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1. THE MODEL 

The main inward factor which determines the evolution of a population 
with many species (prey-predator, many species models) is the need for 
food arising directly from the natural instinct of the individuals to survive. 
Here we shall discuss a population model based on the need of aI/ persons 
of the community to work in the environment considered. After for- 
mulating the model we shall discuss its global stability. 

Consider a graded system [ 1 ] consisting of n grades (stages or levels) 
iTI2 g2, ae.9 gn3 where each member of the system is restricted to one and 
only one gi. These grades represent the specified main and necessary jobs 
served by the population. Assume that the model is characterized by the 
following conditions: 

(Cl) A necessary and sufficient condition for a member to live in the 
community is that it is not unemployed; namely there are people in the 
community who need his service. Thus, if a member does not find work 
that person must leave the system. Let, for each r 20, x,(t) be the 
population belonging to grade g; (i = 1, 2, . . . . n). 

(C2) None of the numbers x,(O) (i= 1,2, . . . . n) is zero. 

(C3) The per capita growth rate of the population x,(t) 
(i= 1, 2, . . . . n) increases if xi(t) becomes large for at least one j # i and 
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decreases if x,(t) becomes large. This means that if the population in g, 
(j# i) becomes large, then more persons are needed in stage g, to give their 
service. But this cannot continue indefinitely; indeed if -t-,(t) is large enough 
with respect to those people who are needed to be in stage g,, then they 
cannot find enough work and so some of them will leave the community. 

Our model refers to large populations so that factors like death will be 
avoided. 

Under the conditions above which characterize our competition-like job 
system we can mathematically formulate it as 

ii(t) 

-= FAX,(t), X,(f), . . . . x,(t)), 

Xi(f) 
i = 1) 2, . ..) n. (1.1) 

Here Fi(z, , z2, . . . . z,) is a real-valued function which, according to (C3), 
decreases in zi and increases in Z/ for each j # i. 

In this work we shall assume that Fi is linear, i.e., 

where aij are real numbers such that aii < 0 and a0 > 0 for each i = 1,2, . . . . n 
and j # i. The case where F, is a general (nonlinear) function we hope will 
be discussed in a subsequent paper. Indeed, as we shall see later, the 
linearity of Fi plays an important role in using matrix theory to discuss the 
model, while nonlinear methods are needed to discuss the general case. 

Equation (1.1) now becomes 

-I;ilt) =xi(t) jJ a,x,tf), i= 1, 2, . . . . n, 
j=l 

(4 

which is the subject of our study. 
System (e) is of the form 

ii(t)=xi(t) 
( 

b,+ i a,x,(t) 
> 

, i = 1, 2, . . . . n, (1.2) 
j= I 

describing the interaction of a population living in a deterministic closed 
environment. However, observe that the auto-increase coefficients bi 
(i= 1, 2, . . . . n) do not affect our system. Indeed, bi= 0 in (e). Thus the 
results obtained and the methods suggested by several authors studying 
global stability of (1.2) do not cover and cannot apply to (e) (see, e.g., 
[3,4] and the references therein). The reason is that in all the cases where 
(1.2) is examined the existence of a positive isolated equilibrium (namely a 
vector x* = (XT, x:, . . . . x,*)’ such that x,? > 0 and b, + J$‘= L au xl? = 0, 
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i = 1, 2, . ..) n) is an essential condition. Such a condition cannot be assumed 
for (e) because of the homogeneity of the total growth rates. 

As it is seen the only parameter in the asymptotic behavior for (e) is the 
coefficient matrix (aV). We shall show in the present paper that there are 
only three possible limiting cases for (e) as the time increases. Either the 
system decreases and becomes empty, or it increases in all stages and 
comes to include greater and greater population so that satiation will be 
observed in finite time, or it tends to an equilibrium point. Assuming that 
the population system is no more than a city, in the first case we have a 
decentralization from the city; second, we have a centralization to the city, 
and at last we have an asymptotic (nonzero) equilibrium. Note that the life 
of the city in the second case is finite. This means that in finite time the city 
will be full of people and a satiation will characterize it. 

2. SOME PRELIMINARIES 

Let us denote by A the coefficient matrix (a,). By our assumptions, A 
has the form 

A = B - sI, (2.1) 

where B is an n x n matrix with positive entries (positive matrix), s is a 
strictly positive real number, and I is the n x n identity matrix. 

