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in terms of classical Littlewood–Richardson coefficients.
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1. Introduction

Let Uq(g) be the quantized enveloping algebra associated with a symmetrizable Kac–Moody al-
gebra g. In [11], Kashiwara introduced a class of integrable Uq(g)-modules called extremal weight
modules, which is a natural generalization of integrable highest weight or lowest weight modules.
There exist a global crystal base and a crystal base of an extremal weight module, and the crystal
base of an extremal weight module, simply an extremal weight crystal, appears as a subcrystal of
that of the modified quantized enveloping algebra Ũq(g) [11]. Suppose that g is an affine Kac–Moody
algebra of finite rank. Then an extremal weight crystal of positive (resp. negative) level is isomor-
phic to the crystal base of an integrable highest (resp. lowest) weight module. In [1,13], a level zero
extremal weight module has been studied in detail, and it was conjectured by Kashiwara [13] that
the structure of a level zero extremal weight crystal can be described in terms of a tensor product
of the crystal bases of level zero fundamental weight modules and Laurent Schur polynomials. In [3],
Beck and Nakajima proved this conjecture (see also [2,24] for the case when g is symmetric), and
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furthermore based on the study of extremal weight modules they proved the Kashiwara’s conjecture
on Peter–Weyl decomposition and the Lusztig’s conjecture on two-sided cell structure of Ũq(g) in a
purely algebraic way, though there is a geometric background related with quiver varieties.

A natural question arises whether there is also a nice description of extremal weight crystals
and their tensor products when g is an infinite rank affine Lie algebra. In [19] the author studied
extremal weight crystals of type A+∞ , and he showed that an extremal weight crystal is isomorphic
to the tensor product of a lowest weight crystal and a highest weight crystal, and the Grothendieck
ring generated by the isomorphism classes of extremal weight crystals is isomorphic to the Weyl
algebra of infinite rank. A Littlewood–Richardson rule of extremal weight crystals is then described
explicitly using the operators induced from the multiplication by Schur functions together with their
adjoints.

The purpose of this paper is to study extremal weight crystals of type A∞ (or extremal weight
gl∞-crystals), where gl∞ denotes the infinite rank affine Lie algebra of type A∞ . In this case, it
should be noted that (1) an extremal weight crystal is always connected (Proposition 4.1), (2) there
are extremal weight crystals of non-zero level, which are not isomorphic to a highest weight or lowest
weight crystal (Theorem 4.6), and (3) the tensor product of two extremal weight crystals of non-
negative level is a disjoint union of extremal weight crystals of non-negative level (Theorem 5.1).
These are important features of extremal weight gl∞-crystals, which do not necessarily hold in the
affine types of finite rank. Also, as in the case of A+∞ , we need certain non-commuting operators to
describe the tensor product of extremal gl∞-crystals because of the non-existence of characters and
the non-commutativity of tensor products.

Let us explain our results in detail. For an integral weight Λ of level k � 0, we denote by B(Λ)

the crystal base of the extremal weight module over Uq(gl∞) with extremal weight Λ. Let B be the
crystal base of the natural representation of Uq(gl∞). The connected components of B⊗n (n � 1) are
parameterized by partitions λ of n, say Bλ . Note that the crystal Bλ is not isomorphic to a high-
est weight or lowest weight crystal. Then we show that B(Λ) is connected and there exist unique
partitions μ,ν and the dominant integral weight Λ′ of level k such that

B(Λ) � Bμ ⊗ B∨
ν ⊗ B

(
Λ′),

where B∨
ν is the dual crystal of Bν (Theorem 4.6). Note that B(Λ′) is the crystal base of the integrable

highest weight module with highest weight Λ′ . An extremal weight crystal of non-positive level is
also characterized from the above result by taking its dual.

Next, we consider a category C of gl∞-crystals, whose objects are disjoint unions of extremal
weight crystals of non-negative level with certain finite conditions on the multiplicity of connected
components (see Section 5.1). We show that C is a monoidal category under tensor product of crystals
(Theorem 5.1). We remark that the tensor product in C is not necessarily commutative, that is, there
is not always an isomorphism between B ⊗ B ′ and B ′ ⊗ B for any two objects B , B ′ in C (see for
example, Proposition 4.9).

The Grothendieck group K of the category C admits a natural structure of a non-commutative
associative Z-algebra with 1 induced from the monoidal structure of C. Let z = {zk | k ∈ Z} be a set of
formal commuting variables, and let R be the ring of formal power series in z with coefficients in Z.
Now, let D be an Ore extension of RQ = Q ⊗Z R associated with a commuting family of derivations
γ ±

n = (−1)n−1 ∑
k∈Z zk∓n

∂
∂zk

(n ∈ Z). We may view D as a non-commutative polynomial ring over

RQ in γ ± = {γ ±
n | n ∈ Z}. Then we show that there exists a Q-algebra isomorphism

KQ
∼−→ Dopp

(Theorem 5.7), where isomorphism classes of an integrable highest weight crystal and a level zero
extremal weight crystal are mapped to polynomials in z and γ ± , respectively. Here KQ = Q ⊗Z K
and Dopp denotes the opposite algebra of D .
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Based on the above results, we obtain a Littlewood–Richardson rule for extremal weight crystals
of non-negative level (Theorem 5.14), which is given explicitly in terms of classical Littlewood–
Richardson coefficients. In fact, the tensor product of level zero extremal weight crystals corresponds
to the product of double symmetric functions, whose decomposition can be given by the classical
Littlewood–Richardson rule due to a crystal (gl∞,gln)-duality on the n-th exterior algebra gener-
ated by the natural representation of gl∞ (Proposition 3.10), and the decomposition of the tensor
product of integrable highest weight crystals is explained by using a crystal version of the (gl∞,gln)-
duality on the level n fermionic Fock space due to Frenkel [5] (Proposition 3.11) following [30]. Hence
the only non-trivial part is the decomposition of the tensor product B(Λ) ⊗ Bμ ⊗ B∨

ν , where Λ is
a dominant integral weight and μ,ν are partitions, and it is obtained by analyzing commutation
relations for monomials in z and γ ± , equivalently Pieri rules for extremal weight crystals (Proposi-
tion 4.9).

Finally, we discuss some applications. Let C∨ be the category of gl∞-crystals consisting of dual
crystals B∨ for B ∈ C and let Cl.w. be a full subcategory of C∨ whose objects are disjoint union
of integrable lowest weight crystal. We denote by K ∨ and K l.w. the corresponding Grothendieck
groups. Then we consider a left K ∨-module structure on K l.w. , which is induced from the action
of D on RQ as differential operators, or from the composite of following two functors;

C∨ × Cl.w. ⊗−→ C∨ pr−→ Cl.w.,

where pr is the natural projection functor. Using the Littlewood–Richardson rule, we obtain an explicit
combinatorial description of the action of K ∨ on K l.w. . We observe that the action of level zero
extremal weight crystals are transitive on the set of integrable lowest weight crystals of a fixed level.
As an application, we obtain a new interpretation of a one-to-one correspondence between level
n integrable highest (or lowest) weight gl∞-modules and finite-dimensional irreducible gln-modules,
which comes from the (gl∞,gln)-duality on level n fermionic Fock space [5] (Theorem 6.8). As another
application, we construct an action of the Hall–Littlewood vertex operators [8] on Z[q] ⊗Z K l.w.

(Theorem 6.15), which naturally yields an A∞-analogue of Hall–Littlewood function.
For a combinatorial realization, most crystals in this paper are embedded in a set of binary matri-

ces of various shapes, equivalently an (infinite) abacus model. Also, two kinds of Kashiwara operators
on binary matrices [4,18,21], which produces various dualities, play a crucial role in proving our main
results, while the rational semistandard tableaux for gln [27,29] were used to understand extremal
weight crystals of type A+∞ [19].

We also expect a similar result for the other infinite rank affine Lie algebras, that is, roughly
speaking, the Grothendieck ring generated by extremal weight crystals can be realized as a ring of
differential operators acting on the character ring of integrable highest weight or lowest weight mod-
ules.

The paper is organized as follows. In Section 2, we review briefly the notion of crystals. In Sec-
tion 3, we introduce a double crystal (or bicrystal) structure on binary matrices, which is our main
method. In Section 4, we give a characterization of extremal weight crystals. In Section 5, we intro-
duce the monoidal category C, characterize its Grothendieck ring, and give a Littlewood–Richardson
rule for extremal weight crystals. In Section 6, we study the action of K ∨ on K l.w. and discuss its
applications.

2. Crystals

2.1. Review on crystals

Let I be an index set. Let g be a symmetrizable Kac–Moody algebra associated with a generalized
Cartan matrix A = (aij)i, j∈I . Denote the weight lattice of g by P , the set of simple roots by Π =
{αi | i ∈ I} ⊂ P , and the set of simple coroots by Π∨ = {hi | i ∈ I} ⊂ P∨ with 〈α j,hi〉 = aij .

Let Uq(g) be the quantized enveloping algebra associated with g introduced by Drinfeld and Jimbo.
In [9], Kashiwara introduced the notion of crystal base of a Uq(g)-module V , which can be viewed as
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a limit of V at q = 0. The crystal base is an I-colored oriented graph with important combinatorial
information of V . The existence of the crystal bases of Uq(g)-modules which are related with the
work in this paper has been established in [9–11,15].

Based on the properties of crystal bases, one can define the notion of g-crystal (or crystal for short)
as follows (see [12] for a general review and references therein).

A g-crystal is a set B together with the maps wt : B → P , εi,ϕi : B → Z ∪ {−∞} and ẽi, f̃ i : B →
B ∪ {0} (i ∈ I) such that for b ∈ B and i ∈ I

(1) ϕi(b) = 〈wt(b),hi〉 + εi(b),
(2) εi(ẽib) = εi(b) − 1, ϕi(ẽib) = ϕi(b) + 1, wt(ẽib) = wt(b) + αi if ẽib �= 0,
(3) εi( f̃ ib) = εi(b) + 1, ϕi( f̃ ib) = ϕi(b) − 1, wt( f̃ ib) = wt(b) − αi if f̃ ib �= 0,
(4) f̃ ib = b′ if and only if b = ẽib′ for b,b′ ∈ B ,
(5) ẽib = f̃ ib = 0 if ϕi(b) = −∞,

where 0 is a formal symbol. Here we assume that −∞ + n = −∞ for all n ∈ Z. For example, a crystal
base of an integrable Uq(g)-module is a g-crystal.

Note that B is equipped with an I-colored oriented graph structure, where b i−→ b′ if and only if
b′ = f̃ ib for b,b′ ∈ B and i ∈ I . We call B connected if it is connected as a graph.

The dual crystal B∨ of B is defined to be the set {b∨ | b ∈ B} with

wt
(
b∨) = −wt(b),

εi
(
b∨) = ϕi(b), ϕi

(
b∨) = εi(b),

ẽi
(
b∨) = ( f̃ ib)∨, f̃ i

(
b∨) = (ẽib)∨, (2.1)

for b ∈ B and i ∈ I . We assume that 0∨ = 0.
Let B1 and B2 be crystals. A morphism ψ : B1 → B2 is a map from B1 ∪ {0} to B2 ∪ {0} such that

(1) ψ(0) = 0,
(2) wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and ϕi(ψ(b)) = ϕi(b) if ψ(b) �= 0,
(3) ψ(ẽib) = ẽiψ(b) if ψ(b) �= 0 and ψ(ẽib) �= 0,
(4) ψ( f̃ ib) = f̃ iψ(b) if ψ(b) �= 0 and ψ( f̃ ib) �= 0,

for b ∈ B1 and i ∈ I . We call ψ an embedding and B1 a subcrystal of B2 when ψ is injective, and
call ψ strict if ψ : B1 ∪ {0} → B2 ∪ {0} commutes with ẽi and f̃ i for all i ∈ I , where we assume that
ẽi0 = f̃ i0 = 0.

For bi ∈ Bi (i = 1,2), we say that b1 is (g-)equivalent to b2, and write b1 ≡ b2 if there exists a crystal
isomorphism C(b1) → C(b2) sending b1 to b2, where C(bi) denotes the connected component of Bi

including bi (i = 1,2).
For a crystal B and a non-negative integer m, we denote by B⊕m the disjoint union B1 � · · · � Bm

with Bi � B , where B⊕0 means the empty set.
We call a crystal B normal if εi(b) = max{k | ẽk

i b �= 0} and ϕi(b) = max{k | f̃ k
i b �= 0} for b ∈ B and

i ∈ I , and put ẽmax
i b = ẽεi(b)

i b and f̃ max
i b = f̃ ϕi(b)

i b. We say that B is regular if B is as a g J -crystal,
isomorphic to the crystal base of an integrable Uq(g J )-module for J ⊂ I such that {αi | i ∈ J } is of
finite type, where g J is the Kac–Moody algebra associated with A J = (aij)i, j∈ J .1 Note that if B is
regular, then B is normal. Suppose that B1, B2 are regular crystals. If ψ : B1 → B2 is an embedding,
then ψ is strict. Hence B1 � ψ(B1) and B2 � B1 � (B2 \ ψ(B1)). In particular, b ≡ ψ(b) for b ∈ B1.

1 Erratum: the definition of regular crystal in [19, p. 1343], which was given as that of normal crystal, should be replaced
with the one given here.
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Let W be the Weyl group of g, that is, the subgroup of GL(P ) generated by ri (i ∈ I), where ri is
the simple reflection given by ri(λ) = λ − 〈λ,hi〉αi for λ ∈ P . A regular crystal B admits an action of
the Weyl group on B as follows; for i ∈ I and b ∈ B

Sri b =
{

f̃ 〈wt(b),hi〉
i b if 〈wt(b),hi〉 � 0,

ẽ−〈wt(b),hi〉
i b if 〈wt(b),hi〉 � 0,

(2.2)

and S w = Sri1
· · · Srit

for w ∈ W with a reduced expression w = ri1 · · · rit .
A tensor product B1 ⊗ B2 of crystals B1 and B2 is defined to be B1 × B2 as a set with elements

denoted by b1 ⊗ b2, where

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max
{
εi(b1), εi(b2) − 〈

wt(b1),hi
〉}

,

ϕi(b1 ⊗ b2) = max
{
ϕi(b1) + 〈

wt(b2),hi
〉
,ϕi(b2)

}
,

ẽi(b1 ⊗ b2) =
{

ẽib1 ⊗ b2 if ϕi(b1) � εi(b2),

b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

f̃ i(b1 ⊗ b2) =
{

f̃ ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ ib2 if ϕi(b1) � εi(b2),
(2.3)

for i ∈ I . Here we assume that 0 ⊗ b2 = b1 ⊗ 0 = 0. Then B1 ⊗ B2 is a crystal. Note that (B1 ⊗ B2)
∨ �

B∨
2 ⊗ B∨

1 , and B1 ⊗ B2 is regular if B1, B2 are regular.

2.2. The Lie algebra gl∞

Let gl∞ denote the Lie algebra of complex matrices (aij)i, j∈Z with finitely many non-zero en-
tries.

