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In this paper, we are concerned with the system of Schrödinger–Poisson equations{−�u + V (x)u + φu = f (x, u), in R3,

−�φ = u2, in R3.
(∗)

Under certain assumptions on V and f , the existence and multiplicity of solutions for (∗)
are established via variational methods.
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1. Introduction

In this paper, we consider the following system of Schrödinger–Poisson equations{−�u + V (x)u + φu = f (x, u), in R3,
−�φ = u2, in R3.

(1.1)

System (1.1) was first introduced in [6] as a model describing solitary waves for the nonlinear stationary Schrödinger equa-
tions interacting with the electrostatic field. We note that system (1.1) is also called Schrödinger–Maxwell equations, for
more details on the physical aspects of this problem, we refer to [6] and references therein.

In recent years, problem (1.1) with V (x) ≡ 1 or being radially symmetric, has been widely studied under various condi-
tions on f , see for example [2,8–12,16–18]. The case of positive and bounded nonradial potential V has been considered in
[21], when f is asymptotically linear, and in [3,4], when f (x, u) = |u|p−1u, with 3 < p < 5. Moreover, in [3], the existence of
ground state solutions for problem (1.1) has been proved in several situations, including the positive constant potential case.
In [4], the authors considered problem (1.1) with a class of more general potential which may be unbounded from below,
and the existence of ground state solutions was proved. Let H1(R3) and D1,2(R3) = {u ∈ L6(R3): |∇u| ∈ L2(R3)} denote the
usual Sobolev spaces. We recall here that (u, φ) ∈ H1(R3)× D1,2(R3) is said to be a ground state solution to problem (1.1), if
(u, φ) solves (1.1) and minimizes the action functional associated to (1.1) among all possible nontrivial solutions. However,
as pointed out in [3,4], because of some technical difficulties, the existence of ground state solutions was established in [3,4]
only for 3 < p < 5 when V was not a constant. In this paper, motivated by techniques used in [14,15], we generalize results
in [3,4] to the case 2 < p � 3.

In the first part of this paper, we are interested in the existence of ground state solution of (1.1) with pure power type
nonlinearity so that (1.1) can be rewritten as
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{−�u + V (x)u + φu = |u|p−1u, in R3,
−�φ = u2, in R3,

(1.2)

where 2 < p � 3. On the potential V , we make the following assumption

(V 1) V ∈ C(R3,R).
(V 2) V (∞) := lim inf|x|→∞ V (x) � V (x).
(V 3) infσ(−� + V (x)) > 0, where σ(−� + V (x)) denotes the spectrum of the self-adjoint operator −� + V (x) : H2(R3) →

L2(R3), i.e.,

infσ
(−� + V (x)

) = inf
u∈H1(R3)\{0}

∫
R3 |∇u|2 + V (x)u2 dx∫

R3 |u|2 dx
> 0.

(V 4) V is weakly differentiable, and satisfies (∇V (x), x) ∈ L∞(R3) ∪ L3/2(R3), and

2V (x) + (∇V (x), x
)
� 0 a.e. x ∈ R3,

where (·,·) is the usual inner product in R3.

Our main result is the following.

Theorem 1.1. Assume (V 1)–(V 4) and 2 < p � 3. Then problem (1.2) has a ground state solution in H1(R3) × D1,2(R3).

We will use variational methods to prove Theorem 1.1. The main difficulty consists in the lack of compactness of the
Sobolev embedding, since (1.2) is set on R3. We recover the compactness by using a version of global compactness lemma,
see Lemma 3.6. On the other hand, it seems difficult to get the boundedness of a (PS) sequence when 2 < p � 3. To
overcome the difficulty, motivated by [15,16], we use Jeanjean’s result [14] to construct a special bounded (PS) sequence
then we can complete the proof of Theorem 1.1.

In the second part of this paper, we deal with problem (1.1) with a periodic potential. We assume

(V 5) V ∈ C(R3,R).
(V 6) V (x) is 1-periodic in each xi , i = 1,2,3, minR3 V (x) > 0.
( f1) f (x, u) is 1-periodic in each xi , i = 1,2,3.
( f2) fu(x, u) exists everywhere, and fuu(x, u) exists for u 	= 0, fu is a Caratheodory function f (x,0) = fu(x,0) = 0 for all x.

