View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Available at
H 1 Journal of
www.ElsevierMathematics.com MR tiverians
POWERED BY SCIENCE @DIRECT' Analysis

ELSEVIER Journal of Multivariate Analysis 89 (2004) 329-337

http://www.elsevier.com/locate/jmva

Family of multivariate generalized ¢ distributions

Olcay Arslan
Department of Statistics, University of Cukurova Balcali 01330, Adana, Turkey
Received 23 February 2001

Abstract

In this paper, we introduce a new family of multivariate distributions as the scale mixture of
the multivariate power exponential distribution introduced by Gomez et al. (Comm. Statist.
Theory Methods 27(3) (1998) 589) and the inverse generalized gamma distribution. Since the
resulting family includes the multivariate ¢ distribution and the multivariate generalization of
the univariate GT distribution introduced by McDonald and Newey (Econometric Theory 18
(11) (1988) 4039) we call this family as the ““‘multivariate generalized ¢-distributions family”, or
MGT for short. We show that this family of distributions belongs to the elliptically contoured
distributions family, and investigate the properties. We give the stochastic representation of a
random variable distributed as a multivariate generalized ¢ distribution. We give the marginal
distribution, the conditional distribution and the distribution of the quadratic forms. We also
investigate the other properties, such as, asymmetry, kurtosis and the characteristic function.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

McDonald and Newey [l11] introduced the univariate generalized ¢ (GT)
distributions family. This family includes the normal distribution, the power
exponential distribution and the univariate ¢ distribution as the special or limiting
cases. Butler et al. [8] pointed out that the GT distribution can be obtained as a scale
mixture of a power exponential and an inverse generalized gamma distributions.
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Since the univariate family of generalized ¢ distributions was introduced by
McDonald and Newey [11] it has been widely used as a robust alternative to the
normal distribution for modeling the errors in regression. Some other references on
the family of the univariate generalized ¢ distributions are [4,5,9,10].

Arellano-Valle and Bolfarine [1] proposed a generalized multivariate ¢ distribution
family and studied the properties of the distributions included by this family. They
obtained this family as a scale mixture of normal and inverse gamma distribution.
This distribution family includes the multivariate ¢ distribution as a special case.

In this paper, we define a new family of multivariate generalized distributions as a
scale mixture of a multivariate power exponential distribution introduced by Goémez
et al. [3] and an inverse generalized gamma distribution with a scale parameter. We
study the properties of the distributions included by this family. We show that this
family of distributions belongs to the family of elliptically contoured distributions,
and the multivariate normal distribution, the multivariate ¢ distribution and the
generalized multivariate ¢ distribution introduced by Arellano-Valle and Bolfarine
[1] are the special or limiting cases of the newly proposed family of multivariate
generalized distributions. We also show that the univariate GT distribution
introduced by McDonald and Newey [11] is also a special case of this family.
Further, we can define a multivariate generalization of the GT distribution as a
subclass of this family. Since this family includes the multivariate ¢z distribution and
the multivariate generalization of the GT distribution we will call this family as the
family of multivariate generalized ¢ distributions, or MGT for short.

The paper is organized as follows. In next section, we will define the family of
multivariate generalized ¢ distributions. In Section 3, we will investigate some of the
properties of the multivariate generalized ¢ distributions.

2. Family of multivariate generalized ¢ distributions

Let Z be a p-dimensional random variable distributed as a p-dimensional
multivariate power exponential distribution defined by Goémez et al. [3]
(Z~PE,(0,1,, p)) with the density function

20,5, 8) = kexp{ =4="2)"}, (1)

where, zeR?, k = pI'(p/2)/7*/*I'(1 +p/2[3)21+2%, I'(-) is the gamma function, and
p>0is a parameter and p> 1. Further, let V' be a scale random variable distributed
as an inverse generalized gamma distribution (V' ~IGG(4,f,q)) with the density
function

2\ Batl
: —_ B [27 _1nh
fb‘(vaﬁaqal) _ﬁf(q) ( v > exp{ 2(U) }’ (2)

where v>0, ¢>0 and >0 are called the shape parameters and A>0 is called the
scale parameter [4, vol.2, pp. 401].
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Proposition 1. Let Z~ PE,(0,1,,) and V ~IGG(Z; B,q) be two independent random
variables, and let X be a new random variable defined as

A/:’u_i_611/2/12*1/2‘[/1/227 (3)
where neR?, X is a positive-definite symmetric matrix and X'/? is the positive-definite

square root of X. Then, X is an elliptically contoured random variable with the density
function

fxs 2,2, 8,9) ZBF(%)I;<q+;_ﬂ)(Q)qZ|I/2;p7 (4)
rar(®) " )

where s = (x — p)" =7 (x — p).