Before proceeding to our discussion we borrow from the 
Perron-Frobenius theory [2, p. 261 the fact that for any n x n positive 
matrix Wits spectral radius p(W) is an eigenvalue and W admits a positive 
eigenvector w  which corresponds to p(W). Moreover, any positive eigen- 
vector of W is a (positive) multiple of w. 

We must make clear that if A = B, - s1 Z is any other presentation of the 
matrix A, where again B1 is a positive matrix and si a positive number, 
then we can easily see it holds that 

p(B)-s=p(B,)-s,. (2.2) 

Indeed, by the Perron-Frobenius theory there is a positive vector z E R” 
such that Bz=p(B)z. Since B,=B-(s-sl)Z, we have B,z=(p(B)- 
s+s,)z, namely p(B)-s+s, is an eigenvalue of B1. Since also p(B,) is an 
eigenvalue we must have p(B,) > p(B) -s + si. Similarly we prove that 
p(B)>/p(B,)-s,+s, and so we have (2.2). 

The observation above ensures that although the pair (B, s) in the 
presentation of A is arbitrary, the quantity p(B) - s is a constant number 
which depends only on A and not on the pair (B, s). To follow the relative 
literature on matrix theory we recall that the matrix -A is called an 
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M-matrix if the spectral radius p(B) does not exceed S, where (B, s) is the 
pair in (2.1). 

Let us denote by iwy the set of all vectors z E R” such that z, > 0. 
For now on we shall denote by (x,y) the usual inner product for 

vectors in R”. 
In the sequel we shall always examine solutions x(t) of (e) such that 

x(0) E BP+. It is clear that in this case we have x(t) E RF for all t in the 
domain of existence of the solution. 

3. CONVERGENCE TO THE ORIGIN 

We first provide sufficient conditions for any (positive) solution of (e) to 
be convergent to the origin. 

3.1. THEOREM. rf -A is a nonsingular M-matrix, any positive solution of 
(e) exists on [0, + co) and the origin (0, 0, . . . . O)T is a global attractor of(e) 
for all positive paths. 

Proof From the theory of nonnegative matrices it is known that if C is 
a nonsingular M-matrix then for some positive diagonal matrix D the 
matrix CD + DCT is positive definite (see, e.g., [2, p. 136, Hz4]), where CT 
is the transpose of C. 

Now, letting C = -A and for each i = 1, 2, . . . . n yi = dz: ’ xi, where D = 
diag[d,, d,, . . . . d,] is the matrix mentioned above corresponding to C, we 
observe that (e) becomes 

Iji=yz f, aud’yj, i = 1, 2, . . . . n. (3.1) 
,=I 

Furthermore we shall show that the function 

u(Y(t))Eu(t)=2 f: YiCt) 
i=l 

is a Liapunov function for (3.1). Indeed, it holds u(t) > 0 and, moreover, 

c(t)=2 i ji=2CyiCa,id,yj 
i=l 1 i 

=C~iCaiidj~j+C~idiCaj,yj 

=;y,kDy)+(y,LDATy;=(y,(AD+DAT)y) 

= -(y, (CD+DC’)y). 
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Now, since ti=O if and only if y = 0 and the origin (0, 0, .,., 0)’ is 
an equilibrium for (3.1) it follows that this is a global attractor for (3.1). 
Consequently this does so for (e) too, and the theorem is proved. 

4. CONVERGENCE TO A POSITIVE FINITE STATE 

Here we shall discuss the case where -A is a singular M-matrix. Clearly 
-A does so if and only if A can be written in the form A = B - p(B) I for 
some positive matrix B. We shall show the following: 

4.1. LEMMA. Zf -A is a singular M-matrix, there exists exactly one 
vector z E K!; (w E R”,) such that Az=O and C;=, zi= 1 (ATw=O and 
CT= 1 wi = 1). Moreover, a vector u E KY+ (u E IF+) is a solution of Au = 0 
(A*u = 0) if and onZy if u = ccz (u = fiw), where c1> 0 (/3 > 0) is a real number. 

Proof. If -A is a singular M-matrix, then its transpose -AT does so. 
Thus it is enough to show the existence of z only. 