There are C � 0 and p1, p2 ∈ [4,6) with p1 � p2 such that∣∣ fuu(x, u)
∣∣ � C

(|u|p1−3 + |u|p2−3)
holds for every u 	= 0 and for every x.

( f3) There exists μ � 4 such that

0 < μF (x, u) � u f (x, u), for all (x, u) ∈ (
R3,R

)
,

where F (x, u) = ∫ u
0 f (x, t)dt .

( f4) For every u 	= 0 and for every x, it holds that

fu(x, u)u2 > f (x, u)u.

In the following theorem, we consider the multiplicity of solutions of (1.1). We note that if (u0, φ0) is a solution of (1.1),
then so are all elements of the orbit of (u0, φ0) under the action of Z3, O(u0, φ0) := {(u0(· − k),φ0(· − k)): k ∈ Z3}. Two
solutions (u1, φ1) and (u2, φ2) are said to be geometrically distinct if O(u1, φ1) and O(u2, φ2) are disjoint.

Theorem 1.2. Assume (V 5), (V 6) and ( f1)–( f4). Then problem (1.1) has infinitely many geometrically distinct solutions in H1(R3) ×
D1,2(R3).

We remark that assumptions ( f1)–( f4) were introduced by [5] to study the nonlinear Schrödinger equation and ( f1)–( f4)

hold for f (x, u) = |u|p−1u with 3 � p < 5. Since we do not assume here that f (x, u) is odd with respect to u, Theorem 1.2
is a generalization and complement of Theorem 2.1 in [2] in the case 3 � p < 5.

The paper is organized as follows. In Section 2, we outline the variational setting and give some preliminary lemmas. The
proof of Theorems 1.1 and 1.2 are given respectively in Sections 3 and 4. In Appendix A, we give the proofs of Lemmas 2.2
and 2.3.
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2. Preliminary lemmas

In this section we outline the variational framework for problem (1.1) and give some preliminary lemmas.
Throughout the paper, we denote the norm of H1(R3) by

‖u‖ =
( ∫

R3

(|∇u|2 + u2)dx

)1/2

,

the norm of D1,2(R3) by

‖u‖D =
( ∫

R3

|∇u|2 dx

)1/2

.

We also use the notation

‖u‖V =
( ∫

R3

(|∇u|2 + V (x)u2)dx

)1/2

,

which is a norm equivalent to ‖ · ‖ under (V 1)–(V 3). And by ‖ · ‖q we denote the usual Lq-norm, C stands for different
positive constants.

For every u ∈ H1(R3), the Lax–Milgram theorem implies that there exists a unique φu ∈ D1,2(R3) such that

−�φu = u2. (2.1)

Moreover, φu can be expressed by

φu(x) = 1

4π

∫
R3

u2(y)
1

|x − y| dy.

From (2.1), it is easy to see

‖φu‖D � C‖u‖2
12/5 � C‖u‖2. (2.2)

It can be proved that (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of (1.1) if and only if u ∈ H1(R3) is a critical point of the
functional I : H1(R3) → R defined as

I(u) = 1

2

∫
R3

(|∇u|2 + V (x)u2)dx + 1

4

∫
R3

φuu2 dx −
∫
R3

F (x, u)dx

and φ = φu , where F (x, u) = ∫ u
0 f (x, t)dt , see for instance [6].

We collect some properties of the functions φu , see [9] and [17].

Lemma 2.1. For any u ∈ H1(R3), we have

(i) ‖φu‖D � C‖u‖2 , where C is independent of u. As a consequence there exists C ′ > 0 such that∫
R3

φuu2 dx � C ′‖u‖4
12/5;

(ii) φu � 0;
(iii) for any t > 0, φut (x) = t2φu(tx), where ut(x) = t2u(tx).

Define N : H1(R3) → R by

N(u) =
∫
R3

φuu2 dx.

The next lemma shows that the functional N and its derivative N ′ , N ′′ posses BL splitting property, which is similar to the
well-known Brezis–Lieb Lemma [7], see [5] for its definition.

Lemma 2.2. Let un ⇀ u in H1(R3) and un → u a.e. in R3 . Then as n → ∞
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(i) N(un − u) = N(un) − N(u) + o(1);
(ii) N ′(un − u) = N ′(un) − N ′(u) + o(1), in H−1(R3);

(iii) N ′′(un − u) = N ′′(un) − N ′′(u) + o(1) in L(H1(R3), H−1(R3)).