Proof. Since Z and V are independent, Z = X~ V2(X — V124"V 777 =
(X —w)"'2 ' (X —pw)V-'g"F and the Jacobian of the transformation is
2|72 ¥ -r/2g=P/2  the joint density function of X and ¥ can be obtained as

f(x5v1/’t727i7ﬁ7q)
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Then, the density function of the random variable X is
S(x1 2,2, B, )

1,p
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Setting 1 = <21Li> % gives dv = % dt, and substituting these in the

integral yields
f(xim, 2,2, B, q)

12 q+p/28 ® /1 ﬁ(ﬁ%)“
— k] (9) B /0 <_) exp{_a/z)/‘}dz.

3 q+2£ﬁ t

2
(ﬁ) I(q)qr/* {q + (ﬁ)ﬁ}

[3/0% (;)ﬁ(ﬁzp_ﬁ)ﬂ exp{—(l/t)ﬁ} dt = F(q +2%)

Since



332 O. Arslan | Journal of Multivariate Analysis 89 (2004) 329-337
we get

—1/2 ya 28
k|X| F(q + 2[3) (q)77/

P 2
or »/B NG
(9)q {q+ ®) }

flep, 2,0, B,9) =

and substituting k = pI'(p/2)/n?/*I(1 —|—p/2[f)21+2p7g in the above identity we obtain
the density function given in (4).

The function f(x;u, 2, 4, ,¢) is actually the density function of an elliptically
contoured random variable with

_(g+ L
9(t) = {q+ 1"y

since the function ¢g(7) satisfies the condition

/ "= (q)“'ﬁlirw(z%) <o
° r(a+4)

(see [2, p. 59]). Thus, X has an elliptically contoured distribution
(X~ECy(1,2,9)). O

When =1, A=1, 2 =2X,; and v = 2¢g we obtain the standard multivariate ¢
distribution with the location and scatter parameters ¢ and X, and the degrees of
freedom v. The case f =1, A =1, and g— oo gives the normal distribution. The
multivariate power exponential distribution can be obtained as ¢— oo. Setting § = 1,
Aq = a, and 2¢ = v yields the generalized version of the ¢ distributions family defined
by Arellano-Valle and Bolfarine [1] with the parameters p, 2, o and v.

When A=1 and f=1/2, 1>0, (4) gives a multivariate generalization of the
univariate GT distributions introduced by McDonald and Newey [11]. The density
function of the multivariate generalization of the GT distribution can be obtained as

1

f.(x;/.t,27'f,q) = C|Z|_1/2—+[_7a
{g+1d'}""=

(A
where d = /s = \/(x —)"> Y (x—p) and C = Trp(i)(q),. Note that, here p is the
27r§B(q7§
dimension of the random variable, t and ¢ are the shape parameters, and g and X are
the location and the scatter parameters.
Finally, when 4 = 1, and f tends to infinity, (4) tends to the density function of the
uniform distribution on the ellipse s<1.
Now, we can give the definition of the multivariate generalized ¢ distributions.

Definition. A random variable X = (X1, X>, ..., X,,)TER”, with p>=1, has a p
dimensional multivariate generalized ¢ distribution with u, X, A, f and ¢ parameters,
where ueR?, X, , is a positive-definite symmetric matrix, and 4, 8, ¢> 0, if its density
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function is

1
f(x;:uvzv/lvﬁvq) = Ci_p/2|2|71/2—p7 (5)

{or )}
where
o pr)r (q + 2”7;) @' pr)q)”
ngF(q)F@lﬁ) ngB(q,éiﬁ)

(6)

is the normalizing constant, s = (x — ,u)TZ_l(x —u), and B(q, 2%) denotes the beta

”

function. Here u and 2 are the location and scatter parameters, 4 is the scale
parameter, and f and ¢ are the shape parameters.

Note that we will use the notation MGT,(u,Z,, f,q) for the family of
multivariate generalized ¢ distributions.

When p = 2 we can give graphics of the density function. In Fig. 1, we present the
graphs for some values of f. We set 2 =1, u= (O,O)T, A=1and ¢ =2. Figs. 1
(a—d) shows the cases = 0.25,1,2 and 10, respectively. We can observe that for the
small values of f the shape is very sharp. When f increases the sharpness of the
density diminishes.
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Fig. 1. Plots of the density functions of the MGT>(0, 1, 1, 3,2) distributions for some values of f5.
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3. Some properties of the MGT distributions

Since the multivariate generalized ¢ distributions family MGT,(u,2, 4, ,q)
belongs to the family of elliptically contoured distributions (EC,(u,ZX,q)), they
can be restated with the stochastic representation (e.g. see [2]).

Proposition 2. (i) Let A be a symmetric nonsingular matrix with ATA = JX. If the
random variable X is distributed as MGT,(u, 2,2, f,q), then X has the same
distribution as

4+ RATUW), (7)

where UY) is a random variable uniformly distributed on the unit sphere in R?, R is an
absolutely continues random variable, independent from UY), and R has the density
Sfunction

P

28 ~4728

hR(r):—2ﬁ /zﬁrp1{1+r—} , 1r>0. (8)
B(q.4) (0 q

(i) R~GB2(r;28,4"*F.p/2B,q); here, GB2(-) denotes the generalized beta
distribution (e.g. see [4,7,12]). The kth moment of R is

Blg— 4% 2+ L
E[RY] = (q)"/* ( 3(2% ) )

for each positive integer k<2fq.
(iii) The distribution of the random variable F = R* is the F(p/B,q) distribution
with p/ B and 2q degrees of freedom.