Recall that A has the representation A = B - p(B) Z, where B is a positive 
matrix. Thus its spectral radius p(B) is a (positive) eigenvalue of B. 
Therefore if z is an eigenvector of B which corresponds to p(B), this z must 
have all of its coordinates positive [2, p. 261. Conversely, any such 
z corresponds to the eigenvalue p(B). Obviously we can assume that 
Cr=, zi = 1. Furthermore, we observe that z satisfies AZ = Bz - p(B) z = 0. 

Q.E.D. 

Our main result in this section is the following: 

4.2. THEOREM. Assume that -A is a singular M-matrix. Then any 
(positive) solution x(t) = (x,(t), x2(t), . . . . x,(t))T of (e) exists on [0, + co) 
and it holds 

where z and w are the uectors given in Lemma 4.1. 

Proof Let z and w  be the vectors as above. Define the matrix C= (c~), 
where 

cii = wiaVzj 

and observe that it satisfies 

0-c c cij= -cii= ICiil. 
i#i 

(4.1) 
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We will show that C+ CT is negative semidefinite. To do this we have to 
show that C+ CT has all of its eigenvalues nonpositive. Indeed, put 
D = C + CT and consider a ,I> 0. Then because of (4.1) D - AZ has a strong 
diagonal dominance and by Corollary 5.4 of [6, p. 411 it is nonsingular. 
Thus all eigenvalues of D are nonpositive and by Theorem 2.3 of [6, p. 211, 
D is negative semidefinite. 

Let us now consider the real valued function U: iw:~ + R, where 

U(y)=2 2 wi c-1 -log: 
i= I (. .> 

First observe that U(y) 20 and we will show that U is a Liapunov 
function for the system (e). Indeed, if x=x(t) is a solution of (e) set 

Then 

u(t) = W(~)), t 3 0. 

= 2 ic, : (xi - zi) f a,x, 
I j=l 

=2 jc,:(xj-z,) f a&xj-z,) 
I j= 1 

+ 2 ,c, : (x, - 2;) i ap7,. 
I j=l 

But J$= I a,Ti= (Az)~=O and therefore we have 

zi(r)=2ic,:(xj-z,) i a&x,-z,) 
I j= 1 

=2(.Y, CY> = <Y, (C+ C’)Yh wherey,=s- 1. 
zi 

As we have shown above, the matrix C + CT is negative semidefinite and 
thus ii(t) < 0. Therefore U is a Liapunov function for (e). 

Furthermore, since lim, ~ + o3 U(y) = + co it follows that any (positive) 
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solution of (e) is bounded. Thus it is uniformly continuous and bounded, 
namely precompact. 

Now, let us consider the equation 

w)l(,,=o~ (4.2) 

namely the equation 

(Y, Cy)=O, with yi=xi/zi- 1. (4.3) 

Since any y which satisfies (4.3), maximizes the quantity (y, Cy) (recall 
that C + CT is negative semidefinite) it must hold 

o=g, i = 1, 2, . . . . 12. 
YZ 

(4.4) 

If there is such a y that satisfies y,,,( yi, if i,, then from (4.4) and (4.1) we 
get 

O=g= C ci~i(Yi-Yi~)>o, 
10 i * io 

a contradiction. Thus any solution y of (4.4) must have all of its coor- 
dinates equal to a constant, or otherwise the set 

E= {xEW: ii(~)(~,,=O} 

consists exactly of those XE R” such that 

x=kz for some k > 0. 

Finally, observe that E is invariant along solutions of (e) because of AZ = 0. 
Apply now the well-known LaSalle’s invariance principle [S, p. 301 to get 
that any solution x(t) of (e) satisfies 

x(t) -+ En U-‘(l), as ?-++a~, (4.5) 

for some I> 0, where the convergence is in the Hausdorff sense. Since 1 
depends only on x(t), if k, is the (unique) real root of ke’+ ‘ = ek, then (4.5) 
gives 

lim x(t) = k,z. 
1-4, (4.6) 

We shall obtain k, in terms of the initial value x(O). To this end observe 
that the function 

u(t)= i wilogxi(t) 
i=l 
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is constant. Indeed t;(t) = (A-‘w, .x(t)) = 0. Thus u(l) = v(O), r 30, or 
x;“(t) . x;‘n(t) = .x;“‘(O) . . .r;‘n(O). This and (4.6) give, by passing to the 
limit, that 

(4.7) 

which proves the theorem. 