Lemma 2.3.

(i) N ′ : H1(R3) → H−1(R3) is weakly sequentially continuous;
(ii) N ′′(u) ∈ L(H1(R3), H−1(R3)) is compact for any u ∈ H1(R3).

We will give the proofs of Lemmas 2.2 and 2.3 in Appendix A.

3. Proof of Theorem 1.1

In this section we study problem (1.2) and give the proof of Theorem 1.1. The functional I is rewritten as

I(u) = 1

2

∫
R3

(|∇u|2 + V (x)u2)dx + 1

4

∫
R3

φuu2 dx − 1

p + 1

∫
R3

|u|p+1 dx. (3.1)

When 3 < p < 5, in [3,4], the authors proved the existence of ground state solutions by minimizing I restricted to the
Nehari manifold

N = {
u ∈ H1(R3) \ {0}:

〈
I ′(u), u

〉 = 0
}
.

The key point in their arguments is that N is a natural constraint for the functional I . However, when 2 < p � 3, this
fact is no longer true and the structure of N is complicated. In this situation, as in [3,17], we introduce another manifold
M∞

λ which is a natural constraint for the limiting functional of I when 2 < p � 3. On the other hand, we find that every
(PS) sequence is bounded when 3 < p < 5 because a variant of global Ambrosetti–Rabinowitz condition is satisfied when
3 < p < 5, see e.g. [9]. While it seems to be difficult to get the boundedness of a (PS) sequence when 2 < p � 3. To overcome
this difficulty, motivated by [15,16], we use Jeanjean’s result [14], which generalizes Struwe’s argument [19,20]. We consider
a family of functionals defined by

Iλ(u) = 1

2

∫
R3

(|∇u|2 + V (x)u2)dx + 1

4

∫
R3

φuu2 dx − λ

p + 1

∫
R3

|u|p+1 dx, (3.2)

for λ ∈ [1/2,1]. By Jeanjean’s result [14], we can see that for a.e. λ ∈ [1/2,1], there exist a bounded (PS)cλ sequence for
some cλ > 0. Then with the aid of a version of global compactness lemma, we get a nontrivial critical point uλ of Iλ for a.e.
λ ∈ [1/2,1]. By choosing λn → 1, we get a sequence of {uλn } being the critical points of Iλn .

Subsequently, a pair of functions (uλn , φuλn
) is a solution to the following parameterized system{−�u + V (x)u + φu = λn|u|p−1u, in R3,

−�φ = u2, in R3.
(3.3)

From the fact that (uλn , φuλn
) is a solution to the system (3.3), we know that {uλn } satisfies the Pohozaev identity. We use

the Pohozaev identity to show that the sequence {uλn } is bounded in H1(R3) (see also e.g. [15,16]). Then we deduce that
{uλn } is a bounded (PS) sequence of I , which yields to Theorem 1.1.

We need the following abstract result which is due to Jeanjean [14].

Proposition 3.1. Let X be a Banach space equipped with a norm ‖.‖X and let J ⊂ R+ be an interval. We consider a family {Φλ}λ∈ J of
C1-functional on X of the form

Φλ(u) = A(u) − λB(u), ∀λ ∈ J ,

where B(u) � 0,∀u ∈ X, and such that either A(u) → +∞ or B(u) → +∞, as ‖u‖ → ∞. We assume that there are two points
v1, v2 in X such that

cλ = inf
γ ∈Γ

max
t∈[0,1]Φλ

(
γ (t)

)
> max

{
Φλ(v1),Φλ(v2)

}
, ∀λ ∈ J ,

where

Γ = {
γ ∈ C

([0,1], X
)
: γ (0) = v1, γ (1) = v2

}
.

Then, for almost every λ ∈ J , there is a bounded (PS)cλ sequence for Φλ , that is, there exists a sequence {un(λ)} ⊂ X such that

(i) {un(λ)} is bounded in X,
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(ii) Φλ(un(λ)) → cλ ,
(iii) Φ ′

λ(un(λ)) → 0 in X∗ , where X∗ is the dual of X .

The following lemma ensures that Iλ has the mountain pass geometry [1]. The corresponding mountain pass level is
denoted by cλ .

