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Introduction

The notion of Mumford–Castelnuovo regularity of sheaves on the projective space, introduced
in [10], has provided a very powerful tool, especially to study vector bundles. This theory allows
to prove easily Horrocks criterion to characterize direct sums of line bundles as those bundles with-
out intermediate cohomology, and its improvement by Evans–Griffith depending on the rank of the
vector bundle. There have been several generalizations of this notion of regularity to other ambient
spaces such as Grassmannians [3], products of projective spaces [7,5] or quadrics [2]. In most of the
cases, the starting point is some variant of the Beilinson spectral sequence, so that the notion of reg-
ularity consists of a finite number of cohomological vanishings. Such a notion has a nice behaviour,
in particular it can be proved that, if a coherent sheaf F is regular, so is any positive twist of it.

An easy approach to the Mumford–Castelnuovo regularity on the projective space is through the
Koszul exact sequence, obtained from the Euler exact sequence. In fact, the definition of regularity of
a sheaf can be done by imposing the vanishing of some cohomology of the terms appearing in the
Koszul exact sequence twisted by the sheaf. In this paper, we explore this approach for Grassmannians
of lines (the right generalization of the Koszul exact sequence becomes too complicated; this is why
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we concentrate on these particular Grassmannians). In order to make the theory to work well, we
will need to impose in the definition the property that any positive twist of a regular sheaf is still
regular. This means that our notion, consists of infinitely many cohomological vanishings. This will
not be, however, a problem for the applications we have in mind (and in fact our definition include
some vector bundles which are not regular in the sense of [3]).

We dedicate a first section to recall all the preliminaries we will need for the Grassmannians of
lines G(1,n), with special attention to the universal bundles and their cohomological properties. We
will also determine the right generalization to these Grassmannians of the Koszul exact sequence.

In the second section we introduce our notion of regularity, which we will call G-regularity. We
show that the natural candidates coming from the universal bundles are G-regular (Example 2.2)
and we prove that this notion satisfies properties analogue to the Mumford–Castelnuovo regularity
(Proposition 2.3). We also remark that, on G(1,2), i.e. when the Grassmannian is a projective plane,
G-regularity coincides with Mumford–Castelnuovo regularity (Example 2.4) and that, on G(1,3), i.e.
the Grassmannian is a quadric, the notion of G-regularity contained the stronger notion of regularity
given in [2]. We finish this section with the first strong application of our theory: a generalization of
Evans–Griffith criterion to characterize direct sums of line bundles (Theorem 2.6).

In the last section we prove our main results. We first give two criteria that, with a finite number
of cohomological vanishings, imply that a vector bundle contains as a direct summand an exterior
power of one universal bundle (Theorem 3.1) or a symmetric power of the other universal bundle
(Theorem 3.2). Similar results have been obtained by Costa and Miró-Roig in [4] Corollary 4.12. With
the same techniques of those results, we also give a cohomological characterization of those vector
bundles that are direct sums of twists of the above exterior and symmetric powers (Theorem 3.3). In
particular, for G(1,3) we reobtain for the four-dimensional quadric the characterizion of the vector
bundles without intermediate cohomology of [8], while for G(1,4) we reobtain the characterization
of direct sums of line bundles and twists of the universal bundles or their duals given in [1].

1. Preliminaries

Throughout the paper Pn will denote the projective space consisting of the one-dimensional quo-
tients of the (n + 1)-dimensional vector space V (over a ground fieldwhose characteristic we will
assume to be zero), while G(1,n) (frequently denoted just by G) will be the Grassmann variety of
lines in Pn . We recall the universal exact sequence on G = G(1,n):

0 → S∨ ϕ−→V ⊗ OG
ψ−→Q → 0 (1)

defining the universal bundles S and Q over G , of respective ranks n − 1 and 2. We will also write
OG(1) = ∧2 Q ∼= ∧n−1 S . In particular, we have natural isomorphisms

S j Q ∨ ∼= (
S j Q

)
(− j) (2)