5. CONVERGENCE TO +co 

Consider now the case where 

Clearly p(B) - s = i is a positive eigenvalue of A and by Perron-Frobenius 
theory A has a positive eigenvector z which corresonds to 1, i.e., 

Az = llz. 

Fix such a z and take a solution x(t) = (x,(t), . . . . ~,(t))~ of system (e) for 
which x;(O) > 0 (i = c). Let us denote by [O, TX) the maximal existence 
interval of x(t) and by [0, T,) (C [O, T,.)) the maximal interval such that - 
x,(t) > 0 (0 G t < T,, i = G). Such a T, exists, since x,(O) > 0, i = 1, n. 

Define a function U: [0, co) --f R of the type 

xi(t) u(t)= min -, O<t<T,. 
I<i<n Zi 

For any fixed t E [0, T,), there exists an index i0 = io(t) such that 

u(t) = x. (t) &, 
ZiO 

and thus, we have 

D-u(t) = lim sup 4t)--(t--h)> Iirn Xjo(t)-X,(t-h) a,(t) 
=-* 

h-O+ h ‘h+O+ hz, Z, 

From (e), we obtain 

D-u(t) 2 xb(t) n --&- jF, aiojzjT 2 f aiojzju2(t) = It&(t). 
j=l 
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Thus 
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D-u(t) au*(t), O<ttT,, 

where y = A .min, GiGn (zi} ( >O). 
Now let us consider the following initial-value problem: 

ti( t) = yu2( t) 

u(0) = u(0). 

This initial-value problem has exactly one solution 

(5.1) 

(5.2) 

u(t) = u(O) 
1 -p(O) t 

with the maximal existence interval [0, l/yu(O)). But (5.1) and (5.2) imply 
that 

(5.3) 

on O<t<min[T,, l/yu(O)). From this, it follows that T, = min{ TX, 
lhu(O)}, i.e., x;(t)>O, (i=F), on O<t<min(T,, l/yu(O)) and 
inequality (5.3) is valid on this interval. 

We shall show that TX < l/yu(O). To do this assume that TX> l/yu(O). 
Then from (5.3), we get 

+oO> 
xi(t) max min - 3 u(t) > 

40) 1 

o<s~l/yv(o) l<;i<n zi l-yu(0)t4 +Ooy as t 4 p(0)’ 

which is a contradiction, and so TX< l/yu(O). 
Since [0, TX) (C [0, l/yu(O)) is the maximal existence interval of solution 

x(t), we have CT= i xi(t) -+ + co, as t -+ TX. 
We shall show that if for an index i, E (1, 2, . . . . n}, lim sup,+ TX 

x&(t)= +co, thenliminf,,+rz x,(t) = + co. To do this assume that i, is a 
fixed index such that there exists a sequence (tk), with t, + T, (k + + co), 
and 

lim Xio(t,)= + 00, 
k+ +m 

but m = lim inf, _ TX x.&t) < co. In that case there is a sequence (zk) such 
that tk + TX (k -+ + co), xia(zk) = m + 1, and it-,(zk) < 0 for all k = 1, 2, . . . . 
Taking into account the fact that XI= 1 x,(t) + + ~0, t + TX, we conclude 
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that there is an indexj, # i, such that x,,,(s;) + + z, for some subsequence 
(5;) of (So). Then from (e) we get the contradiction 

+ 1 ui”,x,(tk)) + +mo, as k-t-m 
j# 10 

Thus .x,(t) -+ + co, (t -+ T,), whenever lim sup,- T, x,(t) = + co. But 
z;=, x,(t) + + cc (t -+ TX), implies the existence of an index i, such that 
lim sup, _ T, x,(t) = + co. From the arguments above we get that for any 
M > 0 and index i # i, there exists r E (0, T,) such that x,(t) > M/aji,, for 
t E (r, TX). Then we have on one hand that 

ai(f) 3 xi(f)(aiix~(z) + arioXio(f))9 

and, on the other hand, 

2 E (0, L), (5.4) 

~j(f))/Xj(r)(M+aijxi(t)), tE (5 7,x). (5.5) 

Assume that lim sup, _ T, xi(t) < + co. Then xi(t) is bounded and by (5.4) 
it follows that lim, _ TI ii(t) = + co. Thus lim,, T, xi(t) = 1 exists. We shall 
show that I= + co. Indeed, otherwise we have 1~ + co. From (5.5) it 
follows that x,(t)ayi(t), t E (t, TX), where ri(t) is the solution of the 
Cauchy problem 

Pi =YitM + uii Vi) 

Yib) = xi(z). 