Proof. Part (i) follows from Corollary 1 on p.65 and Theorem 2.5.5 on p.59 of [2].
Proofs of parts (ii) and (iii) can be easily obtained.

Note that || X]|| = (XTX)l/z, ||X||* and X /|| X|| have the same distributions as R,
R?> and UW)| respectively, and E(U®) =0, Var(UP)) :[‘—le7 where I, is the p x p
identity matrix (e.g. see [2,13, p. 57; p. 37)).

Proposition 3. If the random variable X has a MGT,(u, 2, A, 8, q) distribution, then,
(1) its characteristic function is

p

P/ oo 26 9728

oy(t) = Me”‘”/ v, (r\/l’)uZt)rpl{l +r_} dr, (10)
B(e.4) o 1
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where

1 i,
_ fn e(lr\/t AZt cos ()) sinp72 0 de’ fOV p> 17
v, (r\/ t%ZZ) = B 1/2)

cos(rV/'22t) for p=1.
(i) E(X) =,
o'r(854)r(s4)
(iii) Var(X) = 22, for gf>1,
pr (zp—ﬁ I'(q
(IV) yl( ) =Y
i Ce ) G ),

W) 7(X) = I for g2,

B (‘f*ﬁ@*ﬁ) )

where y,(X) and y,(X) are the multidimensional asymmetry and kurtosis coefficient
(see [6, p. 31]).

Proof. (i) Since the characteristic function of U®) is

¥,(t) = %)/0 exp (lx/ﬁ cos 0) sin”~2 0 d0

[2, p. 54, Theorem 2.5.1], U”) and R are independent, and the characteristic function
of RUW) is

E(e(z—r’RUW)):/ ¥, (rt)hg(r) dr,
0

(see [2, p. 56]), then the characteristic function of X given in (10) can be easily
obtained.

(i) E(X)=E(u+ RATUY) = u+ E(R)ATE(U®)), and since E(UP) =0, we
get E(X) = p.

(iii) Similarly, Var(X) = E(R)ATVar(U?)4 =285 and since E(R?) =

5 <q7;£ +1) (@'r (L +L) r (q;)

WP IP P e get Var(X) = 2L s,
B|aap pr 2% I'(q)

(iv) Let Xz,u-i-ql/zﬁll/lel/zZl and Y:,u+q1/2ﬁ21/2V21/222 be two
independent random variables distributed as MGT,(u, 2,4, B,q), where V1,7,
o))

28 A . Then,
pr 2"—[; I'(q)

(9)

V, and Z, are all independent to each other. Let a =
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we get  E({(X —w) Var(X)"(Y = p)}) = (a/2) ¢ PE(V1V2) ) E(Z] Z2)°),
and since E((Z7Z;)’) =0 (see [3, Proposition 3.2]), we obtain y,(X)=
E((X = )" Var(x) "' (¥ — ) = 0.

V) E{(X =@ Var(X)T (X = w))) = a 2E{(X - )" (22) 7' (X - p)}?) =

Finally, the marginal and the conditional distributions of a random variable
X ~MGT,(n, 2, A, B, q) are given in the following proposition. Since these results can
easily be obtained using the properties of the elliptically contoured distributions (e.g.
[2]), the proof is omitted.

Proposition 4. Let X ~MGT,(u,2, 2, ,q) and Y = CX + b.

(i) If C is a p x p nonsingular matrix, and beR?, then the distribution of Y is
MGT,(Cu+b,CZCT,2,B.q).

(ii) If C is a k x p matrix with k<p and rank(C) =k, and beR*, then Y has an
ECi(uy,Zy,g1) with uy = Cu+b, Xy = CECT | and

P

—k [l k= p—k A
g1(t) :tpT/ pr_l(l —w) 2 _1{1 + tﬂ} T dw, t>0. (11)
0

(iii) Partition X, p and % as

X ) P
X:[ 1}7 M:[m]’ Z:{ 1 12],
X, Ho 2o 2»
where X| and u, are k x 1 vectors and Xy is a k x k matrix. Then, X| has an
(@)"'r (%ﬁ%)r (q—%)
ECi(1y,211,91). Further, E(X\) = u; and Var(X,) = A2,
pr(zf’—ﬁ I(g)
(iv) The conditional distribution of X, given X = x1 is an ECy(Uy 1, 22.1,92.1)
with

oy = 1o+ Zn 2 (x1 — ),
Spi=2n—InI'Zn,

go1(t) = {g+ [t + (x1 — ﬂl)TZl_ll (x1 = ﬂl)]ﬁ}_<q+2%)~ (12)
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