(where S j denotes the j-th symmetric power) and

j∧
S∨ ∼=

n−1− j∧
S(−1). (3)

Recall that the Plücker embedding of G is defined by the quotient
∧2 V ⊗ OG

∧2ψ−→OG(1), or equiva-

lently by the quotient
∧n−1 V ∗ ⊗ OG

∧n−1ϕt

−→ OG(1).
The universal sequence (1) is the analogue in G of the Euler sequence in the projective space. The

long Koszul exact sequence in the projective space comes by taking the top exterior product in the
left map of the Euler sequence, while the taking smaller exterior products produces the Koszul exact
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sequence truncated at the left. In the case of Grassmannians of lines, for any j � n − 1, taking the
j-th exterior powers of ϕ in (1) produces a long exact sequence

0 →
j∧

S∨ →
j∧

V ⊗ OG →
j−1∧

V ⊗ Q → ·· · →
2∧

V ⊗ S j−2 Q → V ⊗ S j−1 Q → S j Q → 0.

(R j)

Dualizing (R j) and using the canonical isomorphisms (2) we get another exact sequence

0 → S j Q (− j) → V ∗ ⊗ S j−1 Q (− j + 1) → ·· · →
j−1∧

V ∗ ⊗ Q (−1) →
j∧

V ∗ ⊗ OG →
j∧

S → 0.

(R∨
j )

Observe now that we can glue (R∨
n−1− j) twisted by OG(−1) with (R j) and, when j = n − 1, we

get the analogue of the Koszul exact sequence:

0 → OG(−n) →
n−1∧

V ⊗ OG(−n + 1) →
n−2∧

V ⊗ Q (−n + 1) → ·· ·

→
2∧

V ⊗ Sn−3 Q (−n + 1) → V ⊗ Sn−2 Q (−n + 1) → V ∗ ⊗ Sn−2 Q (−n + 2) → ·· ·

→
n−2∧

V ∗ ⊗ Q (−1) →
n−1∧

V ∗ ⊗ OG → OG(1) → 0. (4)

As we will see, the relevant part of (4) is that the last morphism is the evaluation morphism
for OG(1), and that (4) defines an element in Ext2n−2(OG(1), OG(−n)) = H2n−2(OG(−n − 1)) =
H2n−2(ωG), which is the Serre dual of the unit in H0(OG).

Remark 1.1. We recall that
∧ j S and S j Q with 0 � j � n − 2 have no intermediate cohomology (we

say that E on G has no intermediate cohomology if, for i = 1,2, . . . ,2n − 3 we have the vanishing
Hi∗(E) = 0, i.e. Hi(E(k)) = 0 for each integer k). This is not the case for S j Q with j � n − 1. For ex-
ample, the exact sequence (R∨

n−1) produces a nonzero element in Extn−1(OG(1), Sn−1 Q (−n + 1)) =
Hn−1(Sn−1 Q (−n)). In fact this is the only nonzero intermediate cohomology of Sn−1 Q , while (R j)

shows that the only nonzero intermediate cohomology of S j Q with j � n − 1 is Hn−1(S j Q (−n − k)),
with k = 0,1, . . . , j −n + 1 (observe that, by Serre duality and (2), it is enough to check the cohomol-
ogy up to order n − 1). We recall that, if i � j, there is a decomposition

Si Q ⊗ S j Q = Si+ j Q ⊕ (
Si+ j−2 Q

)
(1) ⊕ (

Si+ j−4 Q
)
(2) ⊕ · · · ⊕ (

S j−i Q
)
(i) (5)

so that, again, the only nonzero intermediate cohomology of any Si Q ⊗ S j Q is Hn−1(Si Q ⊗
S j Q (−n − k)) for some k � 0. Similarly, using this we deduce that, for any i � n − 2,

∧ j S ⊗ Si Q
has no intermediate cohomology except for

Hn−1− j
( j∧

S ⊗ Sn− j−1 Q (−n + j)

)
= Extn−1− j

(
Sn− j−1 Q ,

j∧
S(−1)

)

(which is generated by the exact sequence (Rn−1− j)) and

H2n−2− j
( j∧

S ⊗ S j Q (−n − 1)

)
= Ext2n−2− j

(
S j Q (n − j),

j∧
S(−1)

)
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(which is generated by the exact sequence obtained by glueing (Rn−1− j), (R∨
n−1− j) twisted by

OG(n − 1 − j) and (R j) twisted by OG(n − j)).
In general, when a one-dimensional space of extensions as above has a natural nonzero element,

we will call it unit element.