Let Eij be the elementary matrix with 1 at the i-th row and the j-th column and zero elsewhere.
Let h = ⊕

i∈Z CEii be the Cartan subalgebra of gl∞ and 〈·,·〉 denote the natural pairing on h∗ × h. We
denote by Π∨ = {hi = Eii − Ei+1i+1 | i ∈ Z} the set of simple coroots, and Π = {αi = εi − εi+1 | i ∈ Z}
the set of simple roots, where εi ∈ h∗ is determined by 〈εi, E jj〉 = δi j .

Let P = ⊕
i∈Z Zεi ⊕ ZΛ0 = ⊕

i∈Z ZΛi be the weight lattice of gl∞ , where Λ0 is defined by

〈Λ0, E− j+1− j+1〉 = −〈Λ0, E jj〉 = 1
2 for j � 1, and Λi is given by Λ0 − ∑0

k=i+1 εk (resp. Λ0 + ∑i
k=1 εk)

for i < 0 (resp. i > 0). We call Λi the i-th fundamental weight. A partial ordering on P is defined as
usual.

For k ∈ Z, let Pk = kΛ0 + ⊕
i∈Z Zεi be the set of integral weights of level k. Let P+ =

{Λ ∈ P | 〈Λ,hi〉 � 0, i ∈ Z} = ∑
i∈Z Z�0Λi be the set of dominant integral weights. We also put

P+
k = P+ ∩ Pk for k � 0 (note that P+

0 = {0}). Note that for Λ = ∑
i∈Z ciΛi ∈ P , the level of Λ is∑

i∈Z ci since εi = Λi − Λi−1 for i ∈ Z. If we put Λ± = ∑
i;ci≷0 |ci|Λi , then Λ = Λ+ − Λ− with

Λ± ∈ P+ .
For n � 1, let Zn+ = {(λ1, . . . , λn) | λi ∈ Z, λ1 � · · · � λn} be the set of generalized partitions of

length n. For λ ∈ Zn+ , we put

Λλ = Λλ1 + · · · + Λλn . (2.4)

Note that Zn+ parameterizes P+
n .

Let I be an interval in Z. We denote by glI the subalgebra of gl∞ spanned by Eij for i, j ∈ I . For
p,q ∈ Z, we put [p,q] = {p, p + 1, . . . ,q} (p < q), [p,∞) = {p, p + 1, . . .} and (−∞,q] = {. . . ,q − 1,q}.
For n � 1, we denote [1,n] by [n] for simplicity.
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For Λ ∈ P+ , we denote by B(±Λ) the crystal base of the irreducible Uq(gl∞)-module with highest
(resp. lowest) weight vector u±Λ of weight ±Λ, which is a connected regular gl∞-crystal. We denote
by B and B∨ the crystal base of the natural representation of Uq(gl∞) and its dual respectively, which
are also connected regular crystals. The associated colored oriented graphs are

B : · · · −3−−→ −2 −2−−→ −1 −1−−→ 0 0−→ 1 1−→ 2 2−→ 3 3−→ · · · ,
B∨ : · · · 3−→ 3∨ 2−→ 2∨ 1−→ 1∨ 0−→ 0∨ −1−−→ −1∨ −2−−→ −2∨ −3−−→ · · · ,

where wt(i) = εi for i ∈ Z.

3. Double crystal structure on binary matrices

3.1. Crystal operators on binary matrices

For intervals I, J in Z, let MI, J be the set of I × J matrices A = (aij) with aij ∈ {0,1}. We denote
by Ai the i-th row of A for i ∈ I . Let I◦ = {i | i, i + 1 ∈ I} and J◦ = { j | j, j + 1 ∈ J }.

Let A ∈ MI, J be given. For i ∈ I and j ∈ J◦ , let

σ j(Ai) =
⎧⎨⎩

+ if (aij,aij+1) = (1,0),

− if (aij,aij+1) = (0,1),

· otherwise.

We say that A is row j-admissible if there exist M, N ∈ I (M � N) such that σ j(Ai) �= + for all i < M
and σ j(Ai) �= − for all i > N . Note that if I is finite, then A is row j-admissible.

Let us define the operators ẽ j, f̃ j for j ∈ J◦ on the set of row j-admissible matrices in MI, J .
Suppose that |I| = 1 (I = {i}). For A ∈ MI, J (A = Ai), we define

ẽ j A =
{

A + E j − E j+1 if σ j(A) = −,

0 otherwise,

f̃ j A =
{

A − E j + E j+1 if σ j(A) = +,

0 otherwise,
(3.1)

where E j is the {i} × J matrix with 1 in the j-th column and 0 elsewhere.
Suppose that |I| � 2. For a row j-admissible A ∈ MI, J , consider the sequence

σ j(A) = (
σ j(Ai)

)
i∈I = (

. . . , σ j(Ai−1),σ j(Ai),σ j(Ai+1), . . .
)
.

Then we replace a pair (σ j(As),σ j(As′ )) = (+,−) such that s < s′ and σ j(At) = · for s < t < s′ by
(·,·) in σ j(A), and repeat this process as far as possible until we get a sequence σ̃ j(A) = (σ̃ j(Ai))i∈I
with no + placed to the left of −. It is not difficult to see that this procedure must end after a finite
number of steps since A is row j-admissible.

Now we define ẽ j A (resp. f̃ j A) to be the matrix in MI, J given by applying ẽ j (resp. f̃ j ) to the row
of A corresponding to the right-most − (resp. the left-most +) in σ̃ j(A), and ẽ j A = 0 (resp. f̃ j A = 0)
if there is no such row. Note that ẽ j A (resp. f̃ j A) is also row j-admissible if ẽ j A �= 0 (resp. f̃ j A �= 0).

Remark 3.1. We may regard each Ai as an element of a regular gl{ j, j+1}-crystal with weight
aijε j + aij+1ε j+1. Hence if I is a finite set, say I = [n], then A can be viewed as A1 ⊗ · · · ⊗ An and
the actions of ẽ j and f̃ j on A defined here coincides with tensor product rule of crystal, which is
also known as signature rule (cf. [15]). But, we do not always have a crystal structure on the set of
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row j-admissible matrices, since the weight of A with respect to gl{ j, j+1} is not always defined natu-
rally when I is an infinite set. For example, let A = (aij) be a Z × [2]-matrix where (ai1,ai2) = (0,1)

for i � 0 and (ai1,ai2) = (1,0) for i > 0. Then A is row 1-admissible and ẽ1 A = A + E01 − E02 and
f̃1 A = A − E11 + E12, though the weight of A with respect to gl[2] is not well defined.

Let

ρ : MI, J → M− J ,I

be a bijection given by ρ((aij)) = (a′
− ji) ∈ M− J ,I with a′

− ji = aij , where − J = {− j | j ∈ J }.
For A ∈ MI, J and i ∈ I◦ , we say that A is column i-admissible if ρ(A) is row i-admissible. Then for

a column i-admissible A ∈ MI, J , we define

Ẽ i(A) = ρ−1(ẽiρ(A)
)
, F̃ i(A) = ρ−1( f̃ iρ(A)

)
. (3.2)

The following lemma follows from [16, Lemma 3.4] (see also [4,21], where essentially the same
facts are stated in a slightly different way).

Lemma 3.2. Let A ∈ MI, J be given. If A is both row j-admissible and column i-admissible for i ∈ I◦ and j ∈ J◦ ,
then

x̃ j X̃i A = X̃i x̃ j A,

where x = e, f and X = E, F .

For A ∈ MI, J , we say that A is row admissible (resp. column admissible) if A is row j-admissible
(resp. column i-admissible) for all j ∈ J◦ (resp. i ∈ I◦). Note that if I (resp. J ) is a finite set, then
A is always row (resp. column) admissible. Lemma 3.2 implies the following immediately (cf. [16,
Lemma 3.5]).

Lemma 3.3. Let A ∈ MI, J be given. Suppose that A is row admissible and column i-admissible for i ∈ I◦ . If
X̃i A �= 0 (X = E, F ), then

x̃ j1 · · · x̃ jr A �= 0 ⇔ x̃ j1 · · · x̃ jr ( X̃l A) �= 0

for r � 1 and j1, . . . , jr ∈ J◦ , where x = e or f for each jk.

We have a similar statement when A is column admissible and row j-admissible for j ∈ J ◦ .
Suppose that I is finite, say I = [p,q]. For A = (aij) ∈ MI, J , put

A∨ = (
a∨

i j

) ∈ MI, J
(
a∨

i j = 1 − ap+q−i j
)
. (3.3)

Then we have for j ∈ J◦

f̃ j A = (
ẽ j A∨)∨

, ẽ j A = (
f̃ j A∨)∨

. (3.4)

We call A∨ the dual of A (with respect to row).
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3.2. Crystals of semistandard tableaux

Let P denote the set of partitions. We identify a partition λ = (λi)i�1 with a Young diagram as
usual (see [22]). The number of non-zero parts in λ is denoted by �(λ). We denote by λ′ = (λ′

i)i�1 the
conjugate partition of λ. For a skew Young diagram λ/μ, |λ/μ| denotes the number of dots or boxes
in the diagram. Let A be a linearly ordered set. A tableau T obtained by filling λ/μ with entries in
A is called a semistandard tableau of shape λ/μ if the entries in each row are weakly increasing from
left to right, and the entries in each column are strictly increasing from top to bottom. We denote by
SSTA(λ/μ) the set of all semistandard tableaux of shape λ/μ with entries in A. For T ∈ SSTA(λ/μ),
let w(T )col (resp. w(T )row) denote the word of T with respect to column (resp. row) reading, where
we read the entries of T column by column (resp. row by row) from right to left (resp. top to bottom),
and in each column (resp. row) from top to bottom (resp. right to left).

Let A denote one of the crystals B and B∨ , which are linearly ordered with respect to the partial
ordering on P . Note that the set of all finite words with letters in A is a gl∞-crystal, where each
word of length r � 1 is identified with an element in A⊗r = A ⊗ · · · ⊗ A (r times). Given a skew
Young diagram λ/μ, the injective image of SSTA(λ/μ) in the set of finite words under the map
T �→ w(T )col (or w(T )row) together with {0} is invariant under ẽi, f̃ i (i ∈ Z). Hence it is a regular
gl∞-crystal [15]. In particular, for λ ∈ P , we have

SSTB(λ)∨ � SSTB∨
(
λ∨)

,

where λ∨ is the skew Young diagram obtained from λ by 180◦-rotation.
For μ ∈ P , we put

Bμ = SSTB(μ), (3.5)

and we identify B∨
μ with SSTB∨(μ∨). Note that Bμ does not have a highest weight or lowest weight

element.

Proposition 3.4. For μ,ν ∈ P , Bμ ⊗ B∨
ν and B∨

ν ⊗ Bμ are connected.

Proof. First, we claim that Bμ is connected. Suppose that S, T ∈ Bμ are given. Choose p ∈ Z such that
all entries in S and T are greater than p. Then S is an element in SST[p,∞)(μ), which is a connected

gl[p,∞)-crystal with a unique highest weight element, say u[p,∞)
μ (see [15]). This implies that S and T

are contained in the same connected component, and hence Bμ is connected.
Let S ⊗ T ∈ Bμ ⊗ B∨

ν be given. Choose p ∈ Z such that S ∈ SST[p,∞)(μ). Then we have ẽi1 · · · ẽir S =
u[p,∞)

μ for some i1, . . . , ir ∈ [p,∞). By tensor product rule of crystals, we also have

ẽm1
i1

· · · ẽmr
ir

(S ⊗ T ) = u[p,∞)
μ ⊗ T ′

for some m1, . . . ,mr � 1 and T ′ ∈ B∨
ν .

If p is sufficiently small, then we may assume that all the entries in T (and hence in T ′) are
smaller than (p + �(μ))∨ . Choose q such that T ′ ∈ SST(−∞,q]∨ (ν∨). Note that SST(−∞,q]∨ (ν∨) is a

gl(−∞,q]-crystal with a unique highest weight element v(−∞,q]
ν . Hence ẽ j1 · · · ẽ js T ′ = v(−∞,q]

ν for some

j1, . . . , js ∈ (−∞,q − 1]. Since { j1, . . . , js} does not intersect with the entries in u[p,∞)
μ , we have

ẽ j1 · · · ẽ js

(
u[p,∞)

μ ⊗ T ′) = u[p,∞)
μ ⊗ v(−∞,q]

ν .

Now, let U ⊗ V ∈ Bμ ⊗ B∨
ν be given. Then if p is sufficiently small and q is sufficiently large, then

it follows from the same argument that U ⊗ V is also connected to u[p,∞)
μ ⊗ v(−∞,q]

ν . This implies that
Bμ ⊗ B∨

ν is connected.
The proof of the connectedness of B∨

ν ⊗ Bμ is almost identical and is omitted. �
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Remark 3.5. In the proof of Proposition 3.4, we showed that for S ⊗ T ∈ Bμ ⊗ B∨
ν there exist

k1, . . . ,kt ∈ Z such that ẽk1 · · · ẽkt (S ⊗ T ) = u[p,∞)
μ ⊗ v(−∞,q]

ν for some p < q. By applying suitable ẽk ’s,
we may assume that p � 0 � q.

Let E be the subset of M{1},Z consisting of (a1 j) j∈Z such that
∑

j∈Z a1 j < ∞. If we define wt(A) =∑
j∈Z a1 jε j for A = (a1 j) j∈Z ∈ E, then E is a regular gl∞-crystal with respect to ẽk, f̃k (k ∈ Z) and wt

(see Section 3.1 for the definitions of ẽk and f̃k on M{1},Z). For a � 1, define

σa : B(1a) → E (3.6)

by σa(S) = A with wt(S) = wt(A). It is easy to check that σa is a strict embedding and

E �
⊔
a�0

B(1a). (3.7)

Indeed, E is the crystal base of the q-deformed exterior algebra of the natural representation of
Uq(gl∞) [14].

Let E∨ = {A∨ | A ∈ E}, where A∨ denotes the dual matrix of A (see (3.3)). If we define wt(A∨) =∑
j∈Z(a1 j − 1)ε j for A = (a1 j) j∈Z ∈ E, then E∨ is a regular gl∞-crystal with respect to ẽk, f̃k (k ∈ Z)

and wt, which is isomorphic to the dual crystal of E. Similarly, for b � 1 we define

τb : B∨
(1b)

→ E∨ (3.8)

by τb(T ) = A∨ with wt(T ) = wt(A∨). Then τb is a strict embedding. For convenience, we assume that
σ0 is a map sending trivial crystal to zero matrix in M{1},Z , and τ0 is a map sending trivial crystal to
the matrix with 1 at all positions.

Lemma 3.6. For a,b � 0, we have

B(1a) ⊗ B∨
(1b)

� B∨
(1b)

⊗ B(1a).

Proof. Consider u[p,∞)

(1a) ⊗ v(−∞,q]
(1b)

(for simplicity write up
a ⊗ vq

b) for some p � 0 � q. We claim that

up
a ⊗ vq

b ≡ vq
b ⊗ up

a ,

which implies that B(1a) ⊗ B∨
(1b)

� B∨
(1b)

⊗ B(1a) by Proposition 3.4.

