
Physics Letters B 716 (2012) 176–178

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Significance of tension for gravitating masses in Kaluza–Klein models

Maxim Eingorn, Alexander Zhuk ∗

Astronomical Observatory and Department of Theoretical Physics, Odessa National University, Street Dvoryanskaya 2, Odessa 65082, Ukraine

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 June 2012
Received in revised form 9 August 2012
Accepted 16 August 2012
Available online 20 August 2012
Editor: M. Trodden

Keywords:
Extra dimensions
Kaluza–Klein models
Tension
Gravitational tests

In this Letter, we consider the six-dimensional Kaluza–Klein models with spherical compactification of
the internal space. Here, we investigate the case of bare gravitating compact objects with the dustlike
equation of state p̂0 = 0 in the external (our) space and an arbitrary equation of state p̂1 = Ωε̂ in
the internal space, where ε̂ is the energy density of the source. This gravitating mass is spherically
symmetric in the external space and uniformly smeared over the internal space. In the weak field
approximation, the conformal variations of the internal space volume generate the admixture of
the Yukawa potential to the usual Newton’s gravitational potential. For sufficiently large Yukawa masses,
such admixture is negligible and the metric coefficients of the external spacetime coincide with
the corresponding expressions of General Relativity. Then, these models satisfy the classical gravitational
tests. However, we show that gravitating masses acquire effective relativistic pressure in the external
space. Such pressure contradicts the observations of compact astrophysical objects (e.g., the Sun).
The equality Ω = −1/2 (i.e. tension) is the only possibility to preserve the dustlike equation of state
in the external space. Therefore, in spite of agreement with the gravitational experiments for an arbitrary
value of Ω , tension (Ω = −1/2) plays a crucial role for the considered models.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

The multidimensionality of spacetime is an essential property
of the modern theories of unification such as superstrings, super-
gravity and M-theory, which have the most self-consistent formu-
lation in spacetime with extra dimensions [1]. Obviously, these
physical theories should be consistent with observations. For ex-
ample, in the weak field limit they must satisfy gravitational exper-
iments such as the perihelion shift, the deflection of light, the time
delay of radar echoes and parameterized post-Newtonian parame-
ters. It is well known that General Relativity is in good agreement
with these experiments [2]. Therefore, to investigate the similar
correspondence for multidimensional theories, in our papers [3–5]
we have considered popular Kaluza–Klein models with toroidal
compactification of the internal space. We have shown that a mat-
ter source in the form of a dustlike compact gravitating object
failed with the observations. Here, the dustlike equation of state
p = 0 holds in all spatial dimensions. The obtained result was sur-
prising to us because this approach is the most natural one for the
ordinary astrophysical objects (such as our Sun) and it works well
in General Relativity [6]. It turned out that to satisfy the experi-
mental data, the matter source must have negative pressure (i.e.
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tension1) in the internal spaces [4,5]. We have shown that latent
solitons (in particular, the uniform black strings and black branes)
satisfy the gravitational experiments at the same level of accuracy
as General Relativity. In general case, the variation of the total vol-
ume of the internal spaces generates the fifth force [11]. This is
the main reason of the problem. However, in the case of the latent
solitons, tension of the gravitating source fixes the internal space
volume, eliminating the fifth force contribution and resulting in
agreement with the observations. Therefore, tension plays a crucial
role here. For uniform black strings/branes with toroidal compact-
ification, the equation of state in the internal spaces is p̂1 = −ε̂/2,
where ε̂ is the energy density of the gravitating source. The prob-
lematic aspect of these models consists in physically reasonable
explanation of the origin of tension for ordinary astrophysical ob-
jects.