2. G-regularity and Evans–Griffith criterion on G(1,n)

Inspired by (4), we give the following definition:

Definition 2.1. We say that a vector bundle E on G is G-regular if, for any k � 0, the following condi-
tions hold:

(i) H1(F ⊗ Q (k − 1)) = H2(F ⊗ S2 Q (k − 2)) = · · · = Hn−2(F ⊗ Sn−2 Q (k − n + 2)) = 0;

(ii) Hn−1(F ⊗ Sn−2 Q (k − n + 1)) = Hn(F ⊗ Sn−3 Q (k − n + 1)) = · · · = H2n−4(F ⊗ Q (k − n + 1)) =
H2n−3(F (k − n + 1)) = 0;

(iii) H2n−2(F (k − n)) = 0.

We will say that F is m-G-regular if F (m) is G-regular. We define the G-regularity of F , G-reg(F ),
as the least integer m such that F (m) is G-regular. We set G-reg(F ) = −∞ if there is no such an
integer.

Example 2.2. We get from Remark 1.1 that the trivial bundle OG , any
∧ j S with j ∈ {1, . . . ,n − 2}

or any S j Q are G-regular, and in fact their G-regularity is zero. This shows that the definition of
Chipalkatti in [3] is much more restrictive than ours, since S is not regular with his definition.

On the other hand, if T is the tangent bundle of the Plücker ambient space of G , it follows from
the restriction of the Euler exact sequence that T |G (−1) is G-regular, while T |G(−2) is not (because
H2n−3(T |G (−n − 1)) �= 0), hence G-reg(T |G) = −1.

We can now prove that our definition of regularity has the right properties one should expect:

Proposition 2.3. If F is a G-regular coherent sheaf on G = G(1,n) then, for any k � 0:

(i) F (k) is G-regular.

(ii) H2n−3(F ⊗ ∧ j S∨(k − n)) = 0 for j = 1, . . . ,n − 2, and Hn−2(F ⊗ Sn−1 Q (k − n + 1)) = 0.

(iii) For j = 1, . . . ,n − 1, the multiplication map H0(F (k)) ⊗ H0(
∧ j S) → H0(F ⊗ ∧ j S(k)) is surjective.

(iv) The multiplication map H0(F (k)) ⊗ H0(OG(l)) → H0(F (k + l)) is surjective for any l � 1.

(v) F (k) is generated by its global sections.

Proof. Part (i) comes from the definition of regularity. Part (ii) comes by taking cohomology in (R j)

tensored with F (n − k) for, respectively, j = 1, . . . ,n − 1. Part (iii) follows by taking cohomology in
(R∨

j ) tensored with F and having in mind the identification H0(
∧ j S) = ∧ j V ∗ .

We will prove (iv) by induction on l, the case l = 1 being (iii) for j = n − 1. The statement for a
general l comes from the commutative diagram

H0(F (k)) ⊗ H0(OG(l − 1)) ⊗ H0(OG(1)) H0(F (k + l − 1)) ⊗ H0(OG(1))

H0(F (k)) ⊗ H0(OG(l)) H0(F (k + l))
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using that the top map is surjective by induction hypothesis and the right map is surjective by apply-
ing again (iii) for j = n − 1.