Define

σa × τb : B(1a) ⊗ B∨
(1b)

→ E ⊗ E∨,

τb × σa : B∨
(1b)

⊗ B(1a) → E∨ ⊗ E (3.9)

by (σa × τb)(S ⊗ T ) = σa(S) ⊗ τb(T ) and (τb × σa)(T ⊗ S) = τb(T ) ⊗ σa(S) for S ∈ B(1a) and T ∈ B∨
(1b)

.

(Recall that a tensor product of crystals is as a set the Cartesian product of the given crystals. So
we understand σa × τb as the Cartesian product of the maps σa and τb on B(1a) × B∨

(1b)
. Throughout

the paper, a product of crystal morphisms is understood in this manner.) Then σa × τb and τb × σa

are strict embeddings. Here we assume E ⊗ E∨ and E∨ ⊗ E as subsets of M[2],Z , where A1 ⊗ A2 is
identified with a matrix A ∈ M[2],Z whose i-th row is Ai (i = 1,2).
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Let A = (aij) = (σa × τb)(up
a ⊗ vq

b), where a1 j = 1 if and only if p � j � p + a − 1, and a2 j = 0 if
and only if q − b + 1 � j � q, and let B = (bij) = (τb × σa)(vq

b ⊗ up
a ) where bij = a3−i j for all i, j.

Choose r � p and s � q. Let π[r,s] : M[2],Z → M[2],[r,s] be the restriction map sending a matrix
to its [2] × [r, s] submatrix. Then π[r,s](A) is column 1-admissible and Ẽmax

1 π[r,s](A) = π[r,s](B). By
Lemma 3.3, we have

x̃i1 · · · x̃it π[r,s](A) �= 0 ⇔ x̃i1 · · · x̃it π[r,s](B) �= 0,

and hence

x̃i1 · · · x̃it A �= 0 ⇔ x̃i1 · · · x̃it B �= 0

for t � 1 and r � i1, . . . , it � s − 1, where x = e or f for each ik . Since r and s are arbitrary and
wt(A) = wt(B), we have A ≡ B , which implies that up

a ⊗ vq
b ≡ vq

b ⊗ up
a . �

Remark 3.7. More generally, we can check by the same argument as in Lemma 3.6 that for S ⊗ T ∈
B(1a) ⊗ B∨

(1b)
, if wt(S) = ε j1 + · · · + ε ja and wt(T ) = −ε j′1 − · · · − ε j′b with j1 < · · · < ja < j′1 < · · · < j′b ,

then S ⊗ T ≡ T ⊗ S .

For n � 1, let En be the subset of M[n],Z consisting of matrices A such that Ai ∈ E ⊂ M{i},Z for
all i ∈ [n]. Then En is row admissible and can be identified with E⊗n as a gl∞-crystal, where A ∈ En

is identified with A1 ⊗ · · · ⊗ An ∈ E⊗n . Also we may identify the dual crystal (En)∨ with the set
{A∨ | A ∈ En}, where A∨ denotes the dual matrix of A.

Let μ,ν ∈ P be given with �(μ′) = m and �(ν ′) = n. We may regard Bμ ⊂ B
(1μ′

m )
⊗ · · · ⊗ B

(1μ′
1 )

,

where the k-th column of S ∈ Bμ (from the right) is an element in B
(1

μ′
m−k+1 )

. Composing with (3.6),

we have a strict embedding

σμ = σμ′
m

× · · · × σμ′
1
: Bμ → Em. (3.10)

Similarly, we may regard B∨
ν ⊂ B∨

(1ν′
1 )

⊗ · · · ⊗ B∨
(1ν′

n )
, and have a strict embedding

τν = τν ′
1
× · · · × τν ′

n
: B∨

ν → (
En)∨

. (3.11)

Proposition 3.8. For μ,ν ∈ P , we have

Bμ ⊗ B∨
ν � B∨

ν ⊗ Bμ.

Proof. Let �(μ′) = m and �(ν ′) = n. Consider the strict embedding

σμ × τν : Bμ ⊗ B∨
ν → Em ⊗ (

En)∨
.

Here we assume Em ⊗ (En)∨ as a subset of M[m+n],Z , consisting of the matrices whose first m rows
form an element in Em and the other n rows form an element in (En)∨ .

Consider u[p,∞)
μ ⊗ v(−∞,q]

ν (see the proof of Proposition 3.4 for its definition). We assume that p �
0 � q. Let A = (σμ × τν)(u[p,∞)

μ ⊗ v(−∞,q]
ν ) ∈ M[m+n],Z and write A = (A1, . . . , Am, Am+1, . . . , Am+n).

Note that Ai (1 � i � m) corresponds to the i-th column of u[p,∞)
μ and Am+ j (1 � j � n) corresponds

to the j-th column of v(−∞,q]
ν from the right. By Lemma 3.6 (and Remark 3.7), we have
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(A1, . . . , Am−1, Am, Am+1, . . . , Am+n) ≡ (A1, . . . , Am−1, Am+1, Am, . . . , Am+n)

≡ (A1, . . . , Am+1, Am−1, Am, . . . , Am+n)

...

≡ (Am+1, A1, . . . , Am, Am+2, . . . , Am+n).

Note that we can identify each matrix given above with an element in a gl∞-crystal (a mixed tensor
product of E and E∨ ’s), and hence consider gl∞-equivalence between them.

Repeating the above process, we conclude that

(A1, . . . , Am, Am+1, . . . , Am+n) ≡ (Am+1, . . . , Am+n, A1, . . . , Am).

Since the right-hand side of the above equivalence is the image of v(−∞,q]
ν ⊗u[p,∞)

μ under the strict
embedding τν × σμ : B∨

ν ⊗ Bμ → (En)∨ ⊗ Em ⊂ M[m+n],Z , we have

u[p,∞)
μ ⊗ v(−∞,q]

ν ≡ v(−∞,q]
ν ⊗ u[p,∞)

μ .

By Proposition 3.4, it follows that Bμ ⊗ B∨
ν � B∨

ν ⊗ Bμ . �
From now on, we write Bμ,ν = Bμ ⊗ B∨

ν for μ,ν ∈ P .

Proposition 3.9. For μ,ν,σ , τ ∈ P , Bμ,ν � Bσ ,τ if and only if (μ,ν) = (σ , τ ).

Proof. Suppose that S ⊗ T ≡ S ′ ⊗ T ′ for S ⊗ T ∈ Bμ ⊗ B∨
ν and S ′ ⊗ T ′ ∈ Bσ ⊗ B∨

τ . By Remark 3.5, we
may assume that there exist s � 0 and t � 0 such that the entries in S and S ′ are less than s, and
the entries in T and T ′ are less than t∨ . Then it follows that S is gl(−∞,s]-equivalent to S ′ , which
implies that S = S ′ and μ = σ . Similarly, we have T = T ′ and ν = τ . �

We define wt[n](A) = ∑
i∈[n](

∑
j∈Z aij)εi for A ∈ En . Then En (n � 2) is column admissible, and it

is a regular gl[n]-crystal with respect to Ẽ i, F̃ i (i ∈ [n]◦) and wt[n] . By Lemma 3.2, En is a (gl∞,gl[n])-

bicrystal, that is, the operators ẽ j, f̃ j ( j ∈ Z) on En ∪ {0} commute with Ẽ i, F̃ i (i ∈ [n]◦).
For k ∈ [n] and λ ∈ Zn+ , we put

ωk = ε1 + · · · + εk,

ωλ = λ1ε1 + · · · + λnεn. (3.12)

We denote by B[n](±ωλ) the crystal base of the irreducible Uq(gl[n])-module with highest (resp. low-

est) weight vector u[n]
±ωλ

of weight ±ωλ . When λ ∈ P , B[n](ωλ) can be realized as SST[n](λ) [15]. Here

we assume that B[1](±ωλ) = {u[1]
±ωλ

} with wt[1](u[1]
±ωλ

) = ±λε1 for λ ∈ Z1+ = Z.
Note that for A ∈ En (n � 2), the j-th column A j of A ( j ∈ Z) is gl[n]-equivalent to an element in

the trivial crystal B[n](0) or B[n](ωk) for some k ∈ [n], and it is non-trivial for only finitely many j’s.

Proposition 3.10. As a (gl∞,gl[n])-bicrystal, we have

En �
⊔

μ∈P
μ1�n

Bμ × B[n](ωμ′).
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Proof. We may assume that n � 2. Let μ ∈ P be given with μ1 � n. Let Aμ = σμ(u[1,∞)
μ ) (see (3.10)).

Recall that Aμ = (aij) is of the form;

aij =
{

1 if 1 � j � μ′
n−i+1,

0 otherwise.

Then it is straightforward to see that Aμ is gl[n]-equivalent to the lowest weight vector in B[n](ωμ′ ),

that is, S w[n] u
[n]
ωμ′ , where w[n] is the longest element in the Weyl group of gl[n] . This implies that

C(Aμ) the connected component in En including Aμ is isomorphic to Bμ × B[n](ωμ′ ) as a (gl∞,gl[n])-
bicrystal. Note that for μ,ν ∈ P , C(Aμ) = C(Aν) if and only if μ = ν .

Suppose that B ∈ En is given. Choose an interval [p,q] in Z such that all non-zero entries of B
are placed in its [n] × [p,q] submatrix. Since M[n],[p,q] is a (gl[n],gl[p,q])-bicrystal, B is connected to
B ′ = (b′

i j), which is of the following form;

b′
i j =

{
1 if p � j � μ′

n−i+1 + p − 1,

0 otherwise,

for some μ ∈ P with μ1 � n (see [16, Theorem 4.5]). Now, we have S w B ′ = Aμ for w ∈ W such that

w(wt(B ′)) = wt(Aμ), where S w is defined with respect to ẽk and f̃k (k ∈ Z). Hence C(B ′) = C(Aμ).
This completes the proof. �

Considering the dual crystal of En , we have

(
En)∨ �

⊔
μ∈P
μ1�n

B∨
μ × B[n](−ωμ′). (3.13)

3.3. Highest weight crystals

Let F be the subset of M{1},Z consisting of (a1 j) j∈Z such that a1 j = 1 for j � 0 and a1 j = 0 for
j � 0. For A = (a1 j) j∈Z ∈ F, define

wt(A) = Λ0 +
∑
j>0

a1 jε j +
∑
j�0

(a1 j − 1)ε j . (3.14)

Then F is a regular gl∞-crystal with respect to ẽk, f̃k (k ∈ Z) and wt, and there exists a strict embed-
ding

ιi : B(Λi) → F (3.15)

for i ∈ Z, where the highest weight vector uΛi of B(Λi) is mapped to the unique element of
weight Λi , that is, ιi(uΛi ) = (a1 j) j∈Z with a1 j = 1 for j � i and a1 j = 0 otherwise. Then, we have

F �
⊔
i∈Z

B(Λi). (3.16)

Recall that F is the crystal base of the q-deformed Fock space representation, which can be realized
as the space of semi-infinite wedge vectors [23,28].

For n � 1, let Fn be the set of matrices A in M[n],Z such that Ai ∈ F ⊂ M{i},Z for i ∈ [n]. Then Fn

is row admissible and can be identified with F⊗n as a gl∞-crystal, where A ∈ Fn is identified with
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A1 ⊗ · · · ⊗ An ∈ F⊗n . Also for λ ∈ Zn+ , we may regard B(Λλ) ⊂ B(Λλn ) ⊗ · · · ⊗ B(Λλ1 ) by identifying
uΛλ with uΛλn

⊗ · · · ⊗ uΛλ1
. Composing with (3.15), we have a strict embedding

ιλ = ιλn × · · · × ιλ1 : B(Λλ) → Fn. (3.17)

Taking dual crystals in (3.15) and (3.17), we also have embeddings ι∨i and ι∨λ , respectively.
On the other hand, define

wt[n](A) =
∑
i∈[n]

( ∑
j>0

aij

)
εi +

∑
i∈[n]

( ∑
j�0

(aij − 1)

)
εi, (3.18)

for A ∈ Fn . Then Fn (n � 2) is column admissible and it is a regular gl[n]-crystal with respect to Ẽ i, F̃ i

(i ∈ [n]◦) and wt[n] . Hence, Fn is a (gl∞,gl[n])-bicrystal by Lemma 3.2.
As in the case of En , for A ∈ Fn (n � 2), the j-th column A j of A ( j ∈ Z) is gl[n]-equivalent

to an element in B[n](0) or B[n](±ωk) for some 1 � k � n, and it is non-trivial for only finitely
many j’s.

The following theorem is a crystal version of the (gl∞,gl[n])-duality on the level n fermionic Fock
space [5].

Proposition 3.11. (Cf. [19].) As a (gl∞,gl[n])-bicrystal, we have

Fn �
⊔

λ∈Zn+

B(Λλ) × B[n](ωλ).

If we consider (Fn)∨ , then we obtain

(
Fn)∨ �

⊔
λ∈Zn+

B(−Λλ) × B[n](−ωλ).

As in the case of (En)∨ , we may view (Fn)∨ = {A∨ | A ∈ Fn}.

3.4. Littlewood–Richardson coefficients

Let us recall some basic notions in symmetric functions [22]. Let x = {x1, x2, x3, . . .} be the set
of formal commuting variables. Let Sym be the ring of symmetric functions in x. For k � 1, denote
by ek(x), hk(x) and pk(x) the k-th elementary, complete and power sum symmetric functions in x,
respectively. It is well known that {ek(x) | k � 1} and {hk(x) | k � 1} are algebraically independent over
Z in Sym and {pk(x) | k � 1} is algebraically independent over Q in SymQ = Q ⊗Z Sym. For λ ∈ P ,
let sλ(x) be the Schur function in x corresponding to λ. The Littlewood–Richardson coefficients cλ

μν for
λ,μ,ν ∈ P are defined by

sμ(x)sν(x) =
∑
λ

cλ
μν sλ(x). (3.19)

For n � 1, let x[n] = {x1, . . . , xn}. For λ ∈ P with �(λ) � n, let sλ(x[n]) be the corresponding
Schur polynomial in x[n] . Put ch B[n](ωλ) = ∑

T ∈B[n](ωλ) xT[n] , where xT[n] = ∏
i xmi

i for T ∈ B[n](ωλ) with
wt[n](T ) = ∑

i miεi . Then we have ch B[n](ωλ) = sλ(x[n]).
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Proposition 3.12. For μ,ν ∈ P , we have

Bμ ⊗ Bν �
⊔

λ∈P

B
⊕cλ

μν

λ .

Proof. Let m,n be positive integers. Put [n] + m = {m + 1, . . . ,m + n}. Then gl[m] ⊕ gl[n]+m is a subal-
gebra of gl[m+n] . By Proposition 3.10, we have

Em ⊗ En �
⊔

μ,ν∈P
μ1�m, ν1�n

(Bμ ⊗ Bν) × (
B[m](ωμ′) × B[n]+m(ων ′)

)
, (3.20)

as a (gl∞,gl[m] ⊕ gl[n]+m)-bicrystal. On the other hand, we have

Em+n �
⊔

λ∈P
λ1�m+n

Bλ × B[m+n](ωλ′), (3.21)

as a (gl∞,gl[m+n])-bicrystal. Since sλ′ (x[m+n]) = ∑
μ′ν ′ cλ′

μ′ν ′ sμ′ (x[m])sν ′(x[n]+m) and cλ′
μ′ν ′ = cλ

μν , we
have as a gl[m] ⊕ gl[n]+m-crystal,

B[m+n](ωλ′) �
⊔
μ′,ν ′

B[m](ωμ′) × B[n]+m(ων ′)⊕cλ
μν .