Thus 

(5.6) 

Now take k = 1,2, . . . . in the place of M and let (tk) be a sequence, where zk 
corresponds to k as above. Since (~~(7~)) is bounded we can assume that it 
converges, say, to r, which by lim,, TX ii(t) = + co it must be nonzero. 
Then from (5.6) we get that 

kXi(T/c) 

Thus I= +a, and so lim,,, x,(t) = + co. This means that lim supt _ r, 
x,(t) = + co and, following the same procedure as for i0 above, we conclude 
that lim, _ TX x,(t) = + co. 
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Consequently we have proved the following theorem. 

5.1. THEOREM. If p(B)>s, then any solution x(t)=(x,(t),..., x,(t)jT 
(x,(O) > 0, i= 1, n) of (e) has a time life TX no greater than {[p(B) -s] - 
minzi~min(xj(0)/z,)}-’ undfbr any i=l,n we have O<x,(t)-+ +a, us 
t+ TX, 

6. SOME COMMENTS AND A SPECIAL CASE 

Above we examined Eq. (e) and we took a complete picture of the 
asymptotic behavior of its (positive) solutions. We see that if p(B) < s, then 
any solution of (e) is defined on [IO, + co), and it has a finite limit as the 
time increases. On the other hand, if p(B) > s then any solution tends to 
+ 00 as the time tends to a finite time. Thus in this case the system has 

finite life with life length equal to TX. An estimation of T, is given in the 
proof of Theorem 5.1. 

The conditions stated above involve the spectral radius of the martrix B 
and therefore the spectral set of A. We shall show here that in the case 
n = 2 we can get information for system (e) without having the set of eigen- 
values of A but the sign of the determinant of A. Specifically, consider the 
system 

i, =x1( --a,,Xl + 62X2) 
(6.1) 

R* = &(a,, Xl -%2X2) 

and we shall show the following: 

6.2. THEOREM. If A is the coefficient matrix 
~*(t))‘~ a solution with xi(O) > 0, then it holds: 

of (6.1) and x(t)=(xI(t), 

(i) Zf det A < 0, then for some T,X > 0 with 

1 
T.‘gAmin(k, l} .min{x,(O)/k, x,(O)}‘ 

where A = g-u,, - u2* + J(Ul, - uzz)” + 4u,,u,,) and k = (1/2u,,) 

(a 22-a,, + (U,,-Ua,,)2+'h,,U,,), We huoe 

lim x,(t)= tco, i= 1, 2. 
I - TX 

(ii) Zf det A>O, then lim,, +oo x,(t)=O, und 

409!13111-7 
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(iii) if’det A = 0, thrn 

ProoJ: Write A = B - sl, where s > 0 and B is a positive 2 x 2 matrix 
and let A(i) = det(B- 11). 

(i) If p(B) <s, then, since A(s) = det A -C 0 and lim, _ + ~ A(L) = + co 
there is a certain sr > s > p(B) with A(s,) = 0, a contradiction because p(B) 
is the greater eigenvalue of B. Thus p(B) > s and the result follows from 
Theorem 5.1 (Fig. 1). 

(ii) Here A(s) =det A ~0. If SC p(B), then, since lim,, +m 
A(L) = + cc we have either the existence of a certain s, > p(B) with 
A(s,) =O, or p(B) is of multiplicity 2. Both of these facts are impossible, 
because B is positive. Thus s > p(B) and the result follows from 
Theorem 3.1 (Fig. 2). 

(iii) Since A(s) =det A = 0 it follows that s is a positive eigenvalue 
of B such that s<p(B). Then p(B).s=det B=b,,b22-b,ZbZl >O. 
But b,, =$--all, b22=s-a22, b,,=a,,, and b21=az,; thus 
s(s - (al2 + CZAR)) > 0, namely s > a,, + a,, . Now det(A - U) = 0 if and only 
if ,I =O, or 2 = -(a,* +a,,). Hence det(B- (s+i) I) =0 if and only if 
s+A=s, or s+~=.F-((a,,+~,,). Since s>s+A>O, it follows that 
s = p(B). Now the result follows from Theorem 4.2 (Fig. 3). 
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