To prove (v), we consider a sufficiently large twist such that F (k + l) is generated by its global
section. Consider the commutative diagram

H0(F (k)) ⊗ H0(OG(l)) ⊗ OG H0(F (k + l)) ⊗ OG

H0(F (k)) ⊗ OG(l) F (k + l)

in which the top map is surjective by (iv) and the right map is surjective because F (k + l) is globally
generated. This yields the surjectivity of H0(F (k)) ⊗ OG(l) → F (k + l), which implies that F (k) is
generated by its global sections. �
Example 2.4. If n = 2, then G = G(1,2) is a projective plane, and F is G-regular when, for any k � 0,
H1(F (k − 1)) = H2(F (k − 2)) = 0, which coincides with the Castelnuovo–Mumford regularity on P2.

Example 2.5. If n = 3 then G = G(1,3) is a quadric hypersurface in P5, where we have the notion of
Qregularity introduced in [2]. Specifically, F is Qregular if H1(F (−1)) = H2(F (−2)) = H3(F (−3)) =
0 and H4(F ⊗ Q (−4)) = H4(F ⊗ S(−4)) = 0. In particular, T |G(−1) is G-regular but not Qregular
(see Example 2.2), showing that Qregularity is a stronger condition (in fact, it can be proved that
Qregularity implies G-regularity).

With our notion of regularity we can prove an analogue of Evans–Griffith theorem (see [6]), im-
proving the known results (see [9,11,4]) for the total splitting of vector bundles:

Theorem 2.6. A vector bundle E of rank r on G = G(1,n) splits into a direct sum of line bundles if and only if
the following conditions hold:

(i) H1∗(E ⊗ Q ) = H2∗(E ⊗ S2 Q ) = · · · = Hn−2∗ (E ⊗ Sn−2 Q ) = 0;

(ii) Hn−1∗ (E ⊗ Sn−2 Q ) = Hn∗(E ⊗ Sn−3 Q ) = · · · = H2n−3−i∗ (E ⊗ Si Q ) = 0 with i = [ 2n−2
r+1 ].

Proof. It is clear (see Remark 1.1) that a direct sum of line bundles satisfies (i) and (ii), so that we
only need to prove the converse. The statement is independent to twists by a line bundle, so that
we can assume that E is G-regular but E(−1) is not. In particular, E is globally generated, hence
E ⊗ Si Q (k + 1) is (very) ample for any k � 0. This implies, by Le Potier’s vanishing theorem,

H j(E ⊗ Si Q (k + 1) ⊗ OG(−n − 1)
) = 0

for j � rank(E ⊗ Si Q (k + 1)). Hence H2n−3−i(E ⊗ Si Q (k − n)) = 0 for i � 2n−2
r+1 − 1. This, together

with (i) and (ii), implies that E(−1) satisfies all the conditions of G-regularity except the vanishing
of H2n−2(E(−n − 1)), which is therefore different from zero. By Serre’s duality, we get H0(E∨) �= 0.
Which, together with the fact that E is generated by its global sections, implies that E splits as
E ∼= OG ⊕ E ′ . The proof is completed by applying the same technique to E ′ , and making a recursion
on the rank. �
Example 2.7. In the particular case n = 3 our splitting criterion reads as follows: Let E be a vector
bundle of rank r on the four-dimensional smooth quadric Q 4 such that

H1∗(E ⊗ Q ) = H2∗(E ⊗ Q ) = 0
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and, only if r � 4,

H3∗(E) = 0.

Then E splits as a direct sum of line bundles.

3. Characterization of the universal bundles on G(1,n)

After Theorem 2.6, one could be tempted to proceed as in [1], i.e. removing from the statement
of the theorem the conditions not satisfied by the universal bundles and try to see whether these
fewer conditions characterize direct sums of line bundles and twists of universal bundles. However,
this will not work, since Theorem 2.6 already contains few hypotheses. For example, by Remark 1.1,
the condition not satisfied by Q is Hn−1∗ (Q ⊗ Sn−2 Q ) = 0. However, if we remove that condition,
also any S j Q satisfies the rest of the conditions, so that we cannot hope to characterize the direct
sum of line bundles and twist of Q as those bundles E satisfying all the hypotheses of Theorem 2.6
except Hn−1∗ (E ⊗ Sn−2 Q ) = 0. This means that we will need to add extra conditions to characterize
such direct sums.