Since Em+n � Em ⊗ En as a (gl∞,gl[m] ⊕ gl[n]+m)-bicrystal, we obtain the required decomposition of
Bμ ⊗ Bν by comparing (3.20) and (3.21). �

Let m,n � 1 be given. Recall that for μ ∈ Zm+ , ch B[m](ωμ) = sμ(x[m]) = (x1 · · · xm)−p sμ+(pm)(x[m])
is the Laurent Schur polynomial corresponding to μ, where p is a non-negative integer such that
μ + (pm) ∈ P .

For λ ∈ Zm+n+ , μ ∈ Zm+ and ν ∈ Zn+ , we define

cλ
μν = cλ+(pm+n)

μ+(pm)ν+(pn), (3.22)

where p is a non-negative integer such that λ + (pm+n),μ + (pm), ν + (pn) ∈ P . Note that

sλ(x[m+n]) =
∑
μ,ν

cλ
μν sμ(x[m])sν(x[n]+m) (3.23)

and cλ
μν does not depend on p. Also, for λ,μ,ν ∈ Zm+ , we define cλ

μν to be the coefficient of sλ(x[m])
in sμ(x[m])sν(x[m]).

Proposition 3.13. For μ ∈ Zm+ , ν ∈ Zn+ , we have

B(Λμ) ⊗ B(Λν) �
⊔

λ∈Zm+n+

B(Λλ)
⊕cλ

μν .

Proof. The proof is almost the same as that of Proposition 3.12. Here we compare the
(gl∞,gl[m] ⊕ gl[n]+m)-bicrystal decompositions of Fm ⊗ Fn and Fm+n . �
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Remark 3.14. Note that there are infinitely many connected components in B(Λμ) ⊗ B(Λν), but the
multiplicity of each connected component is finite.

3.5. Tensor product

Let us end this section with introducing another family of regular connected gl∞-crystals.

Proposition 3.15. For μ,ν ∈ P and Λ ∈ P+ , Bμ,ν ⊗ B(Λ) is connected.

Proof. Suppose that S ⊗ T ⊗ U ∈ Bμ,ν ⊗ B(Λ) is given. By Remark 3.5, there exist i1, . . . , ir ∈ Z such

that ẽi1 · · · ẽir (S ⊗ T ) = u[p,∞)
μ ⊗ v(−∞,q]

ν for some p < q. By tensor product rule of crystals, we have

ẽm1
i1

· · · ẽmr
ir

(S ⊗ T ⊗ U ) = u[p,∞)
μ ⊗ v(−∞,q]

ν ⊗ U ′

for some m1, . . . ,mr � 1 and U ′ ∈ B(Λ). We may assume that p � 0 and q � 0 so that ẽ j1 · · · ẽ js U ′ =
uΛ for some j1, . . . , js ∈ [p + �(μ) + 1,q − �(ν) − 1]. Since x̃ jt (u[p,∞)

μ ⊗ v(−∞,q]
ν ) = 0 for 1 � t � s and

x = e, f , we get

ẽ j1 · · · ẽ js

(
u[p,∞)

μ ⊗ v(−∞,q]
ν ⊗ U ′) = u[p,∞)

μ ⊗ v(−∞,q]
ν ⊗ uΛ.

Since p (resp. q) can be arbitrarily small (resp. large), we conclude that Bμ,ν ⊗ B(Λ) is connected. �
Proposition 3.16. For μ,ν,σ , τ ∈ P and Λ,Λ′ ∈ P+ , Bμ,ν ⊗ B(Λ) � Bσ ,τ ⊗ B(Λ′) if and only if
(μ,ν,Λ) = (σ , τ ,Λ′).

Proof. Suppose that Bμ,ν ⊗ B(Λ) � Bσ ,τ ⊗ B(Λ′). Let S ⊗ T ⊗ U ∈ Bμ,ν ⊗ B(Λ) be equivalent to
S ′ ⊗ T ′ ⊗ U ′ ∈ Bσ ,τ ⊗ B(Λ′). Applying suitable ẽk ’s, we assume that there exist s � 0 and t � 0
such that the entries in S and S ′ are less than s, and the entries in T and T ′ are less than t∨ (see Re-
mark 3.5 and the proof of Proposition 3.15). We may further assume that x̃kU = x̃kU ′ = 0 for k /∈ [s, t].
By similar arguments as in Proposition 3.9, we have S = S ′ and T = T ′ . Also U is gl[s,t]-equivalent
to U ′ , which implies that U = U ′ . �
4. Realization of extremal weight crystals

4.1. Extremal weight crystals for gl∞

Let us briefly recall the crystal bases of the modified quantized enveloping algebra of gl∞ and an
extremal weight module over Uq(gl∞) (see [11,13] for more details). Let Ũq(gl∞) = ⊕

Λ∈P Uq(gl∞)aΛ

be the modified quantized enveloping algebra of gl∞ and let

B
(
Ũq(gl∞)

) =
⊔
Λ∈P

B
(
Uq(gl∞)aΛ

)
(4.1)

be its crystal base. It is known that B(Ũq(gl∞)) is regular, and

B
(
Uq(gl∞)aΛ

) � B(∞) ⊗ TΛ ⊗ B(−∞) (4.2)

for Λ ∈ P , where B(∞) (resp. B(−∞)) is the crystal base of the negative (resp. positive) part of
Uq(gl∞), and TΛ = {tΛ} is a gl∞-crystal with wt(tΛ) = Λ and εi(tΛ) = ϕi(tΛ) = −∞ (i ∈ Z).

An element b of a regular gl∞-crystal B with wt(b) = Λ is called extremal if {S wb | w ∈ W } satis-
fies the following conditions; (1) ẽi S wb = 0 if 〈w(Λ),hi〉 � 0, (2) f̃ i S w(b) = 0 if 〈w(Λ),hi〉 � 0.
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For Λ ∈ P , let

B(Λ) = {
b ∈ B

(
Uq(gl∞)aΛ

) ∣∣ b∗ is extremal
}
, (4.3)

where ∗ is the star involution on B(Ũq(gl∞)). Then B(Λ) is the crystal base of the Uq(gl∞)-module
generated by an extremal weight vector uΛ of weight Λ, which is called an extremal weight module.
Note that (1) B(Λ) � B(wΛ) for w ∈ W , and (2) if Λ ∈ P+ , then B(Λ) � B(Λλ) for some λ ∈ Zn+ .
From now on, we call B(Λ) simply an extremal weight crystal.

Proposition 4.1. For Λ ∈ P , B(Λ) is connected.

Proof. We regard B(Λ) as a subcrystal of B(∞) ⊗ TΛ ⊗ B(−∞) and identify uΛ ∈ B(Λ)

with u∞ ⊗ tΛ ⊗ u−∞ , where u±∞ is the highest (resp. lowest) weight element in B(±∞). Let
b ∈ B(Λ) be given. We may assume that b is extremal since any element in B(Λ) is connected to
an extremal one. By the same argument as in [13, Theorem 5.1], b is connected to b1 ⊗ tΛ ⊗ u−∞ ,
where 〈wt(b1),hi〉 � 0 for all i ∈ Z. Since wt(b1) = ∑

i∈Z miαi = ∑
i∈Z mi(εi − εi+1) with mi ∈ Z�0

and P+
0 = {0}, we have mi = 0 for all i ∈ Z and b1 = u∞ . Therefore, B(Λ) is connected. �

Corollary 4.2. For Λ ∈ P , B(Λ) is isomorphic to the connected component in B(Λ+) ⊗ B(−Λ−) including
uΛ+ ⊗ u−Λ− .

Proof. Recall that there is a strict embedding of regular crystals

B(Λ+) ⊗ B(−Λ−) → B(∞) ⊗ TΛ ⊗ B(−∞)

sending uΛ+ ⊗ u−Λ− to u∞ ⊗ tΛ ⊗ u−∞ . Since B(Λ) � C(u∞ ⊗ tΛ ⊗ u−∞) by Proposition 4.1, we have
B(Λ) � C(uΛ+ ⊗ u−Λ− ) ⊂ B(Λ+) ⊗ B(−Λ−). �
4.2. Realization of extremal weight crystals

Lemma 4.3. For i, j ∈ Z (i � j), we have

B(Λi) ⊗ B(−Λ j) �
⊔
a�0

B(1a),(1a+ j−i),

B(Λ j) ⊗ B(−Λi) �
⊔
a�0

B(1a+ j−i),(1a).

Proof. Let us prove the first isomorphism. The second one is obtained by considering the dual crystals
of both sides in the first isomorphism.

Suppose that S ⊗ T ∈ B(Λi) ⊗ B(−Λ j) is given. Applying suitable ẽk ’s, we assume that S = uΛi .
Then applying f̃k ’s (k �= i), uΛi ⊗ T is connected to uΛi ⊗ T ′ such that f̃k(uΛi ⊗ T ′) = 0 for all
k �= i.

Let A be the image of uΛi ⊗ T ′ under the strict embedding ιi × ι∨j : B(Λi) ⊗ B(−Λ j) → F ⊗ F∨ ⊂
M[2],Z (cf. (3.9)). Then there exists a � 0 such that{

a1k = 1 if and only if k � i,

a2k = 1 if and only if i − a + 1 � k � i or j + a + 1 � k.

Let B ∈ E ⊗ E∨ ⊂ M[2],Z be such that
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{
b1k = 1 if and only if i − a + 1 � k � i,

b2k = 0 if and only if i + 1 � k � j + a.

Note that C(B) � B(1a),(1a+ j−i) . For p,q ∈ Z (p < q), let π[p,q] : M[2],Z → M[2],[p,q] be the map sending
a matrix to its [2] × [p,q] submatrix. Assume that p � 0 � q. Then π[p,q](A) is column admissible
and F̃ max

1 π[p,q](A) = π[p,q](B). By Lemma 3.3, we have

x̃i1 · · · x̃ir π[p,q](A) �= 0 ⇔ x̃i1 · · · x̃ir π[p,q](B) �= 0,

and hence

x̃i1 · · · x̃ir A �= 0 ⇔ x̃i1 · · · x̃ir B �= 0

for r � 1 and p � i1, . . . , ir � q − 1, where x = e or f for each ik . Since p and q are arbitrary and
wt(A) = wt(B), we have A ≡ B or uΛi ⊗ T ′ ≡ B , which implies that C(uΛi ⊗ T ′) � B(1a),(1a+ j−i) .

Conversely, for each a � 0, let B be the matrix in E ⊗ E∨ which is of the above form. Then there
exists a unique T ∈ B(−Λ j) such that uΛi ⊗ T ≡ B since the construction of B is reversible. This
completes the proof. �
Lemma 4.4. For i ∈ Z and k � 0, we have

B(Λi) ⊗ B(1k) �
k⊔

a=0

B(1a) ⊗ B(Λi+k−a),

B(Λi) ⊗ B∨
(1k)

�
k⊔

a=0

B∨
(1a) ⊗ B(Λi−k+a).

Proof. The proof is similar to that of Lemma 4.3. Let us prove the first isomorphism. Suppose that
S ⊗ T ∈ B(Λi) ⊗ B(1k) is given. Applying ẽk ’s, we assume that S = uΛi .

Let A be the image of uΛi ⊗ T under the strict embedding ιi ×σk : B(Λi)⊗ B(1k) → F ⊗E ⊂ M[2],Z .
Applying suitable x̃s ’s for s �= i and x = e, f , we may assume that a2 j = 1 if and only if i − a + 1 � j �
i − a + k for some a � 0. Let B ∈ E ⊗ F ⊂ M[2],Z be such that

{
b1 j = 1 if and only if i − a + 1 � j � i,

b2 j = 1 if and only if j � i − a + k.

Note that C(B) � B(1a) ⊗ B(Λi−a+k). Choose p � 0 � q. Then π[p,q](A) is column admissible and
F̃ max

1 π[p,q](A) = π[p,q](B). By Lemma 3.3, we have

x̃i1 · · · x̃ir π[p,q](A) �= 0 ⇔ x̃i1 · · · x̃ir π[p,q](B) �= 0,

and hence

x̃i1 · · · x̃ir A �= 0 ⇔ x̃i1 · · · x̃ir B �= 0

for r � 1 and p � i1, . . . , ir � q − 1, where x = e or f for each is . Since p and q are arbitrary
and wt(A) = wt(B), we have A ≡ B or uΛi ⊗ T ≡ B , which implies that C(uΛi ⊗ T ) � B(1a) ⊗
B(Λi−a+k).
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Conversely, for a � 0, let B be the matrix in E ⊗ F which is of the above form. Then we can find a
unique T ∈ B(1k) such that uΛi ⊗ T ≡ B since the construction of B is reversible. This establishes the
first isomorphism.

The second isomorphism can be proved by modifying the above argument. �
Proposition 4.5. For m � n � 0, a connected component in Fm ⊗ (Fn)∨ is isomorphic to Bμ,ν ⊗ B(Λ) for
some μ,ν ∈ P and Λ ∈ P+

m−n.

Proof. We claim that each A ∈ Fm ⊗ (Fn)∨ is equivalent to an element in En ⊗ (En)∨ ⊗ Fm−n . Then
it follows from Propositions 3.10, 3.11 and 3.15 that C(A) � Bμ,ν ⊗ B(Λ) for some μ,ν ∈ P and
Λ ∈ P+

m−n .
We use induction on m + n. Suppose that m + n = 2. If m = n = 1, then it is clear by Lemma 4.3.

If m = 2 and n = 0, then it follows from Proposition 3.11. Suppose that m + n � 3. Let A = A1 ⊗
· · · ⊗ Am+n ∈ Fm ⊗ (Fn)∨ be given, where Ai ∈ F and Am+ j ∈ F∨ for i ∈ [m] and j ∈ [n]. Consider
Am ⊗ Am+1 ∈ F ⊗ F∨ . By (3.16) and Lemma 4.3, Am ⊗ Am+1 is equivalent to some A′

m ⊗ A′
m+1 ∈

E ⊗ E∨ . Applying Lemma 4.4 to A1 ⊗ · · · ⊗ Am−1 and A′
m ⊗ A′

m+1 repeatedly, we can say that A

is equivalent to some B = B1 ⊗ · · · ⊗ Bm+n in E ⊗ E∨ ⊗ Fm−1 ⊗ (Fn−1)∨ . By induction hypothesis,
B3 ⊗· · ·⊗ Bm+n is equivalent to some B ′

3 ⊗· · ·⊗ B ′
m+n in En−1 ⊗(En−1)∨⊗Fm−n . Finally, by Lemma 3.6,

B1 ⊗ B2 ⊗ B ′
3 ⊗· · ·⊗ B ′

2n ∈ E⊗E∨ ⊗En−1 ⊗(En−1)∨ is equivalent to an element in En ⊗(En)∨ . Therefore
A is equivalent to an element in En ⊗ (En)∨ ⊗ Fm−n . This completes the induction. �
Theorem 4.6. For Λ ∈ P� (� ∈ Z), there exist unique μ,ν ∈ P and Λ′ ∈ P+

|�| such that

B(Λ) �
{

Bμ,ν ⊗ B(Λ′) if � � 0,

B(−Λ′) ⊗ Bμ,ν if � � 0.

