p27 cyclin depen-
dent kinase inhibitors10,11. Both pathways stimulate cell
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cycle progression and smooth muscle cell proliferation.
Hence individual MMPs could in theory either promote
or impair plaque stability, and the predominant effect
needs to be established by careful experimentation.

Localization of MMPs in Human
Atherosclerotic Plaques

The presence and localization of MMP proteins and
activity have been used to establish “guilt by association”
for their involvement in plaque vulnerability. Normal
arteries express only pro-MMP-2, TIMP-1 and TIMP-2
and show no MMP activity by in situ zymography12–14.
Increased levels of MMP-1, MMP-3 and MMP-9 are
detected in rabbit15,16 and mouse17 atherosclerotic
plaques and at the rupture-prone shoulder regions of
human atherosclerotic plaques12,18–20. MMP-1 is local-
ized at sites of high circumferential tensile stress21. MMPs
are prominent in macrophage-derived foam cells, but
are also found in lymphocytes, smooth muscle and

endothelial cells. MMPs -8, -11, -14, and -16 are also
overexpressed at rupture-prone regions of human
plaques22–28, while MMP-7 and -12 seem to localize
more specifically to macrophages at the borders
between the lipid core of human22 and rabbit29 plaques.
In situ zymography detects MMP activity at the shoulder
regions of human plaques12–14, while 3D imaging of
MMP activity towards a synthetic substrate confirms the
association of MMP activity in highly inflamed plaques30.
The collagenases MMP-1 and MMP-13 co-localize with
markers for cleaved collagen at shoulder regions in
plaque caps27. All of this data supports an association
between high levels of MMP activity and matrix turn-
over in inflamed plaques, and at sites vulnerable to
rupture. Furthermore, Sluijter et al. recently used a
large biobank to show that levels of MMP-8 and MMP-
9 are significantly increased in vulnerable compared to
stable carotid plaques31. On the other hand, levels of
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Figure 1. MMP production and activation. MMPs are synthe-
sized as proforms in the rough endoplasmic reticulum (RER)
and mostly secreted via the endosomal pathway. In leuko-
cytes, MMP-8 and MMP-9 are sometimes stored in granules.
Secreted MMPs are activated by removal of a propeptide in
the extracellular compartment. Membrane-type MMPs (MT-
MMPs) are unusual for two reasons: they are expressed on
the cell surface and are activated by furins in the endo-
somes. Tissue inhibitors of MMPs (TIMPs) are secreted and
inactivate MMPs by blocking their catalytic sites.
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Figure 2. Function of MMPs. As shown, only a few MMPs have
the ability to make the initial ¼, ¾ cleavages of fibrillar colla-
gens. However, other MMPs cooperate in the destruction of
cleaved collagen and other matrix components. MMPs affect
plaque cell migration by removing matrix barriers. Another
important effect of matrix turnover is promoting interactions
with integrins, which triggers signaling to the nucleus from
focal adhesions. MMPs also remodel cell surface proteins
including cadherins. Shedding of cadherins frees β-catenin
to translocate the nucleus and modulate gene expression.
These signaling pathways control migration, proliferation
and apoptosis of vascular cells.



MMP-2 were increased in stable plaques31. Hence
increased levels of some MMPs could be markers of
vascular repair rather than net matrix destruction.

Genetic Epidemiology

Many groups have investigated the association between
polymorphisms that influence the production of MMPs
and the incidence of cardiovascular disease32. For exam-
ple the 5A/6A promoter polymorphism in the MMP-3
gene causes greater transcription of MMP-3. Several but
not all studies suggest that increased transcription of
MMP-3 is associated with less advanced coronary33–35

and carotid36 atherosclerosis but with greater incidence
of MI33,37,38 and strokes39. High levels of MMP-1 pro-
moter activity also appear to worsen symptomatic coro-
nary heart disease40 and carotid artery stenosis36 but
favor plaque instability and precipitate MI41. Perhaps
MMP-1 and MMP-3 decrease ECM accumulation and
this leads to smaller but less stable plaques, although
this remains to be shown directly. By contrast, greater
MMP-9 promoter activity appears associated with
increased disease severity42,43, contrary to the results
with MMP-1 and MMP-3.

Pharmacologic Studies and Genetic
Manipulation in Animals

Most studies used mice in which increased lesion size,
abundance of macrophages and decreased content of
collagen have been used as surrogate markers for
plaque instability. Acute and healed plaque ruptures
have also been quantified in mice44. However, the
anatomical differences between mouse and human
plaques45 caution against over eager extrapolation.