We will thus first characterize (with just a finite number of cohomological vanishings) each of the
bundles S j Q or

∧ j S . In a final result, we will put all these results together to eventually classify
direct sums of line bundles, twists of Q and twists of some

∧ j S .

Theorem 3.1. Let n � 3 and fix j ∈ {1, . . . ,n − 2}. Let E be a vector bundle on G = G(1,n) such that:

(i) Hn−1− j(E ⊗ Sn−1− j Q (−n + j)) �= 0;

(ii) H1(E(−1)) = H2(E ⊗ Q (−2)) = · · · = Hn−1− j(E ⊗ Sn−2− j Q (−n + 1 + j)) = 0;

(iii) Hn−1− j(E ⊗ Sn−2− j Q (−n + j)) = Hn− j(E ⊗ Sn−3− j Q (−n + j)) = · · · = H2n−3−2 j(E(−n + j)) = 0;

(iv) H2n−2−2 j(E(−n − 1 + j)) = H2n−1−2 j(E ⊗ Q (−n − 2 + j)) = · · · = H2n−3− j(E ⊗ S j−1 Q (−n)) = 0;

(v) H2n−2− j(E ⊗ S j−1 Q (−n − 1)) = H2n−1− j(E ⊗ S j−2 Q (−n − 1)) = · · · = H2n−3(E(−n − 1)) = 0.

Then E contains
∧ j S as a direct summand. In particular, a vector bundle E of rank

(n−1
j

)
on G is isomorphic

to
∧ j S if and only if it satisfies (i)–(v).

Proof. By (i), we can take a nonzero element α ∈ Hn−1− j(E ⊗ Sn−1− j Q (−n + j)). By Serre duality,
there exists β ∈ Hn−1+ j(E∨ ⊗ Sn−1− j Q ∨(− j −1)) = Hn−1+ j(E∨ ⊗ Sn−1− j Q (−n)), such that the image
of α ⊗ β in H2n−2(OG(−n − 1)) ∼= H2n−2(Sn−1− j Q ⊗ Sn−1− j Q ∨(−n − 1)) is the natural generator
(i.e. the dual to the unit of H0(OG)). Taking cohomology in (R∨

n−1− j) and tensorizing with E(−1) ⊗
Hn−1+ j(E∨ ⊗ Sn−1− j Q ∨(− j − 1)) and Sn−1− j Q ∨(− j) we get a commutative diagram:

H0(E ⊗ ∧ j S∨) ⊗ Hn−1+ j(E∨ ⊗ Sn−1− j Q (−n))

σ⊗id

Hn−1+ j(
∧ j S∨ ⊗ Sn−1− j Q ∨(− j − 1))

Hn−1− j(E ⊗ Sn−1− j Q (−n + j)) ⊗ Hn−1+ j(E∨ ⊗ Sn−1− j Q (−n)) H2n−2(OG(−n − 1))

with natural horizontal arrows. We derive from Remark 1.1 that the right arrow is an isomorphism
of one-dimensional vector spaces, while condition (ii) implies that σ is an epimorphism. We can
thus find α′ ∈ H0(E ⊗ ∧ j S∨) such that α′ ⊗ β maps to the unit element in Hn−1+ j(

∧ j S∨ ⊗
Sn−1− j Q ∨(− j − 1)).
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On the other hand, using Serre duality, the vanishings of (iii) are equivalent, respectively, to

Hn−1+ j(E∨ ⊗ Sn−2− j Q (−n + 1)
) = Hn−2+ j(E∨ ⊗ Sn−3− j Q (−n + 2)

) = · · ·
= H2 j+1(E∨(− j − 1)

) = 0.