Lemma 3.2. Assume (V 1)–(V 3) and 2 < p < 5. Then

(i) there exists a v ∈ H1(R3) \ {0}, with Iλ(v) � 0, for all λ ∈ [1/2,1],
(ii) cλ = infγ ∈Γ maxt∈[0,1] Iλ(γ (t)) > max{Iλ(0), Iλ(v)} for all λ ∈ [1/2,1], where Γ = {γ ∈ C([0,1], H1(R3)): γ (0) = 0,

γ (1) = v}.

Proof. (i) First we have

Iλ(u) � I∞1/2(u) := 1

2

∫
R3

|∇u|2 dx + 1

2

∫
R3

V (∞)u2 dx + 1

4

∫
R3

φuu2 dx − 1

2(p + 1)

∫
R3

|u|p+1 dx.

By Lemma 2.1, for u ∈ H1(R3), u 	= 0 fixed, it is easy to see that

I∞1/2

(
t2u(tx)

) = t3

2

∫
R3

|∇u|2 dx + t

2

∫
R3

V (∞)u2 dx + t3

4

∫
R3

φuu2 dx − t2p−1

2(p + 1)

∫
R3

|u|p+1 dx.

Since 2p − 1 > 3, we have that I∞1/2(t
2u(tx)) → −∞ as t → +∞. Taking v = t2u(tx) for t large, we have Iλ(v) � I∞1/2(v) < 0.

Thus we have (i).
(ii) Since

Iλ(u) � 1

2
‖u‖2

V − λ

p + 1

∫
R3

|u|p+1 dx � 1

2
‖u‖2

V − C‖u‖p+1
V

and p > 2, we deduce that Iλ has a strict local minimum in 0 and cλ > 0. �
In what follows, we need to consider the associated limit problem{−�u + V (∞)u + φu = λ|u|p−1u, in R3,

−�φ = u2, in R3,
(3.4)

where 2 < p < 5, λ ∈ [1/2,1]. Define I∞λ : H1(R3) → R by

I∞λ (u) = 1

2

∫
R3

(|∇u|2 + V (∞)u2)dx + 1

4

∫
R3

φuu2 dx − λ

p + 1

∫
R3

|u|p+1 dx. (3.5)

As in [3,17], we introduce the following manifold

M∞
λ := {

u ∈ H1(R3) \ {0}: G∞
λ (u) = 0

}
where

G∞
λ (u) :=

∫
R3

(
3

2
|∇u|2 + 1

2
V (∞)u2 + 3

4
φuu2 − (2p − 1)λ

p + 1
|u|p+1

)
dx.

Set

m∞
λ := inf

u∈M∞
λ

I∞λ (u). (3.6)

The manifold M∞
λ contains all the nontrivial critical points of I∞λ and possesses the following properties, see [17].

Lemma 3.3. Assume 2 < p < 5. Then for any u ∈ H1(R3), u 	= 0, there exists a unique number t = t(u) > 0, such that ut =
t2u(tx) ∈ M∞

λ . Moreover

I∞λ (ut) = max
t�0

I∞λ (ut).

The following lemma is proved in [3].



160 L. Zhao, F. Zhao / J. Math. Anal. Appl. 346 (2008) 155–169
Lemma 3.4. Assume 2 < p < 5. Then m∞
λ is achieved at some u∞

λ ∈ M∞
λ for any λ ∈ [1/2,1]. Moreover I ′∞λ (u∞

λ ) = 0, and

I∞λ
(
u∞

λ

) = m∞
λ = inf

{
I∞λ (u): u 	= 0, I ′∞λ (u) = 0

}
.

Lemma 3.5. Assume (V 1)–(V 3) hold and 2 < p < 5. Then cλ < m∞
λ for any λ ∈ [1/2,1].

Proof. Without loss of generality, we assume V (x) 	≡ V (∞). Let u∞
λ be the minimizer of m∞

λ , by Lemma 3.3, we have

I∞λ
(
u∞

λ

) = max
t�0

I∞λ
(
t2u∞

λ (tx)
)
.