Proof. The first isomorphism follows immediately from Proposition 3.11, Corollary 4.2 and Proposi-
tion 4.5. If � � 0, then B(Λ) is embedded into Fm ⊗ (Fn)∨ for some m,n with m −n = �. Since B(Λ)∨
is embedded into Fn ⊗ (Fm)∨ , it is isomorphic to Bμ,ν ⊗ B(Λ′) for some Λ′ ∈ P+

|�| and μ,ν ∈ P .
Hence, B(Λ) � B(−Λ′) ⊗ Bν,μ . The uniqueness follows from Proposition 3.16. �
Corollary 4.7. For Λ ∈ P0 , there exist unique μ,ν ∈ P such that B(Λ) � Bμ,ν .

Remark 4.8. Combining with a tableaux description of B(Λ) (Λ ∈ P+) (see for example [20]), we
obtain a combinatorial realization of an extremal weight crystal.

4.3. Pieri rules of extremal weight crystals

We have the following generalization of Lemma 4.4.

Proposition 4.9. For λ ∈ Zn+ and k � 1, we have

B(Λλ) ⊗ B(1k) �
k⊔

a=0

⊔
μ∈Zn+

(μ−(λn
n))/(λ−(λn

n)):
a horizontal strip of length k−a

B(1a) ⊗ B(Λμ),

B(Λλ) ⊗ B∨
(1k)

�
k⊔

a=0

⊔
ν∈Zn+

(λ−(νn
n ))/(ν−(νn

n )):
a horizontal strip of length k−a

B∨
(1a) ⊗ B(Λν).
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Proof. First, consider B(Λλ) ⊗ B(1k) . Given S ⊗ T ∈ B(Λλ) ⊗ B(1k) , let A be the image of S ⊗ T under
the strict embedding ιλ ×σk : B(Λλ)⊗ B(1k) → Fn ⊗E ⊂ M[n+1],Z . By applying suitable x̃s ’s for x = e, f
and s ∈ Z, we may assume that A is of the following form;

(1) for i ∈ [n], aij = 1 if and only if j � λn−i+1, that is, S = uΛλ ,
(2) an+1 j = 0 for j � λn − k,
(3)

∑
i∈[n+1] aij �

∑
i∈[n+1] aij+1 for j ∈ [λn − k + 1,∞).

Let a = ∑λn
j=λn−k+1 an+1 j and let μ ∈ Zn+ be given by

μi =

⎧⎪⎨⎪⎩
λ1 + ∑

j>λ1
an+1 j if i = 1,

λi + ∑λi−1
j=λi+1 an+1 j if 2 � i � n and λi < λi−1,

λi if 2 � i � n and λi = λi−1.

Note that μ is a well-defined generalized partition by (1) and (3), and (μ − (λn
n))/(λ − (λn

n)) is a
horizontal strip of length k − a. We denote the matrix of the above form by Aa,μ . Let Ba,μ be the

image of u[λn−k+1,∞)
(1a) ⊗ uΛμ under the strict embedding σa × ιμ : B(1a) ⊗ B(Λμ) → E ⊗ Fn ⊂ M[n+1],Z .

Choose p � 0 � q. Then π[p,q](Aa,μ) is column admissible and

F̃ max
1 · · · F̃ max

n π[p,q](Aa,μ) = π[p,q](Ba,μ).

By the same arguments as in Lemmas 4.3 and 4.4, we have Aa,μ ≡ Ba,μ , which implies that
C(S ⊗ T ) � C(Aa,μ) � C(Ba,μ) � B(1a) ⊗ B(Λμ). Conversely, suppose that 0 � a � k and μ ∈ Zn+ are
given where (μ − (λn

n))/(λ − (λn
n)) is a horizontal strip of length k − a. Let Ba,μ be as above. Then we

can check that there exists a unique T ∈ B(1k) such that uΛλ ⊗ T ≡ Ba,μ since the construction of Ba,μ

is reversible. This proves the first isomorphism.
Next, consider B(Λλ) ⊗ B∨

(1k)
. Let ι∗λ : B(Λλ) → Fn be the strict embedding which sends uΛλ to

uΛλ1
⊗ · · · ⊗ uΛλn

(cf. (3.17)). Given S ⊗ T ∈ B(Λλ) ⊗ B∨
(1k)

, let A be the image of S ⊗ T under the

strict embedding ι∗λ × τk : B(Λλ) ⊗ B∨
(1k)

→ Fn ⊗ E∨ ⊂ M[n+1],Z . By applying suitable x̃s ’s for x = e, f

and s ∈ Z, we may assume that A is of the following form;

(1∗) for i ∈ [n], aij = 1 if and only if j � λi , that is, S = uΛλ ,
(2∗) an+1 j = 1 for j � λ1 + k + 1,
(3∗)

∑
i∈[n+1] aij �

∑
i∈[n+1] aij−1 for j ∈ (−∞, λ1 + k].

Let a = ∑λ1+k
j=λ1+1(1 − an+1 j) and let ν ∈ Zn+ be given by

νi =

⎧⎪⎨⎪⎩
λi − ∑λi

j=λi+1+1(1 − an+1 j) if 1 � i � n − 1 and λi+1 < λi,

λi if 1 � i � n − 1 and λi+1 = λi,

λn − ∑
j�λn

(1 − an+1 j) if i = n.

Note that ν is a well-defined generalized partition by (1∗) and (3∗), and (λ − (νn
n ))/(ν − (νn

n )) is a
horizontal strip of length k − a. We denote the matrix of the above form by A∗

a,ν . Let B∗
a,ν be the

image of v(−∞,λ1+k]
(1a) ⊗ uΛν under the strict embedding τa × ι∗ν : B∨

(1a) ⊗ B(Λν) → E ⊗ Fn ⊂ M[n+1],Z .
Choose p � 0 � q. Then π[p,q](A∗

a,ν ) is column admissible and

Ẽmax
1 · · · Ẽmax

n π[p,q]
(

A∗
a,ν

) = π[p,q]
(

B∗
a,ν

)
.
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As in Lemmas 4.3 and 4.4, we have A∗
a,ν ≡ B∗

a,ν , which implies that C(S ⊗ T ) � C(A∗
a,ν ) � C(B∗

a,ν ) �
B∨

(1a)
⊗ B(Λν). Conversely, suppose that 0 � a � k and ν ∈ Zn+ are given where (λ − (νn

n ))/(ν − (νn
n ))

is a horizontal strip of length k − a. Let B∗
a,ν be as above. Then there exists a unique T ∈ B∨

(1k)
such

that uΛλ ⊗ T ≡ B∗
a,ν since the construction of B∗

a,ν is also reversible. This proves the second isomor-
phism. �
Corollary 4.10. Let λ ∈ Zn+ and μ ∈ P be given. Then

(1) B(Λλ)⊗Bμ is a finite disjoint union of Bν ⊗B(Λη)’s for some ν ∈ P and η ∈ Zn+ such that |ν| = a � |μ|
and (η − (λn

n))/(λ − (λn
n)) is a skew Young diagram of size |μ| − a,

(2) B(Λλ)⊗B∨
μ is a finite disjoint union of B∨

ν ⊗B(Λη)’s for some ν ∈ P and η ∈ Zn+ such that |ν| = a � |μ|
and (λ − (ηn

n))/(η − (ηn
n)) is a skew Young diagram of size |μ| − a.

Proof. It follows immediately from Proposition 3.10 and Proposition 4.9. �
5. Tensor product of extremal weight crystals

5.1. A monoidal category of gl∞-crystals

Let C be the category of gl∞-crystals, where each object B in C satisfies the following conditions;

(C1) there exists a finite subset S ⊂ P ×P such that each connected component in B is isomorphic
to Bμ,ν or Bμ,ν ⊗ B(Λλ) for some (μ,ν) ∈ S and λ ∈ Zn+ ,

(C2) for each Λ ∈ Pn (n � 0), the number of connected components in B isomorphic to B(Λ) is finite,

and a morphism is a crystal morphism.

Theorem 5.1. C is a monoidal category under tensor product of crystals.

Proof. It is enough to show that B ⊗ B ′ ∈ C for B, B ′ in C since the map sending (b1 ⊗ b2) ⊗ b3 to
b1 ⊗ (b2 ⊗ b3) is an isomorphism of crystals for Bi ∈ C and bi ∈ Bi (i = 1,2,3). By (C1), it suffices to
prove the case when

B =
⊔

m�1

⊔
λ∈Zm+

Bμ,ν ⊗ B(Λλ)
⊕cλμν = Bμ,ν ⊗

( ⊔
m�1

⊔
λ∈Zm+

B(Λλ)
⊕cλμν

)
,

B ′ =
⊔
n�1

⊔
η∈Zn+

Bσ ,τ ⊗ B(Λη)⊕cηστ = Bσ ,τ ⊗
( ⊔

n�1

⊔
η∈Zn+

B(Λη)⊕cηστ

)

for μ,ν,σ , τ ∈ P and cλμν, cηστ ∈ Z�0.

Step 1. Suppose that μ,ν,σ , τ = ∅. Then for ζ ∈ Zl+ , the multiplicity of B(Λζ ) in B ⊗ B ′ is equal to∑
λ,η cλ∅∅cη∅∅cζ

λη by Proposition 3.13. Since there are only finitely many λ ∈ Zm+ and η ∈ Zn+ such that

m + n = l and cζ
λη �= 0 (see (3.23)), it is a well-defined integer.

Step 2. Let B ′′ = (
⊔

m�1
⊔

λ∈Zm+ B(Λλ)
⊕cλμν ) ⊗ Bσ ,τ . By Proposition 3.8 and Corollary 4.10, we have

B ′′ �
⊔

(α,β)∈S

Bα,β ⊗
( ⊔

m�1

⊔
γ ∈Zm

B(Λγ )⊕dγ αβ

)

+
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for some finite subset S of P × P and dγαβ ∈ Z�0. This implies that B ′′ ∈ C. By Step 1, we have
B ′′′ = B ′′ ⊗ (

⊔
n�1

⊔
η∈Zn+ B(Λη)⊕cηστ ) ∈ C. Finally, by Proposition 3.12, B ⊗ B ′ = Bμ,ν ⊗ B ′′′ ∈ C. �

Remark 5.2.

(1) A connected component of the tensor product B(Λ) ⊗ B(Λ′) with Λ ∈ P−m and Λ′ ∈ Pn for
m,n > 0 is not necessarily isomorphic to an extremal weight crystal. For example, consider
B = B(−Λ0) ⊗ B(Λ0). We can check that any element in B is connected to u−Λ0 ⊗ uΛ0 , and
hence B is connected. Suppose that B is isomorphic to an extremal weight crystal. By Corol-
lary 4.7, B � Bμ,ν for some μ,ν ∈ P . By Remark 3.5, for given S ⊗ T ∈ Bμ,ν and p,q ∈ Z (p < q),
there exist i1, . . . , ir ∈ Z such that x̃k(ẽi1 · · · ẽir (S ⊗ T )) = 0 for x = e, f and k ∈ [p,q]. Suppose
that S ⊗ T is equivalent to u−Λ0 ⊗ uΛ0 . Then we have

ẽi1 · · · ẽir (u−Λ0 ⊗ uΛ0) = (ẽi1 · · · ẽir u−Λ0) ⊗ uΛ0 .

On the other hand, we have

f̃0
(
ẽi1 · · · ẽir (u−Λ0 ⊗ uΛ0)

) =
{

(ẽi1 · · · ẽir u−Λ0) ⊗ f̃0uΛ0 if ϕ0(ẽi1 · · · ẽir u−Λ0) = 0,

( f̃0ẽi1 · · · ẽir u−Λ0) ⊗ uΛ0 otherwise,

which is not 0 in any case. This is a contradiction. Hence B is not isomorphic to an extremal
weight crystal. In general, for Λ,Λ′ ∈ P+ , we can check by similar arguments that B(−Λ)⊗B(Λ′)
is a connected regular crystal but not isomorphic to an extremal weight crystal.

(2) When we consider a tensor product of arbitrary extremal weight crystals, the multiplicity of
each connected component is not necessarily finite. For example, the multiplicity of B(Λ0) in
B(Λ0) ⊗ B(Λ0) ⊗ B(−Λ0) is infinite.

5.2. Grothendieck ring

Let K be the additive abelian group generated by the symbol [B] (B ∈ C) subject to the relations;
[B] = [B ′] if B � B ′ and [B � B ′] = [B] + [B ′] for B, B ′ ∈ C.

Proposition 5.3. K is an associative Z-algebra with 1 = [B(0)] under the multiplication [B] · [B ′] = [B ⊗ B ′]
for B, B ′ ∈ C.

Let Cn , Ch.w. and Ch.w.
n (n � 0) be the full subcategories of C consisting of objects whose connected

components are isomorphic to B(Λ) for Λ in Pn , P+ and P+
n , respectively. We denote by Kn , K h.w.

and K h.w.
n the corresponding subgroups of K , respectively. Note that K0 is a subalgebra of K . By

Proposition 3.16, [B] = [B ′] if and only if the multiplicities of each Bμ,ν ⊗B(Λλ) in B and B ′ are equal
for B, B ′ ∈ C. Hence, as Z-modules, we have

Kn � K0 ⊗Z K h.w.
n ,

K � K0 ⊗Z K h.w., (5.1)

and Kn , K are free K0-modules.
Let C∨ be the category of gl∞-crystals with objects B∨ for B ∈ C, and let C−n , Cl.w. and Cl.w.−n

(n � 0) be its subcategories whose objects are B∨ for B in Cn , Ch.w. and Ch.w.
n , respectively. We

denote by K ∨ , K−n , K l.w. and K l.w.−n the corresponding groups, respectively. Then K ∨ is a Z-
algebra under tensor product of crystals and isomorphic to K opp, the opposite Z-algebra of K . We
have K−n � K l.w.−n ⊗Z K0 and K ∨ � K l.w. ⊗Z K0 as Z-modules.
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We denote by Symx and Symy the ring of symmetric functions in x and y, respectively, where
x = {x1, x2, . . .} and y = {y1, y2, . . .} are two sets of formal commuting variables. Let Symx ⊗Z Symy
be the tensor product of Z-algebras with Z-basis {sμ(x)sν(y) | μ,ν ∈ P}.

Proposition 5.4. The assignment sμ(x)sν(y) �→ [Bμ,ν ] (μ,ν ∈ P) defines an isomorphism of Z-algebras
Φ : Symx ⊗Z Symy → K0.