In the same way as above, if we consider sequence (R∨
n−1− j) tensored by E∨(−1), this shows that

β lifts to an element β ′ ∈ H2 j(E∨ ⊗ ∧ j S∨(− j)) such that the image of α′ ⊗ β ′ in H2 j(
∧ j S∨ ⊗∧ j S∨(− j)) is the unit element.

Similarly, the vanishings of (iv) are equivalent to

H2 j(E∨(− j)
) = H2 j−1(E∨ ⊗ Q (− j)

) = · · · = H j+1(E∨ ⊗ S j−1 Q (− j)
) = 0

so, if we consider sequence (R j) tensored by E∨(− j), we see that β ′ can be lifted to β ′′ ∈ H j(E∨ ⊗
S j Q (− j)) such that the image of α′ ⊗ β ′′ in H j(

∧ j S∨ ⊗ S j Q (− j)) is the unit element.
Finally, the vanishings of (v) are equivalent to

H j(E∨ ⊗ S j−1 Q (− j + 1)
) = H j−1(E∨ ⊗ S j−2 Q (− j + 2)

) = · · · = H1(E∨) = 0

which imply that β ′′ can be lifted to β ′′′ ∈ H0(E∨ ⊗ ∧ j S) such that the image of α′ ⊗ β ′′′ in
H0(

∧ j S∨ ⊗ ∧ j S) is the unit element (use sequence (R∨
j ) tensored by E∨). But this is nothing but

saying that, regarding α′ as a morphism
∧ j S → E and regarding β ′′′ as a morphism E → ∧ j S , their

composition is the identity in
∧ j S . In other words,

∧ j S is a direct summand of E , as wanted. �
Theorem 3.2. Let n � 3 and fix j ∈ {1, . . . ,n − 2}. Let E be a vector bundle on G = G(1,n) such that:

(i) Hn−1(E ⊗ Sn−1− j Q (−n)) �= 0;

(ii) H1(E ⊗ S j−1 Q (− j)) = · · · = H j(E(− j)) = 0;

(iii) H j+1(E(− j − 1)) = · · · = Hn−1(E ⊗ Sn−2− j Q (−n + 1)) = 0;

(iv) Hn−1(E ⊗ Sn−2− j Q (−n)) = · · · = H2n−3− j(E(−n)) = 0;

(v) H2n−2− j(E(−n − 1)) = · · · = H2n−3(E ⊗ S j−1 Q (−n − j)) = 0.

Then E contains S j Q as a direct summand.

Proof. We proceed as in the proof of Theorem 3.1. By condition (i), we can take a nonzero ele-
ment α ∈ Hn−1(E ⊗ Sn−1− j Q (−n)) and its Serre dual β ∈ Hn−1(E∨ ⊗ Sn−1− j Q ∨(−1)) = Hn−1(E∨ ⊗
Sn−1− j Q (−n + j)).

Condition (ii), together with (R∨
n−1− j) tensored by E(− j − 1), implies that we can lift α to α′ ∈

Hn−1− j(E ⊗∧n−1− j S(− j −1)) = Hn−1− j(E ⊗∧ j S∨(− j)). Moreover, (iii) together with (R j) tensored
by E(− j) implies that we can lift α′ to α′′ ∈ H0(E ⊗ S j Q (− j)) = Hom(S j Q , E).

On the other hand, writing condition (iv) as

Hn−1(E∨ ⊗ Sn−2− j Q (−n + 1 − j)
) = · · · = H j+1(E∨(−1)

) = 0

and taking cohomology in (R∨
n−1− j) tensored with E∨(−1), we see that we can lift β to β ′ ∈

H j(E∨ ⊗ ∧n−1− j S(−1)) = H j(E∨ ⊗ ∧ j S∨). Writing also condition (v) as

H j(E∨) = · · · = H1(E∨ ⊗ S j−1 Q
) = 0
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and taking cohomology in (R j) tensored with E ∨ we get that we can lift β ′ to β ′′ ∈ H0(E∨ ⊗ S j Q ) =
Hom(E, S j Q ).