Therefore, in [12,13] we considered a dustlike (in all spatial
dimensions, i.e. without tension in the extra dimensions) matter
source for Kaluza–Klein models with spherical compactification of
the internal space. In contrast to the case of toroidal compact-
ification, this model can satisfy the gravitational experiments if
the internal space is stabilized what happens for a positive six-
dimensional cosmological constant [13,14]. Here, the fifth force
is replaced by Yukawa interaction which is short-range for large

1 For black strings and black branes, the notion of tension is defined, e.g., in [7]
and it follows from the first law for black hole spacetimes [8–10].
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Yukawa masses (i.e. the large mass of radion). Therefore, at large
three-dimensional distances, the effect of this interaction is neg-
ligibly small. Roughly speaking, the agreement with observations
occurs asymptotically. Moreover, all models where a matter source,
i.e. a compact gravitating massive body with the energy density ε̂,
has the dustlike equation of state p̂0 = 0 in the external (our)
space and an arbitrary equation of state p̂1 = Ωε̂ in the inter-
nal space satisfy asymptotically (in the region of negligibly small
Yukawa interaction) the gravitational experiments [14]. With in-
crease in the distance r3 (the length of the radius-vector in the
three-dimensional space) from a massive source, all these models
tend asymptotically to the exact black brane solution with spheri-
cal compactification [14]. For such exact black brane solution, the
parameter of state Ω = −1/2, in full analogy with black branes
with toroidal compactification. Therefore, for any Ω (including the
dustlike value Ω = 0), considered models can satisfy the gravita-
tional experiments. Honestly speaking, this result was not surpris-
ing to us because it confirms the conventional wisdom that stabi-
lization of the internal space solves the problem with observations.
However, the novelty of our Letter is that stabilization is not suffi-
cient. The gravitational tests are not the only possible experiments.
For example, gravitating bodies such as a system of nonrelativistic
particles must also have certain thermodynamical properties. The
analysis carried out in the present Letter shows that in all models
with Ω �= −1/2 gravitating matter sources, e.g. nonrelativistic par-
ticles, acquire effective relativistic pressure in the external (our)
space. Hence, a system of such particles will also have effective
relativistic pressure, that is nonsense from the thermodynamical
point of view. Therefore, in spite of the agreement (asymptotical)
with the gravitational experiments, such models fail with the ob-
servations. This important point was not elucidated in our previous
papers. Only in the case of tension Ω = −1/2, a matter source re-
mains dustlike in the external space. Therefore, tension also plays
a crucial role in models with spherical compactification as in the
case of toroidal compactification. The only problem is to explain
the physical origin of tension for ordinary astrophysical objects.

In Section 2, we demonstrate that a compact gravitating source
in the considered models acquires effective relativistic pressure in
the external space except the case of tension in the internal space.
This is the only possibility to preserve the dustlike equation of
state in the external space. The main results are briefly summa-
rized in concluding Section 3.

2. Effective energy density and pressure of the gravitating mass

As we pointed out in papers [13,14], the matter source in the
Kaluza–Klein models with spherical compactification should con-
sist of two parts. First, it is the homogeneous perfect fluid which
provides spherical compactification of the internal space. Second, it
is the gravitating object, which is spherically symmetric and com-
pact (i.e. pointlike) in the external space and uniformly smeared
over the internal space. The total energy-momentum tensor is the
sum of these parts with the following nonzero components:

T 0
0 ≈ ε̄ + ε1 + ρ̂(r3)c2, (1)

T α
α ≈ ε̄ + ε1, α = 1,2,3, (2)

T 4
4 = T 5

5 ≈ −ω1ε̄ − ω1ε
1 − Ωρ̂(r3)c2, (3)

where ε̄ is the energy density of the homogeneous perfect fluid,
ρ̂(r3) is the rest mass density of a compact gravitating object,
r3 is the three-dimensional radius-vector and ε1 is the excitation
of the background matter energy density by this object.2 The back-

2 The subscripts 0 and 1 are reserved for the parameters of the model relating
to external (our) and internal spaces, respectively. The superscript 1 here and be-
ground matter is fine-tuned with the radius a of the two-sphere:
ε̄ = [(1 + ω1)κ6a2]−1, and a free parameter ω1 defines the equa-
tion of state of this matter in the internal space. The model may
also include a six-dimensional cosmological constant Λ6, which is
fine-tuned with the parameters of the model: Λ6 = ω1ε̄. This bare
cosmological constant is absent if ω1 = 0. The gravitating compact
object has the dustlike equation of state in the external (our) space
p̂0 = 0 and an arbitrary equation of state p̂1 ≈ Ωρ̂(r3)c2 in the in-
ternal space. We also suppose that this object is uniformly smeared
over the internal space: ρ̂(r3) = ρ̂3(r3)/V 2 where V 2 = 4πa2. In
the case of a pointlike mass in the external space ρ̂3(r3) = mδ(r3).
It also worth noting that the six-dimensional and Newton’s gravi-
tational constants are related as follows: κ6/V 2 = κN ≡ 8πG N/c4.