Proof. Note that {[Bμ,ν ] | μ,ν ∈ P} is a Z-basis of K0 by Proposition 3.9 and Corollary 4.7. Let
Φ : Symx ⊗Z Symy → K0 be a linear isomorphism sending sμ(x)sν(y) to [Bμ,ν ] (μ,ν ∈ P). It follows
immediately from Propositions 3.8 and 3.12 that Φ is a homomorphism of algebras, and hence an
isomorphism. �

Let Q[P ] be the group algebra of P over Q with basis {eΛ | Λ ∈ P }. For Λ ∈ P+ , let ch B(Λ) =∑
b∈B(Λ) ewt(b) be the character of B(Λ), which is a formal power series in {eΛ0 , e±εi (i ∈ Z)} and

equal to the character of the irreducible highest weight Uq(gl∞)-module with highest weight Λ.
Then {ch B(Λ) | Λ ∈ P+} is linearly independent, and ch B is also well defined for B ∈ Ch.w. (use the
formula for e−nΛ0 ch B(Λλ) (λ ∈ Zn+) in [17, Theorem 5.5] and then apply [17, Proposition 3.18] for the
well-definedness of ch B for B ∈ Ch.w.). Let R be the Z-algebra spanned by {ch B | B ∈ Ch.w.}. Then the
map ψ : K h.w. → R given by ψ([B]) = ch B is an algebra isomorphism.

Let z = {zk | k ∈ Z} be another set of formal commuting variables, and let R be the ring of formal
power series in z with coefficients in Z. Then we have an A∞-analogue of the fundamental theorem
on symmetric functions as follows.

Proposition 5.5. The assignment zk �→ [B(±Λk)] (k ∈ Z) defines isomorphisms of Z-algebras

Ψ+ : R → K h.w.,

Ψ− : R → K l.w.,

respectively.

Proof. Let us identify K h.w. with R . Put Hk = ch B(Λk) for k ∈ Z.
For λ,μ ∈ Zn+ , we define λ > μ if and only if there exists i � 1 such that λk = μk for 1 � k < i and

λi > μi . Then > is a linear ordering on Zn+ . Put Hμ = ∏n
i=1 Hμi . Then we have

Hμ =
∑
λ∈Zn+

Kλμ ch B(Λλ) (5.2)

for some Kλμ ∈ Z�0, where Kλμ = 0 unless λ � μ and
∑

i λi = ∑
i μi (see (4.1) and (4.2) in [17]).

Note that we have a Jacobi–Trudi formula

ch B(Λλ) = det(Hλi−i+ j)1�i, j�n (5.3)

[6] (see also [17, Theorem 4.5]).
Define an algebra homomorphism Ψ+ : R → R by Ψ+(zk) = Hk for k ∈ Z. Suppose that f (z) =

c + ∑
n�1

∑
μ∈Zn+ cμzμ is given (not necessarily a finite sum), where zμ = ∏n

i=1 zμi . Note that for

λ ∈ Zn+ , there are only finitely many μ ∈ Zn+ such that λ � μ and
∑

i λi = ∑
i μi . Then it follows from

(5.2) that
∑

μ∈Zn+ cμKλμ is a well-defined integer, and

Ψ+
(

f (z)
) = c +

∑
n�1

∑
μ∈Zn+

cμHμ = c +
∑
n�1

∑
λ∈Zn+

( ∑
μ∈Zn+

cμKλμ

)
ch B(Λλ) ∈ R. (5.4)

Hence Ψ+ is well defined.
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Also by (5.3) there exists M such that the coefficient of Hμ in ch B(Λλ) is non-zero only if∑n
i=1 |λi − μi | � M . Hence, for c + ∑

n�1
∑

λ∈Zn+ c′
λ ch B(Λλ) ∈ R , we have by (5.3)

c +
∑
n�1

∑
λ∈Zn+

c′
λ ch B(Λλ) = c +

∑
n�1

∑
μ∈Zn+

cμHμ

for some cμ ∈ Z. This implies that Ψ+ is surjective.
Finally, Ψ+ is injective since {Hμ | μ ∈ Zn+, n � 1} is linearly independent by (5.2). Hence Ψ+ is

an isomorphism. The proof for Ψ− is almost the same. �
Let t± = {t±

1 , t±
2 , t±

3 , . . .} be two sets of mutually commuting formal variables. Consider

A = R
[
t+, t−]

the free R-module of the polynomials in t± over R. For n � 1, let An = R[t±
1 , . . . , t±

n ]. Note that as
an R-module

An−1 ⊂ An = An−1
[
t+
n , t−

n

]
, A =

∑
n�0

An,

where A0 = R. Now, let us define a Z-algebra structure on A inductively as follows;

(1) A0 = R with the usual multiplication.
(2) Suppose that a Z-algebra structure on An−1 is defined. Then we define a multiplication on An

by

t±
n a = at±

n + δ±
n (a) (a ∈ An−1), (5.5)

where δ±
n is the derivations on An−1 given by

δ±
n

(
t±
k

) = 0 (1 � k � n − 1),

δ±
n (zk) = zk∓1t±

n−1 + zk∓2t±
n−2 + · · · + zk∓n (k ∈ Z) (5.6)

(that is, An is an Ore extension [25] of An−1 associated with derivations δ±
n ).

Note that by induction hypothesis, we have for μ ∈ Zm+ ,

δ±
n (zμ) =

n∑
k=1

( ∑
λ∈Zm

cλzλ

)
t±
n−k

for some cλ ∈ Z�0, where cλ = 0 unless
∑m

i=1 |λi − μi | = k. (We assume that t±
0 = 1.) Hence, δ±

n is
well defined on An−1.

Proposition 5.6. The assignment zk �→ [B(−Λk)], t+
n �→ [B(1n)] and t−

n �→ [B∨
(1n)] (k ∈ Z, n � 1) defines an

isomorphism of Z-algebras Ψ : A → K ∨.
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Proof. Since the map sending t+
k t−

l to ek(x)el(y) (k, l � 1) gives a Z-algebra isomorphism from
Z[t+, t−] to Symx ⊗Z Symy , composing it with Φ in Proposition 5.4 we have a Z-algebra isomorphism

Ψ0 : Z
[
t+, t−] → K0

given by Ψ0(t+
n ) = [B(1n)] and Ψ0(t−

n ) = [B∨
(1n)] for n � 1.

Since A � R ⊗Z Z[t+, t−] and K ∨ � K l.w. ⊗Z K0 as Z-modules, we have a Z-linear isomor-
phism

Ψ = Ψ− ⊗ Ψ0 : A → K ∨.

Next, we claim that Ψ is an algebra homomorphism. For n � 0, let Rn = Ψ (An). We use in-
duction on n to show that Ψ |An : An → Rn is an algebra homomorphism. If n = 0, then Ψ |A0 =
Ψ− : R → K l.w. is an algebra isomorphism by Proposition 5.5. Suppose that Ψ |An is an algebra
homomorphism. Note that An+1 = An[t+

n+1, t−
n+1]. By Lemmas 3.6 and 4.4, we have

Ψ |An+1

(
t±
n+1a − at±

n+1 − δ±
n+1(a)

) = 0, (5.7)

when a = zk (k ∈ Z) and a = t±
k (1 � k � n), which implies that (5.7) holds for all a ∈ An . Hence

Ψ |An+1 preserves the multiplication, and it is an algebra homomorphism. This completes the induc-
tion. �

Let s± = {s±
1 , s±

2 , s±
3 , . . .} be two sets of mutually commuting formal variables. Consider

D = RQ

[
s+, s−]

the free RQ-module of the polynomials in s± over RQ = Q ⊗Z R. Then we define a Q-algebra
structure on D by

s±
n zk = zks±

n + (−1)n−1zk∓n (n � 1, k ∈ Z). (5.8)

One may regard D as an Ore extension of RQ associated with derivations γ ±
n =(−1)n−1 ∑

k∈Z zk∓n
∂

∂zk

(n � 1).
Let u be a formal variable. Put

F (u) =
∑
k∈Z

zkuk, E±(u) = exp

( ∑
n�1

(−1)n−1

n
s±

n un
)

∈ D[[u]]. (5.9)

Now, we obtain the following characterization of K ∨
Q

= Q ⊗Z K ∨ (hence KQ = Q ⊗Z K ), which is
the main result in this section.

Theorem 5.7. There exists a Q-algebra isomorphism Θ : D → K ∨
Q

such that

Θ
(

F (u)
) =

∑
k∈Z

[
B(−Λk)

]
uk,

Θ
(

E+(u)
) =

∑
n�0

[B(1n)]un, Θ
(

E−(u)
) =

∑
n�0

[
B∨

(1n)

]
un.
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Proof. For n � 1, set

ŝ+
n = Ψ −1

0 ◦ Φ
(

pn(x)
)
, ŝ−

n = Ψ −1
0 ◦ Φ

(
pn(y)

)
.

Note that ŝ± = {ŝ±
n | n � 1} is algebraically independent over Q, and AQ = Q ⊗Z A = RQ[ŝ+, ŝ−].

First, we use induction on n to show that for k ∈ Z

ŝ±
n zk = zkŝ±

n + (−1)n−1zk∓n. (5.10)

It is clear when n = 1. Recall that

(−1)n−1 ŝ±
n = nt±

n −
n−1∑
r=1

(−1)r−1 ŝ±
r t±

n−r . (5.11)

By induction hypothesis, we have for k � 1,

(−1)n−1 ŝ±
n zk = nt±

n zk −
n−1∑
r=1

(−1)r−1 ŝ±
r t±

n−r zk

= n
(
zkt±

n + zk∓1t±
n−1 + · · · + zk∓n

)
−

n−1∑
r=1

(−1)r−1
n−r∑
j=0

(
zk∓ j ŝ

±
r + (−1)r−1zk∓r∓ j

)
t±
n−r− j.

Using (5.11), it is straightforward to check that the (right) coefficient of zk∓i in the last equation is⎧⎨⎩
(−1)n−1 ŝ±

n if i = 0,

1 if i = n,

0 otherwise.

This proves (5.10) and completes the induction.
By (5.8) and (5.10), we obtain a Q-algebra isomorphism θ : D → AQ such that θ(zk) = zk and

θ(s±
n ) = ŝ±

n for k ∈ Z and n � 1. Since

exp

( ∑
n�1

(−1)n−1

n
ŝ±

n un
)

=
∑
n�0

t±
n un

(cf. [22]), we obtain the required isomorphism Θ = Ψ ◦ θ by Proposition 5.6. �
Corollary 5.8. KQ is isomorphic to Dopp as a Q-algebra, where Dopp denotes the opposite algebra of D .

Note that there exists an involution ω : D → D determined by

ω(zk) = z−k, ω
(
s±

n

) = s∓
n (5.12)

for k ∈ Z and n � 1, which is well defined by (5.8). Then ω induces an involution on K ∨
Q

under Θ ,
which we also denote by ω by abuse of notation.
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Proposition 5.9. For λ ∈ Zn+ and μ,ν ∈ P , we have

ω
([

B(−Λλ) ⊗ Bμ,ν

]) = [
B(−Λλ∗) ⊗ Bν,μ

]
,

where λ∗ = (−λn, . . . ,−λ1).

Proof. It follows directly from (5.3) that ω[B(−Λλ)] = [B(−Λλ∗ )]. Since Θ−1 ◦ Φ(pm(x)) = s+
m and

Θ−1 ◦ Φ(pm(y)) = s−
m for m � 1, we have

(
Φ−1 ◦ ω ◦ Φ

)(
sμ(x)sν(y)

) = sν(x)sμ(y),

which implies ω([Bμ,ν ]) = [Bν,μ]. Since ω is an algebra homomorphism, we obtain the above iden-
tity. �
5.3. Littlewood–Richardson rule

Let u be a formal variable. Put

F (u) =
∑
k∈Z

[
B(Λk)

]
uk, E (u) =

∑
n�0

[B(1n)]un, E ∨(u) =
∑
n�0

[
B∨

(1n)

]
un. (5.13)

Lemma 5.10. For n � 1, we have

F (x[n]) =
∑
λ∈Zn+

[
B(Λλ)

]
sλ(x[n]),

E (x[n]) =
∑
μ∈P
μ1�n

[Bμ]sμ′(x[n]), E ∨(x[n]) =
∑
ν∈P
ν1�n

[
B∨

ν

]
sν ′(x[n]),

where F (x[n]) = ∏n
k=1 F (xk), E (x[n]) = ∏n

k=1 E (xk) and E ∨(x[n]) = ∏n
k=1 E ∨(xk).

Proof. Consider the (gl∞,gln)-character associated with the decomposition in Proposition 3.11. Then
we obtain the first identity by replacing ch B(Λλ) with [B(Λλ)]. The other two identities are obtained
by considering the (gl∞,gln)-character associated with the decomposition in Proposition 3.10 and
using the isomorphism in Proposition 5.4. �

Let u, v be commuting formal variables. By Lemma 4.4, we have

F (u)E (v) = E (v)F (u)
1

(1 − u−1 v)
,

F (u)E ∨(v) = E ∨(v)F (u)
1

(1 − uv)
. (5.14)

Applying (5.14) successively, we obtain the following identities.
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Lemma 5.11. For m,n � 1, we have

F (x[m])E (y[n]) = E (y[n])F (x[m])
1∏

i∈[m], j∈[n](1 − x−1
i y j)

,

F (x[m])E ∨(y[n]) = E ∨(y[n])F (x[m])
1∏

i∈[m], j∈[n](1 − xi y j)
.

Lemma 5.12. Let λ,η ∈ Zm+ and μ,ν ∈ P be given.

(1) The multiplicity of Bν ⊗ B(Λη) in B(Λλ) ⊗ Bμ is

∑
γ ∈P

�(γ )�m

cλ
ηγ ∗cμ′

ν ′γ ,

where γ ∗ = (. . . ,−γ2,−γ1) ∈ Zm+ .
(2) The multiplicity of B∨

ν ⊗ B(Λη) in B(Λλ) ⊗ B∨
μ is

∑
γ ∈P

�(γ )�m

cλ
ηγ cμ′

ν ′γ .

Proof. (1) Choose n � 1 such that �(μ′) � n. The left-hand side of the first identity in Lemma 5.11 is
given by ∑

λ∈Zm+

∑
μ∈P
μ1�n

[
B(Λλ) ⊗ Bμ

]
sλ(x[m])sμ′(y[n]). (5.15)

On the other hand, the right-hand side is∑
η∈Zm+

∑
ν∈P
ν1�n

[
Bν ⊗ B(Λη)

]
sη(x[m])sν ′(y[n])

∑
γ ∈P

�(γ )�m,n

sγ
(
x−1
[m]

)
sγ (y[n])

=
∑

λ∈Zm+

∑
μ∈P
μ′�n

∑
η,ν,γ

cλ
ηγ ∗cμ′

ν ′γ
[
Bν ⊗ B(Λη)

]
sλ(x[m])sμ′(y[n]). (5.16)

Since {sλ(x[m])sμ′ (y[n]) | λ ∈ Zm+, μ ∈ P with �(μ′) � n} is linearly independent, we have

[
B(Λλ) ⊗ Bμ

] =
∑
η,ν

( ∑
γ

cλ
ηγ ∗cμ′

ν ′γ

)[
Bν ⊗ B(Λη)

] ∈ K

by comparing (5.15) and (5.16). Hence we obtain the required multiplicity.
(2) The proof is almost the same as in (1). We leave the details to the reader. �
Combining Lemma 5.12 (1) and (2), we have the following decomposition of the tensor product of

a highest weight crystal and a level zero extremal weight crystal.
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Proposition 5.13. For λ ∈ Zm+ and μ,ν ∈ P , we have

B(Λλ) ⊗ Bμ,ν �
⊔

ρ∈Zm+
σ ,τ∈P

Bσ ,τ ⊗ B(Λρ)
⊕c(λ,μ,ν)

(ρ,σ ,τ ) ,

where

c(λ,μ,ν)

(ρ,σ ,τ ) =
∑
η∈Zm+

∑
α,β∈P

�(α),�(β)�m

cλ
ηα∗cμ′

σ ′αcη
ρβcν ′

τ ′β .