Moreover, α′′, β ′′ are still dual to each other, which means that, regarded as morphisms, there
composition is the identity in S j Q . Hence S j Q is a direct summand of E . �
Theorem 3.3. Let E be a vector bundle on G = G(1,n) with n � 3. Then E is a direct sum of twists of vector
bundles of the form OG , Q or

∧ j S with j ∈ {1, . . . ,n − 2} if and only if the following conditions hold:

(a) H1∗(E) = H2∗(E ⊗ Q ) = · · · = Hn−2∗ (E ⊗ Sn−3 Q ) = 0;

(b) Hn∗(E ⊗ Sn−3 Q ) = · · · = H2n−4∗ (E ⊗ Q ) = H2n−3∗ (E) = 0;

(c) for each j = 1, . . .n − 2,

Hn−1− j∗
(

E ⊗ Sn−2− j Q
) = Hn− j∗

(
E ⊗ Sn−3− j Q

) = · · · = H2n−3−2 j∗ (E) = H2n−2−2 j∗ (E)

= H2n−1−2 j∗ (E ⊗ Q ) = · · · = H2n−3− j∗
(

E ⊗ S j−1 Q
) = 0;

(d) H2∗(E) = H3∗(E ⊗ Q ) = · · · = Hn−1∗ (E ⊗ Sn−3 Q ) = Hn(E ⊗ Sn−4∗ Q ) = · · · = H2n−4∗ (E) = 0.

Proof. It follows from Remark 1.1 that a direct sum of twists of OG , Q or
∧ j S satisfies (a), (b), (c),

(d), so that we only need to prove the converse. After a twist, we can assume that E is G-regular but
E(−1) not. Since E(−1) is not G-regular, and having in mind (b), one of the following conditions is
satisfied:

(i) Hn−1− j(E ⊗ Sn−1− j Q (−n + j)) �= 0 for some j ∈ {1, . . . ,n − 2};

(ii) Hn−1(E ⊗ Sn−2 Q (−n)) �= 0;

(iii) H2n−2(E(−n − 1)) �= 0.

In case (i), we are in the hypothesis of Theorem 3.1 (condition (ii) follows from (a), conditions (iii)
and (iv) follow from (c) and condition (v) follows from (b)). Hence we can write E = ∧ j S ⊕ E ′ for
some other vector bundle E ′ .

In case (ii), we are in the hypotheses of Theorem 3.2 with j = 1 (condition (ii) follows from (a),
conditions (iii) and (iv) follow from (d) and condition (v) follows from (b)). We can thus write E =
Q ⊕ E ′ .

Finally, in case (iii) we have, by Serre duality, H0(E∨) �= 0. Since E is generated by its global
sections (by Proposition 2.3), it follows that we can write E = OG ⊕ E ′ .

In either case, the new vector bundle E ′ still satisfies the hypotheses (a)–(d), so that we can
conclude by a recursive argument on the rank. �
Example 3.4. If n = 3, the hypotheses of Theorem 3.3 reduce to the fact that E has no intermediate
cohomology, and we recover the classification of the ACM bundles on Q4 proved in [8].

Example 3.5. If n = 4, Theorem 3.3 characterizes the direct sums of twists of OG , S, S∨ as those vector
bundles E without intermediate cohomology and such that

H2∗(E ⊗ Q ) = H3∗(E ⊗ Q ) = H4∗(E ⊗ Q ) = 0

so that we recover [1] Theorem 2.4.

Remark 3.6. It is clear that, for example, in order to characterize direct sums of line bundles and
twists of Q , we need to remove condition (c) in Theorem 3.3, although we will need more vanishings
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in (a). Hence in general, we will need a smaller number of conditions to characterize more restrictive
bundles.

On the other hand, we could have also proceeded as in Theorem 2.6 and use Le Potier vanishing
theorem to improve Theorem 3.3 (or any of the variants we just indicated). We preferred not to do it
explicitly, since it represents a small improvement compared with the difficulty to write it in a clear
way.
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