The metrics for the considered model in isotropic coordinates
takes the form (see for details [12,13])

ds2 = Ac2 dt2 + B dx2 + C dy2 + D dz2 + E
(
dξ2 + sin2 ξ dη2)

with A ≈ 1 + A1(r3), B ≈ −1 + B1(r3), C ≈ −1 + C1(r3), D ≈
−1 + D1(r3), E ≈ −a2 + E1(r3), where all metric perturbations
A1, B1, C1, D1, E1 are of the order O (1/c2) and can be found with
the help of the Einstein equations. They read

A1 = 2ϕN

c2
+ E1

a2
, (4)

B1 = C1 = D1 = 2ϕN

c2
− E1

a2
, (5)

E1 = a2 ϕN

c2
(1 + 2Ω)e−r3/λ, λ ≡ a/

√
ω1, (6)

where the Newton’s potential is ϕN = −G Nm/r3. The solution (6)
takes place for ω1 > 0. In the opposite case ω1 < 0, we get the
nonphysical oscillating solution. If Ω �= −1/2, Eq. (6) demonstrates
that conformal variations of the internal space volume gener-
ate the Yukawa interaction. The admixture of such interaction to
A1, B1, C1, D1 is negligible at distances r3 � λ (i.e. for the large
Yukawa mass

√
ω1/a), and we achieve good agreement with the

gravitational tests in this region. Exactly this situation takes place
in the Solar system [13].

The Einstein equations also lead to the following important re-
lation: ε1 = E1/(κ6a4). Eq. (6) shows that this background pertur-
bation is localized around the gravitating mass and falls off expo-
nentially with the distance r3 from the gravitating object. There-
fore, the bare gravitating mass is covered by this “coat”. For an
external observer, this coated gravitating mass is characterized by
the effective energy-momentum tensor with the following nonzero
components:

T 0(eff )
0 ≈ ε1 + ρ̂(r3)c2 = −(1 + 2Ω)

mc2

2V 2
2 r3

exp

(
−

√
ω1

a
r3

)

+ 1

V 2
mc2δ(r3), (7)

T α(eff )
α ≈ ε1

= −(1 + 2Ω)
mc2

2V 2
2 r3

exp

(
−

√
ω1

a
r3

)
, α = 1,2,3, (8)

T 4(eff )
4 = T 5(eff )

5 ≈ −ω1ε
1 − Ωρ̂(r3)c2

= (1 + 2Ω)
ω1mc2

2V 2
2 r3

exp

(
−

√
ω1

a
r3

)
− Ω

V 2
mc2δ(r3). (9)

low marks the perturbations. The excitation ε1 is of the same order of magnitude
as ρ̂c2.
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These components define the effective energy density and pressure
of the coated gravitating mass. For example, from Eq. (8) we con-
clude that this mass acquires relativistic pressure p̂(eff )

0 = −T α(eff )
α

in the external space. To demonstrate it more clearly, we can
replace the rapidly decreasing exponential function by the delta
function:

1

r3
exp

(
−

√
ω1

a
r3

)
→

∫
1

r′
3

exp

(
−

√
ω1

a
r′

3

)
dV ′

3 × δ(r3)

= V 2

ω1
δ(r3). (10)

Then, Eqs. (7)–(9) read

T 0(eff )
0 → −(1 + 2Ω)

mc2

2V 2ω1
δ(r3) + 1

V 2
mc2δ(r3)

= ρ̂(r3)c2
(

1 − 1 + 2Ω

2ω1

)
, (11)