Now, we can describe the Littlewood–Richardson rule of extremal weight crystals of non-negative
level, which is the main result in this paper.

Theorem 5.14. For λ ∈ Zm+ , ρ ∈ Zn+ , and μ,ν,σ , τ ∈ P , we have

(
Bμ,ν ⊗ B(Λλ)

) ⊗ (
Bσ ,τ ⊗ B(Λρ)

) �
⊔

ζ∈Zm+n+
η,θ∈P

Bη,θ ⊗ B(Λζ )
⊕c(ζ,η,θ)

(λ,μ,ν),(ρ,σ ,τ ) ,

where

c(ζ,η,θ)

(λ,μ,ν),(ρ,σ ,τ )
=

∑
α∈Zm+

∑
β,γ ∈P

cζ
αρcη

βμcθ
γ νc(λ,σ ,τ )

(α,β,γ )

and c(λ,σ ,τ )
(α,β,γ ) is defined in Proposition 5.13.

Proof. It follows from Propositions 3.8, 3.12, 3.13, and 5.13. �
Remark 5.15. We have the same Littlewood–Richardson rule for the crystals in C∨ by taking the dual
of the decomposition in Theorem 5.14.

6. Differential operators on lowest weight character ring

6.1. A twisted action of K ∨ on K l.w.

We define for B ∈ C∨

pr(B) = {b ∈ B | ∃r � 1 such that f̃ i1 · · · f̃ ir b = 0 for all i1, . . . , ir ∈ Z}.

We can check that pr(B) is a union of connected components B ′ of B such that B ′ ∈ Cl.w. . Hence pr
is a functor from C∨ to Cl.w. , and by definition pr(B � B ′) � pr(B) � pr(B ′) for B, B ′ ∈ C∨ . Consider a
composite of the following two functors

C∨ × Cl.w. ⊗−→ C∨ pr−→ Cl.w.,(
B, B ′) �→ B ⊗ B ′ �→ pr

(
B ⊗ B ′). (6.1)
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Then it is straightforward to check that (6.1) induces a Z-algebra homomorphism (or K ∨-module
structure on K l.w.)

ρ : K ∨ → EndZ

(
K l.w.

)
, (6.2)

where ρ([B])([B ′]) = [pr(B ⊗ B ′)] for [B] ∈ K ∨ and [B ′] ∈ K l.w. . Hence K l.w. is a left K ∨-module.
Moreover, when restricted to K0, each K l.w.−n (n � 0) is a K0-submodule of K l.w. . Since the action
of K l.w. on K l.w. is nothing but the left multiplication in K ∨ , we will focus on the K0-module
structure on K l.w. .

Recall that by Proposition 5.6, we may identify K ∨ with A = R[t+, t−], while K l.w. and K0
are identified with R and Z[t+, t−], respectively. Let Rn be the subspace of R consisting of formal
power series in z of degree n. Then K l.w.−n corresponds to Rn .

With these identification, the left K ∨-module K l.w. corresponds to a left A -module

A /
∑
m�1

(
A t+

m + A t−
m

)
,

which can be identified with R as a Z-module. We still denote this A -module structure on R by
ρ : A → EndZ(R). Note that the action of R ⊂ A is the usual multiplication on R, and Rn is a
Z[t+, t−]-submodule of R.

6.2. The action of K0 on K l.w.

Let us describe the action of Z[t+, t−] on R more explicitly. Recall the following correspondences
(see Propositions 5.5 and 5.6);

Symx ⊗ Symy
Φ−→ K0

Ψ0←− Z[t+, t−],
sμ(x)sν(y) ↔ [Bμ,ν ] ↔ t+

{μ}t
−
{ν},

em(x)en(y) ↔ [B(1m),(1n)] ↔ t+
mt−

n . (6.3)

Here t±
{μ} = det(t±

μ′
i−i+ j

)1�i, j��(μ′) , where we assume t±
0 = 1 and t±

k = 0 for k < 0.

For n � 1, let

p±
n = ρ

(
ŝ±

n

)
, (6.4)

where ŝ+
n = Ψ −1

0 ◦ Φ(pn(x)) and ŝ−
n = Ψ −1

0 ◦ Φ(pn(y)). The following is an immediate consequence of
Theorem 5.7 (see (5.10)).

Proposition 6.1. For n � 1, p±
n = γ ±

n = (−1)n−1 ∑
k∈Z zk∓n

∂
∂zk

.

For λ,μ ∈ Zn+ , put

z{λ/μ} = det(zλi−μ j−i+ j)1�i, j�n. (6.5)

Note that each f (z) in R can be written uniquely as f (z) = c0 + ∑
n�1

∑
λ∈Zn+ cλz{λ} for some

c0, cλ ∈ Z by Proposition 5.5 and (5.3).
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Lemma 6.2. For λ,μ ∈ Zn+ , we have

z{λ/μ} =
∑
ν∈Zn+

cλ
μν z{ν}.

Proof. For p � min{0, λn}, let

B(Λλ)>p = {
f̃ i1 · · · f̃ ir uΛλ

∣∣ r � 0, i1, . . . , ir ∈ [p + 1,∞)
} ⊂ B(Λλ).

Note that B(Λλ)>p is the connected gl[p+1,∞)-subcrystal of B(Λλ) including uΛλ . Put D p,n =∏
p+1�i�0 x−n

i . Then it is easy to see that

e−nΛ0 ch B(Λλ)>p = D p,ns(λ−(pn))′(x[p+1,∞)),

where xi = eεi for i ∈ [p + 1,∞), x[p+1,∞) = {xp+1, xp+2, . . .} and s(λ−(pn))′ (x[p+1,∞)) is the Schur
function in x[p+1,∞) . For k ∈ [p + 1,∞), put

êk(x[p+1,∞)) = D p,1ek−p(x[p+1,∞)).

Then e−Λ0 ch B(Λk)>p = êk(x[p+1,∞)) and êk(x[p+1,∞)) has a well-defined limit when p → −∞, which
is equal to e−Λ0 ch B(Λk) = e−Λ0 Hk (cf. [18, Section 3.3]).

We have

det
(
êλi−μ j−i+ j(x[p+1,∞))

)
1�i, j�n = D p,n det

(
eλi−μ j−i+ j−p(x[p+1,∞))

)
1�i, j�n

= D p,ns(λ−(pn)−(μn
n))′/(μ−(μn

n))′(x[p+1,∞)).

On the other hand, we have

s(λ−(pn)−(μn
n))′/(μ−(μn

n))′(x[p+1,∞))) =
∑
ν∈Zn+

c
(λ−(pn)−(μn

n))′
(μ−(μn

n))′(ν−(pn))′ s(ν−(pn))′(x[p+1,∞))

=
∑
ν∈Zn+

c
λ−(pn)−(μn

n)

μ−(μn
n)ν−(pn)

s(ν−(pn))′(x[p+1,∞))

=
∑
ν∈Zn+

cλ
μν s(ν−(pn))′(x[p+1,∞)).

Therefore, we have

det
(
êλi−μ j−i+ j(x[p+1,∞))

)
1�i, j�n = D p,n

∑
ν∈Zn+

cλ
μν s(ν−(pn))′(x[p+1,∞))

= D p,n

∑
ν∈Zn+

cλ
μν det

(
eνi−i+ j−p(x[p+1,∞))

)
1�i, j�n

=
∑
ν∈Zn+

cλ
μν det

(
êνi−i+ j(x[p+1,∞))

)
1�i, j�n. (6.6)
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Taking p → −∞ and then multiplying enΛ0 on both sides of (6.6), we have

det(Hλi−μ j−i+ j)1�i, j�n =
∑
ν∈Zn+

cλ
μν det(Hνi−i+ j)1�i, j�n.

By Proposition 5.5, we have z{λ/μ} = ∑
ν∈Zn+ cλ

μν z{ν}. �
Remark 6.3. We may realize z{λ/μ} or Ψ±(z{λ/μ}) as a weight generating function for certain pairs
of semistandard tableaux [17, Definition 4.9]. A bijective proof of Lemma 6.2 using this realization is
given in [17, Theorem 4.11].

For μ ∈ P , we put

s±
μ = ρ

(
t±
{μ}

)
. (6.7)

Theorem 6.4. For λ ∈ Zn+ and μ ∈ P , we have

s+
μ′(z{λ}) =

{
z{λ/μ} if �(μ) � n,

0 otherwise,
s−
μ′(z{λ}) =

{
z{λ/μ∗} if �(μ) � n,

0 otherwise,

where μ∗ = (. . . ,−μ2,−μ1) ∈ Zn+ .

Proof. Note that the coefficient of z{ν} for ν ∈ Zn+ in s+
μ′ (z{λ}) is equal to the multiplicity of B(−Λν)

in Bμ′ ⊗ B(−Λλ), or that of B(Λν) in B(Λλ) ⊗ B∨
μ′ . By Lemma 5.12, it is equal to

∑
γ ∈P

�(γ )�n

cλ
νγ cμ

∅γ . (6.8)

Since

cμ
∅γ =

{
1 if μ = γ ,

0 otherwise,

the multiplicity (6.8) is {
cλ
νμ if �(μ) � n,

0 otherwise.

Since cλ
νμ = cλ

μν , we have s+
μ′ (z{λ}) = z{λ/μ} when �(μ) � n and 0 otherwise, by Lemma 6.2. The proof

for s−
μ′(z{λ}) is similar. �

Corollary 6.5. For μ ∈ P with �(μ) � n, we have

s+
μ′(z{(0n)}) = z{μ∗}, s−

μ′(z{(0n)}) = z{μ}.

For n � 1, we put

h±
n = s±

(n) = ρ
(
t±
{(n)}

)
. (6.9)
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Proposition 6.6. Let m � 0 and λ ∈ Zn+ be given.

(1) If m > n, then h±
m acts as identically zero on Rn.

(2) If m � n, then we have

h+
m(z{λ}) =

∑
μ∈Zn+

(λ−(μn
n))/(μ−(μn

n)):
a vertical strip of length m

z{μ},

h−
m(z{λ}) =

∑
μ∈Zn+

(μ−(λn
n))/(λ−(λn

n)):
a vertical strip of length m

z{μ}.

In particular, we have h±
n (z{λ}) = z{λ∓(1n)} .

Proof. (1) It follows directly from Theorem 6.4.
(2) By Lemma 6.2 and Theorem 6.4, we have

h−
m(z{λ}) = z{λ/−(0n−m,1m)} =

∑
μ∈Zn+

cλ
−(0n−m,1m)μz{μ}.

Since cλ
−(0n−m,1m)μ

= cλ+(1n)

(1n−m,0m)μ
= c

λ+(1n)−(μn
n)

(1n−m,0m)μ−(μn
n)

, we have

cλ
−(0n−m,1m)μ =

⎧⎨⎩
1 if λ + (1n) − (μn

n) is a partition and

(λ + (1n) − (μn
n))/(μ − (μn

n)) is a vertical strip of length n − m,

0 otherwise.

Therefore, cλ
−(0n−m,1m)μ

= 1 if and only if (μ− (λn
n))/(λ− (λn

n)) is a vertical strip of length m. The proof

for h+
m(z{λ}) is similar. �

As a corollary, we have the following.

Corollary 6.7. As operators on Rn (n � 1), we have for 0 � i � n

h+
n h−

i = h+
n−i .

Here, we assume h±
0 = idRn .

6.3. The action of K0 on K l.w.−n and the (gl∞,gln)-duality

For n � 1, let R◦(GLn(C)) be the character ring of finite-dimensional polynomial representations of
GLn(C), which is isomorphic to the ring of symmetric polynomials in x[n] . Also, it is free commutative
algebra generated by ek(x[n]) for 1 � k � n. Let R(GLn(C)) be the character ring of finite-dimensional
representations of GLn(C). Then R(GLn(C)) is the ring of symmetric Laurent polynomials in x[n] , and
it is the localization of R◦(GLn(C)) with respect to the multiplicative subset {en(x[n])m | m � 1}.

Theorem 6.8. For n � 1, let Mn = K0 · [B(−nΛ0)] be the K0-submodule of K l.w.−n generated by [B(−nΛ0)].
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(1) We have

Mn =
⊕
λ∈Zn+

Z
[
B(−Λλ)

]
.

In particular, K l.w.−n is the completion of Mn.
(2) There exists a Z-algebra isomorphism

R
(
GLn(C)

) → K0/annK0(Mn),

where sλ(x[n]) is mapped to [B⊗�
(n) ⊗ B∨

(λ+(�n))′ ] (λ ∈ Zn+) with � = max{−λn,0}.
(3) The ideal annK0(Mn) is generated by

[B(k),∅], [B∅,(k)] (k > n), [B(n),(i)] − [B(n−i),∅] (0 � i � n).

Proof. (1) Since we may identify K0 with Z[t+, t−], and Mn with Z[t+, t−]z{(0n)} in Rn , it is equiva-
lent to show that Mn = ⊕

λ∈Zn+ Zz{λ} . By Theorem 6.4, we have Mn ⊂ ⊕
λ∈Zn+ Zz{λ} . Conversely, given

λ ∈ Zn+ , put μ = λ + (�n) ∈ P , where � = max{−λn,0}. By Theorem 6.4 and Proposition 6.6, we have

z{λ} = ((
h+

n

)� ◦ s−
μ′

)
(z{(0n)}) = (

t+
{(n)}

)� · (t−
{μ′} · z{(0n)}

)
, (6.10)

and hence
⊕

λ∈Zn+ Zz{λ} ⊂ Mn .
(2) Note that the map g : K0/annK0(Mn) → Mn given by g(a) = a · z{(0n)} is a Z-linear iso-

morphism. Define a ring homomorphism f : R(GLn(C)) → K0/annK0 (Mn) by f (ek(x[n])) = t−
{(k)}

(1 � k � n) and f (en(x[n])−1) = t+
{(n)} . Since t+

{(n)}t
−
{(n)} = 1 in K0/annK0 (Mn) by Corollary 6.7, f is

well defined. For λ ∈ Zn+ , we have

f
(
sλ(x[n])

) = f
(
en(x[n])−�sλ+(�n)(x[n])

) = (
t+
{(n)}

)�
t−
{(λ+(�n))′},

where � = max{−λn,0}. By (6.10), we have g ◦ f (sλ(x[n])) = z{λ} , and hence obtain a Z-linear isomor-
phism

g ◦ f : R
(
GLn(C)

) → Mn.