TIMP-1 gene deletion in apolipoprotein (ApoE)
knockout mice increased vessel wall MMP activity and
elastin degradation in two studies46,47. One study
reported a decrease47, the other found no effect46 on
aortic plaque size. Overall, the studies suggest a modest
deleterious effect of unchecked MMP activity on plaque
stability. Consistent with this, systemic, adenovirus-
mediated TIMP-1 overexpression decreased aortic sinus
lesion size and macrophage content in one study48.
Similar overexpression of TIMP-1 in a later study had
no effect on brachiocephalic artery plaques, although
TIMP-2 did decrease plaque size and markers of plaque

rupture49. Moreover, delayed TIMP-2 administration
arrested the development of established plaques49.
Given these promising findings, it is disappointing that
oral administration of broad-spectrum, synthetic MMP
inhibitors that should mimic the action of TIMP-2 had
no effect on lesion size or stability in hypercholes-
terolemic mice49,50 or atherosclerotic primates51. Tetra-
cyclines are a family of antibiotic drugs that also inhibit
MMP expression and activity. However, doxycycline treat-
ment of hyperlipidemic mice had no effect on the extent
of atherosclerosis52. One explanation for these findings
is that broad-spectrum MMP inhibitors prevent the ben-
eficial effects of some MMPs as well as the harmful
effects of others. Hence, the likely clinical benefits of
MMP inhibition are hard to predict. The narrow thera-
peutic window of available MMP inhibitors is also a
hindrance to clinical application53.

The role of individual MMPs has been investigated
by overexpression or deletion. Overall, the results show
clear deleterious effects of MMPs on plaque instability
but also some beneficial effects, consistent with the
actions noted in the section above on “vascular biology”.

Collagenases
Expressing collagenase-resistant collagen-I in ApoE null
mice produces more stable plaques owing, as expected,
to collagen accumulation54. MMP-13 replaces MMP-1
as the main interstitial collagenase in mice. MMP-13
deletion also increases collagen accumulation but does
not affect lesion size or inflammation55. These two
studies suggest that collagenases mainly affect plaque
stability through direct effects on collagen levels. How-
ever, overexpressing human MMP-1 in the macro-
phages of ApoE null mice unexpectedly produced
smaller plaques with a stable phenotype56.

Stromelysins
MMP-3 deficiency leads to larger, more stable aortic
atherosclerotic plaques in ApoE null mice57 but larger
less stable plaques in the brachiocephalic artery58.
MMP-7 deletion had no effect on plaque growth or
stability58. The role of stromelysins is therefore unclear.

Gelatinases
A variety of studies have been conducted in ApoE null
mice. MMP-2 knockout produced smaller lesions with
fewer smooth muscle cells compared to macrophages59,
implying a role for MMP-2 in smooth muscle accumu-
lation and fibrous cap formation. MMP-9 deficiency 
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in one study did not affect the size of early lesions in
the descending aorta and aortic root but reduced the
size of advanced plaques60. Fibrillar collagen was re-
duced, implying less stability, but macrophage content
was decreased, implying greater stability60. In another
study58, MMP-9 knockout increased plaque size in the
brachiocephalic artery with less collagen and more mac-
rophages, implying less stability. The conflicting results
can be explained by the ability of MMP-9 to facilitate
migration of vascular smooth muscle cells and macro-
phages, which would have opposite effects on plaque
stability. In other studies, local overexpression of pro-
MMP-9 had no effect on the size of early or advanced
carotid lesions but promoted intraplaque hemorrhage
in advanced lesions61. Macrophage-specific overexpres-
sion of active MMP-9 also induced plaque disruption,
without significantly affecting lesion size or macrophage
content62. Hence, raising active MMP levels to unphys-
iologic levels clearly promotes plaque instability.

Metalloelastase
MMP-12 deletion promotes smaller, more stable lesions
in the brachiocephalic artery of ApoE null mice58. It
reduces elastin degradation but does not alter the size
or cellular composition of early or advanced aortic
plaques60. Overexpression of active MMP-12 promotes
inflammation and reduces collagen content of athero-
sclerotic plaques in rabbits fed an extremely cholesterol-
rich diet63. All studies, therefore, show plaque
destabilizing effects of MMP-12, although the details
differ. MMP-12 may therefore be a favorable target for
selective pharmacotherapy.