T α(eff )
α → −(1 + 2Ω)

mc2

2V 2ω1
δ(r3)

= −ρ̂(r3)c2 1 + 2Ω

2ω1
, α = 1,2,3, (12)

T 4(eff )
4 → (1 + 2Ω)

mc2

2V 2
δ(r3) − Ω

V 2
mc2δ(r3)

= ρ̂(r3)c2 1

2
. (13)

These equations give us the effective energy density and pressure
of the coated gravitating mass. We see that the effective energy
density ε̂(eff ) = T 0(eff )

0 and effective pressure in the external (our)

space p̂(eff )
0 = −T α(eff )

α depend on parameter Ω , which defines
the equation of state of the bare gravitating mass in the inter-
nal space. On the other hand, the effective pressure in the internal
space p̂(eff )

1 = −T 4(eff )
4 does not depend on Ω and is negative. From

Eq. (12), we clearly see that the coated gravitational mass acquires
relativistic pressure in the external (our) space. Obviously, it is not
the case for compact astrophysical objects, such as our Sun. Usu-
ally, they have nonrelativistic velocities in the three-dimensional
space, and their pressure is much less than the energy density.
Moreover, in the weak field limit the pressure for these objects is
taken in the dustlike form p̂0 = 0. It can be easily seen that the
equality Ω = −1/2 is the only possibility to achieve p̂(eff )

0 = 0 for
our model.3 It means that the bare gravitating mass should have
tension with equation of state p̂1 = −ε̂/2 in the internal space.
Then, the effective and bare energy densities coincide with each
other and the gravitating mass remains pressureless in our space.
In the internal space the gravitating mass still has tension with the
parameter of state −1/2. Therefore, tension plays a crucial role for
models with spherical compactification.

3. Conclusion

In this Letter, we have considered the six-dimensional Kaluza–
Klein models with spherical compactification of the internal space.
A bare gravitating mass has the dustlike equation of state p̂0 = 0 in

3 In the case of a very large parameter of the equation of state of background

matter in the internal space ω1 � 1, the effective pressure p̂(eff )
0 can be also nonrel-

ativistic. However, such matter is very unrealistic. We are not aware of any example
of it. In realistic cases ω1 ∼ 1. For example, ω1 = 1 corresponds to the monopole
form-fields (the Freund–Rubin scheme of compactification), and for the Casimir ef-
fect we have ω1 = 2 [15,16].
the external (our) space and an arbitrary equation of state p̂1 = Ωε̂
in the internal space, and it disturbs the background matter which
provides spherical compactification of the internal space. This per-
turbation takes the form of the Yukawa potential and is localized
around the bare mass. For any value of Ω , the Yukawa interaction
is short-ranged for the large mass of radion, providing agreement
with the gravitational experiments in the corresponding asymp-
totic region [13,14]. However, the gravitational tests are not the
only possible experiments. For example, gravitating bodies, such as
a system of nonrelativistic particles, must have certain thermody-
namical properties. In the present Letter we have shown that due
to localized perturbations, gravitating massive sources are covered
by this coat for models with Ω �= −1/2. As a result, these coated
gravitating masses acquire effective relativistic pressure in the ex-
ternal space. Hence, a system of nonrelativistic particles will also
have effective relativistic pressure, which is unacceptable from the
thermodynamical point of view. Therefore, in spite of the agree-
ment with the gravitational experiments, such models fail with
the observations. The equality Ω = −1/2 is the only possibility
to preserve the dustlike equation of state in the external space.
Therefore, to be in agreement with observations (both gravitational
and thermodynamical), bare gravitating masses in multidimen-
sional Kaluza–Klein models with spherical compactification should
have tension with Ω = −1/2 in the internal space. This important
point was not elucidated in our previous papers.

It worth noting that in five-dimensional models with toroidal
compactification, the need for tension −1/2 for compact astro-
physical objects was indicated in the pioneering paper [17]. This
follows from the gravitational tests in the weak field limit. How-
ever, the authors wrote that an argument why these objects should
have such tension is absent. Unfortunately, such physically reason-
able argument is absent up to now.
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