This implies that f is an isomorphism.
(3) Let In = 〈t±

{(m)} (m > n), t+
{(n)}t

−
{(i)} − t+

{(n−i)} (0 � i � n)〉, which is an ideal in Z[t+, t−]. By
Proposition 6.6 and Corollary 6.7, In ⊂ annK0 (Mn). Hence we have an algebra homomorphism
ι : K0/In → K0/annK0 (Mn). Similarly, we have a surjective algebra homomorphism h : R(GLn(C)) →
K0/In such that h(ek(x[n])) = t−

{(k)} (1 � k � n) and h(en(x[n])−1) = t+
{(n)} . Since ι ◦ h = f and f is

an isomorphism by (2), it follows that h is an isomorphism and hence so is ι. This implies that
In = annK0(Mn). �

By Theorem 6.8 (2), Mn is naturally equipped with an R(GLn(C))-module structure, while
R(GLn(C)) is itself an R(GLn(C))-module by left multiplication. Hence, we obtain the following.

Corollary 6.9. The map sending sλ(x[n]) to [B(−Λλ)] (λ ∈ Zn+) extends to an R(GLn(C))-module isomorphism
R(GLn(C)) → Mn.
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Remark 6.10. Consider a graded Z-module R(GL) = ⊕
n�0 R(GLn(C)), where R(GL0(C)) = Z. Then

R(GL) is a graded coalgebra with a graded comultiplication � given by

�(χ) =
∑

p+q=n

ResGLn(C)
GLp(C)×GLq(C)

(χ)

for χ ∈ R(GLn(C)). Then by the (gl∞,gln)-duality (see Proposition 3.11), we have as Z-algebras⊕
n�0

K l.w.−n � R(GL)◦,

where R(GL)◦ is the restricted dual of R(GL) [30]. Equivalently, the branching rule in R(GL) corre-
sponds to the tensor product rule of integrable lowest weight Uq(gl∞)-modules (or gl∞-modules).
On the other hand, Theorem 6.8 explains this duality from a different point of view. That is, we can
recover R(GL) via the action of K0 on K l.w. ,

R(GL) = Z ⊕
( ⊕

n�1

K0/annK0

([
B(−nΛ0)

]))
.

This explains that the multiplication in R(GLn(C)), which is not a graded multiplication in R(GL), cor-
responds to the composite of operators on K l.w.−n associated with level zero extremal weight crystals.

6.4. Hall–Littlewood vertex operators on K l.w.

Fix an indeterminate q. Let Bq be the associative Z[q]-algebra generated by {Bq
n | n ∈ Z} subject to

the relation;

Bq
m Bq

n = qBq
n Bq

m + qBq
m+1 Bq

n−1 − Bq
n−1 Bq

m+1 (m,n ∈ Z). (6.11)

The above defining relations can be written in terms of generating functions as follows;

(u − qv)Bq(u)Bq(v) = (qu − v)Bq(v)Bq(u), (6.12)

where u, v are formal commuting variables and Bq(u) = ∑
k∈Z Bq

kuk . Note that Bq is isomorphic to
the “half” of the algebra generated by the Hall–Littlewood vertex operators on Z[q]⊗Z Sym introduced
by Jing [8] (see also [7,26]).

Our main claim in this section is that there is a natural embedding of Bq into EndZ(K l.w.)[[q]]
and hence we can define a Hall–Littlewood vertex operator for gl∞ . Put

F∨(u) =
∑
k∈Z

ρ
([

B(−Λk)
])

uk,

S(v) =
∑
n�0

ρ
([B(n)]

)
vn, E(v) =

∑
n�0

ρ
([B(1n)]

)
vn, (6.13)

where ρ : K ∨ → End(K l.w.) is given in (6.2). We define

Bq(u) = F∨(u)S
(−u−1)E(

qu−1) =
∑

Bq
kuk ∈ (

End
(
K ∨)[[q]])[[u, u−1]]. (6.14)
k∈Z
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Equivalently, for k ∈ Z

Bq
k =

∑
i�0

i∑
j=0

(−1)i− jq jρ
([

B(−Λi+k) ⊗ B(i− j) ⊗ B(1 j)

])
=

∑
j�0

( ∑
i�0

(−1)iρ
([

B(−Λi+ j+k) ⊗ B(i) ⊗ B(1 j)

]))
q j. (6.15)

Note that the coefficient of q j ( j � 0) in Bq
k is a well-defined Z-linear map from K l.w.−n to K l.w.

−n−1 for

n � 0 by Proposition 6.6 (1), and hence a Z-linear operator on K l.w. .

Lemma 6.11. We have

S(v)F∨(u) = F∨(u)S(v)(1 + uv).

Proof. By Lemma 5.12, we have for k ∈ Z and n � 0,

B(Λk) ⊗ B∨
(n) � (

B∨
(n) ⊗ B(Λk)

) � (
B∨

(n−1) ⊗ B(Λk−1)
)
.

By taking its dual, we obtain the identity. �
Lemma 6.12. We have

(u − qv)Bq(u)Bq(v) = (qu − v)Bq(v)Bq(u).

Proof. It follows directly from the dual identity of (5.14) and Lemma 6.11. �
By Lemma 6.12, Bq

k ’s satisfy the defining relation (6.11) for Bq , and we have a Z[q]-algebra homo-
morphism

� : Bq → EndZ

(
K l.w.

)[[q]] (6.16)

given by �(Bq
k) = Bq

k for k ∈ Z.
We define for n � 1 and α = (α1, . . . ,αn) ∈ Zn

Bq
α =

∏
1�i< j�n

(1 − qRij)Bq
α1 · · · Bq

αn , (6.17)

where Rij is a raising operator, i.e.

Rij
(

Bq
α1 · · · Bq

αn

) = Bq
α1 · · · Bq

αi+1 · · · Bq
α j−1 · · · Bq

αn .

We should remark that when Bq
k ’s are replaced by the Hall–Littlewood vertex operators on

Z[q] ⊗Z Sym, Bq
λ (λ ∈ Zn+) gives the operator introduced by Shimozono and Zabrocki [26]. By (6.11),

we can check that Bq
α = −Bq

(α1,...,αi+1−1,αi+1,...,αn) . More generally, for each permutation w in Sn , we
have

Bq
α = (−1)�(w)Bq

w(α+ρ )−ρ , (6.18)

n n
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where �(w) is the length of w and ρn = (n − 1,n − 2, . . . ,0). Now for λ ∈ Zn+ , we put

Bq
λ = �

(
Bq

λ

)
. (6.19)

Let

F∨(x[n]) =
∏

k∈[n]
F∨(xk), S

(−x−1
[n]

) =
∏

k∈[n]
S
(−x−1

k

)
, E

(
qx−1

[n]
) =

∏
k∈[n]

E
(
qx−1

k

)
.

Then we have the following generating function for Bq
λ .

Proposition 6.13. For n � 1, we have

∑
λ∈Zn+

Bq
λsλ(x[n]) = F∨(x[n])S

(−x−1
[n]

)
E
(
qx−1

[n]
)
.

Proof. By (5.14) and Lemma 6.11, we have

Bq(x1) · · ·Bq(xn) =
∏

1�i< j�n

1 − x−1
i x j

1 − qx−1
i x j

F∨(x[n])S
(−x−1

[n]
)
E
(
qx−1

[n]
)
. (6.20)

Since

∏
1�i< j�n

(
1 − qx−1

i x j
)
Bq(x1) · · ·Bq(xn) =

∑
λ∈Zn+

Bq
λ

( ∑
w∈Sn

(−1)�(w)xw(λ+ρn)−ρn
[n]

)

by (6.18) and (6.19), we have

∏
1�i< j�n

1 − qx−1
i x j

1 − x−1
i x j

Bq(x1) · · ·Bq(xn) =
∑

λ∈Zn+

Bq
λsλ(x[n]). �

Corollary 6.14. For λ ∈ Zn+ , we have

Bq
λ =

∑
η∈Zn+

∑
σ ,μ,ν∈P

�(σ ),�(μ),�(ν)�n

(−1)|μ|q|ν|cλ
ησ ∗cσ

μνρ
([

B(−Λη) ⊗ Bμ ⊗ Bν ′
])

.

Proof. Note that

S(x[n]) =
∑
μ∈P

ρ
([Bμ])sμ(x[n]),

which can be verified by modifying the arguments in Proposition 3.10 using matrices with non-
negative integral entries (see [4,21]). By Lemma 5.10, we have
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F∨(x[n])S
(−x−1

[n]
)
E
(
qx−1

[n]
)

=
∑
η∈Zn+

∑
μ,ν∈P

�(μ),�(ν)�n

(−1)|μ|q|ν|ρ
([

B(−Λη) ⊗ Bμ ⊗ Bν ′
])

sη(x[n])sμ
(
x−1
[n]

)
sν

(
x−1
[n]

)
.

Note that sζ (x−1
[n] ) = sζ ∗(x[n]) and cσ ∗

μ∗ν∗ = cσ
μν for ζ,σ ,μ,ν ∈ Zn+ . Comparing the coefficient of sλ(x[n])

on both sides, we obtain the identity. �
Proposition 6.15. The map � : Bq → EndZ(K l.w.)[[q]] in (6.16) is injective.

Proof. By (6.17), we have for α = (α1, . . . ,αn) ∈ Zn

Bq
α1 · · · Bq

αn =
∏

1�i< j�n

(1 − qRij)
−1 Bq

α,

where Rij acts on Bq
α by Rij(Bq

α) = Bq
(α1,...,αi+1,...,α j−1,...,αn) . By the same arguments as in [22,

Ex. III.6.4], we have

(−1)�(w)Bq
α1 · · · Bq

αn =
∑

λ∈Zn+

Kλμ(q)Bq
λ, (6.21)

where w ∈ Sn and μ ∈ Zn+ are given by w(α+ρn)−ρn = μ, and Kλμ(q) is the coefficient of xμ1
1 · · · xμn

n

in det(xλi−i+ j
i )/

∏
1�i< j�n(1 − qx−1

i x j), or the Kostka–Foulkes polynomial associated with λ,μ ∈ Zn+ .
Note that the sum on the right-hand side is not necessarily finite.

Suppose that b ∈ Bq is given such that �(b) = 0. By (6.21), we may write

b =
N∑

n=1

∑
λ∈Zn+

cλ(q)Bq
λ

for some N � 1 and cλ(q) ∈ Z[q], and

�(b) =
N∑

n=1

∑
λ∈Zn+

cλ(q)Bq
λ.

We first assume that cμ(0) �= 0 for some μ ∈ Zn+ . Then by Corollary 6.14, we have

�(b) · 1|q=0 =
N∑

n=1

∑
λ∈Zn+

cλ(0)B0
λ · 1 =

N∑
n=1

∑
λ∈Zn+

cλ(0)
[
B(−Λλ)

]
,

since [B(k)] · 1 = [B(1k)] · 1 = 0 for k > 0. (Here 1 = [B(0)] ∈ K l.w. .) Since {[B(−Λλ)] | λ ∈ Zn+,

n � 1} is linearly independent, we have cλ(0) = 0 for all λ, which is a contradiction. Now sup-
pose that cλ(0) = 0 for all λ. If b �= 0, then we have b = qmb′ for some m � 1 and b′ ∈ Bq , where
cμ(q)q−m ∈ Z[q] has a non-zero constant term for some μ. Since End(K l.w.)[[q]] is free over Z[q],
we have �(b′) = 0. By the same argument, we conclude that b′ = 0, and hence b = 0, which is also a
contradiction. Therefore, � is injective. �
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Recall that [B(−Λμ)] = Ψ−(z{μ}) for μ ∈ Zn+ . Then we define

Rij
[
B(−Λμ)

] = Ψ−(z{(...,μi+1,...,μ j−1,...)}) (1 � i < j � n).

Proposition 6.16. For μ ∈ Zn+ , we have

Bq
μ1 · · ·Bq

μn · 1 = 1∏
1�i< j�n(1 − qRij)

[
B(−Λμ)

] =
∑

λ∈Zn+

Kλμ(q)
[
B(−Λμ)

]
.

Proof. By (6.20), we have

Bq(x1) · · ·Bq(xn) =
∏

1�i< j�n

1 − x−1
i x j

1 − qx−1
i x j

F∨(x[n])S
(−x−1

[n]
)
E
(
qx−1

[n]
)
.

If we apply both sides to 1 = [B(0)] ∈ K l.w. , then

Bq(x1) · · ·Bq(xn) · 1 =
∏

1�i< j�n

1 − x−1
i x j

1 − qx−1
i x j

F∨(x[n]) · 1,

since [B(k)] · 1 = [B(1k)] · 1 = 0 for k > 0. Given μ ∈ Zn+ , equating the coefficients of xμ1
1 · · · xμn

n on both
sides, we obtain the first identity since z{μ} = ∏

1�i< j�n(1 − Rij)zμ . The second identity follows from
the same arguments as in (6.21). �
Remark 6.17. If q = 0, then B0 is the algebra of Bernstein operators [22] and B0

λ1
· · ·B0

λn
·1 = [B(−Λλ)]

(λ ∈ Zn+), which is a Rodrigues type formula. Also, when q = 1, we have B1
λ1

· · ·B1
λn

· 1 = [B(−Λλ1 ) ⊗
· · · ⊗ B(−Λλn )]. Hence, Bq

k may be viewed as a Hall–Littlewood vertex operator for gl∞ .

One may define another Hall–Littlewood vertex operator for gl∞ using the involution ω
on D (5.12). Put

Bq(u) =
∑
k∈Z

Bq
kuk = F∨(

u−1)S∨(−u−1)E∨(
qu−1), (6.22)

where

S∨(v) =
∑
n�0

ρ
([

B∨
(n)

])
vn, E∨(v) =

∑
n�0

ρ
([

B∨
(1n)

])
vn.

Note that for k ∈ Z

Bq
k =

∑
j�0

( ∑
i�0

(−1)iρ
([

B(−Λ−i− j−k) ⊗ B∨
(i) ⊗ B∨

(1 j)

]))
q j

=
∑
j�0

( ∑
i�0

(−1)iρ
(
ω

[
B(−Λi+ j+k) ⊗ B(i) ⊗ B(1 j)

]))
q j . (6.23)

By (6.15), we also have a Z[q]-algebra homomorphism � : Bq → EndZ(K l.w.)[[q]] given by
�(Bq

k) = Bq
k for k ∈ Z.
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Proposition 6.18. For m,n ∈ Z, we have

Bq
mB

q
n = Bq

nB
q
m.

Proof. It is straightforward to check that

Bq(u)Bq(v) = F∨(u)S
(−u−1)E(

qu−1)F∨(
v−1)S∨(−v−1)E∨(

qv−1)
= F∨(u)F∨(

v−1)S(−u−1)E(
qu−1)S∨(−v−1)E∨(

qv−1) (1 − u−1 v−1)

(1 − qu−1 v−1)

= Bq(v)Bq(u),

which implies that Bq
mB

q
n = Bq

nB
q
m for m,n ∈ Z. �

Remark 6.19. For λ ∈ Zn+ , we have B0
λ1

· · ·B0
λn

· 1 = z{λ∗} = [B(−Λλ∗ )].
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