What Switches MMPs On?

Given the limitations of MMP inhibitor strategies (see
above), perhaps it would be more fruitful to identify and
use drugs to target the causes of MMP upregulation. In
this context, inflammation seems to be a key factor.
The inflammatory mediators (e.g., interleukin [IL]-1 or
tumor necrosis factor [TNF]-α) increase MMP-1, MMP-3
and MMP-9, but not TIMP-1 or TIMP-2 secretion from
endothelial64 and smooth muscle cells65,66; growth fac-
tors (e.g., platelet-derived growth factor or fibroblast
growth factor-2) act synergistically with inflammatory
mediators65,67. Ingestion of oxidized low-density
lipoprotein or treatment with TNF-α or prostaglandin
E2 upregulates several MMPs in macrophages. Indeed,

foam cell macrophages isolated from rabbits overex-
press MMP-1, MMP-3 and MMP-12 compared to non-
foamy macrophages29,68,69. CD40L, a component of
activated T-lymphocyte membranes, induces MMP
expression in endothelial, smooth muscle and
macrophages26,70–75. Hence, foam cell formation and
inflammation progressively increases the spectrum of
MMPs that would be upregulated in plaques (Figure 3).
The combined effect could be total destruction of the
ECM leading to plaque rupture.

Can We Switch MMPs Off?

Physiologic mechanisms for suppressing MMP activity
provide valuable approaches. Nitric oxide, for example,
inhibits MMP-9 expression by reducing superoxide gen-
eration and subsequent ERK activation76. Heparin and
heparan sulfate proteoglycans inhibit induction of sev-
eral MMPs from smooth muscle cells77. Transforming
growth factor (TGF)-β inhibits MMP-1, MMP-3 and MMP-
7 induction in fibroblasts78, MMP-979 secretion in mast
cells, and MMP-780 and MMP-981 in macrophages. The
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Figure 3. Upregulation of MMPs in plaque macrophages.
Monocytes express low levels of MMP-12 and MMP-14, which
are probably required for migration across the endothe-
lium. Differentiation to macrophages upregulates MMP-9.
Ingestion of oxidized low density lipoprotein (Ox-LDL) by foam
cells upregulates MMP-1 and MMP-13, which are, therefore,
found in early fatty streaks. Action of cytokines and contact
with T-lymphocytes further increases the spectrum of MMPs
expressed.



T helper 2 cytokines IL-4 and IL-10 inhibit MMP secretion
from macrophages82,83. TGF-β and IL-10 have established
atheroprotective roles that could be partly explained by
effects on MMPs. However, IL-4 and the T helper 1 cyto-
kine, interferon-γ, which inhibits the CD40 ligation-
induced secretion of MMPs from smooth muscle cells84

and macrophages70,75, are on balance proatherogenic.
More encouragingly, direct inhibition of CD40L leads to
smaller and more stable plaque phenotypes in athero-
sclerosis prone mice85–87.

Statins are potent lipid-lowering drugs that pre-
vent atherosclerosis progression and coronary events.
Statins reduce the expression and secretion of MMP-1,
MMP-2, MMP-3 and MMP-9 from macrophages and
smooth muscle cells in vitro, and in rabbit and human
atheroma16,88–90, but increase TIMP-1 expression89, in
part by posttranslational mechanisms90. Hence, statin
treatment may render plaques more stable, in part, 
by inhibiting MMP secretion. Peroxisome proliferator-
activated receptor α and γ ligands, which inhibit 
MMP-9 secretion from smooth muscle cells91, and
macrophages92,93 also have established therapeutic
potential against atherosclerosis.

Summary

Histologic studies provide strong “guilt by association”
evidence that MMPs promote plaque vulnerability in
man. Genetic epidemiologic studies show, in particular,
that MMP-1 and MMP-3 overactivity results in smaller
but less stable plaques. Knockout and transgenic studies
provide evidence that MMPs promote plaque instability
but also clear protective effects, consistent with their
ability to promote smooth muscle cell migration and
proliferation. Possibly for this reason, broad-spectrum
MMP inhibitors have little net effect on plaque progres-
sion or vulnerability in animal models at clinically toler-
able concentrations. Successful interventions are likely
therefore to come from selectively targeting individual
MMPs or from intervening in the mainly inflammatory
pathways that lead to MMP over production.
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