Thus by choosing v = t2u∞
λ (tx) for t large in Lemma 3.2, we have

cλ � max
t�0

Iλ
(
t2u∞

λ (tx)
)
< max

t�0
I∞λ

(
t2u∞

λ (tx)
) = I∞λ

(
u∞

λ

) = m∞
λ . �

Lemma 3.6. Assume (V 1)–(V 3) hold and 2 < p < 5. Let {un} be a bounded (PS) sequence for Iλ , for λ ∈ [1/2,1]. Then there exists a
subsequence of {un}, still denoted by {un}, an integer l ∈ N ∪ {0}, sequences {yk

n} ⊂ R3 , wk ∈ H1(R3) for 1 � k � l, such that

(i) un ⇀ u0 with I ′λ(u0) = 0,

(ii) |yk
n| → ∞ and |yk

n − yk′
n | → ∞, for k 	= k′ ,

(iii) wk 	= 0 and I ′λ
∞

(wk) = 0, for 1 � k � l,

(iv) ‖un − u0 − ∑k=l
k=1 wk(· − yk

n)‖ → 0,

(v) Iλ(un) → Iλ(u0) + ∑k=l
k=1 I∞λ (wk),

where we agree that in the case l = 0 the above holds without wk, {yk
n}.

Since we have Lemma 2.2, we can prove Lemma 3.6 in a standard way. We omit it here, see e.g. [15].
We will make use of the following Pohozaev type identity. Since its proof is standard we do not provide it (see e.g. [10]).

Lemma 3.7. Let u be a critical point of Iλ in H1(R3), then

1

2

∫
R3

|∇u|2 dx + 3

2

∫
R3

V (x)u2 dx + 1

2

∫
R3

(∇V (x), x
)
u2 dx + 5

4

∫
R3

φuu2 dx − 3λ

p + 1

∫
R3

|u|p+1 dx = 0. (3.7)

Lemma 3.8. Assume (V 1)–(V 4) hold and 2 < p < 5. Let {un} be a bounded (PS)cλ sequence for Iλ , i.e. limn→∞ Iλ(un) = cλ ,
I ′λ(un) → 0. Then, up to a subsequence, {un} converges to a nontrivial critical point uλ of Iλ with Iλ(uλ) = cλ .

Proof. By Lemma 3.6, there exist l ∈ N ∪ {0} and uλ ∈ H1(R3) such that I ′λ(uλ) = 0 and

un ⇀ uλ in H1(R3),
Iλ(un) → Iλ(uλ) +

k=l∑
k=1

I∞λ
(

wk),
where {wk}l

k=1 are the critical points of I∞λ .
Denote⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a :=
∫
R3

|∇uλ|2 dx, b :=
∫
R3

V (x)u2
λ dx,

b :=
∫
R3

(∇V (x), x
)
u2

λ dx, c :=
∫
R3

φuλ u2
λ dx, d :=

∫
R3

|uλ|p+1 dx.

(3.8)

It follows from (V 4) that 2b + b � 0. Then by Lemma 3.7, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
a + 3

2
b + 1

2
b + 5

4
c − 3λ

p + 1
d = 0,

1

2
a + 1

2
b + 1

4
c − λ

p + 1
d = Iλ(uλ),

(3.9)
a + b + c − d = 0.
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The first equation comes from the Pohozaev equality (3.7). The second one is from the definition of Iλ , and the last one is
〈I ′λ(uλ), uλ〉 = 0. From these relations, we have

3Iλ(uλ) = b + 1

2
b + 2(p − 2)

p + 1
d,

that is

3Iλ(uλ) =
∫
R3

(
V (x) + 1

2

(∇V (x), x
))

u2
λ dx + 2(p − 2)

p + 1

∫
R3

|uλ|p+1 dx � 2(p − 2)

p + 1

∫
R3

|uλ|p+1 dx � 0.

If l 	= 0, then

cλ = lim
n→∞ Iλ(un) = Iλ(uλ) +

k=l∑
k=1

I∞λ
(

wk) � m∞
λ ,

which is a contradiction by Lemma 3.5. Thus l = 0 then Lemma 3.6 implies that un → uλ in H1(R3) and Iλ(uλ) = cλ . �
Now we are in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. The first step is to show that I has a nontrivial critical point. By Lemma 3.8, it is sufficient to construct
a bounded (PS)c1 sequence for I , where c1 is the mountain pass value of I1 = I .

We use Proposition 3.1 with X = H1(R3), J = [1/2,1], Φλ = Iλ and A(u) = 1
2

∫
R3 (|∇u|2 + V (x)u2)dx + 1

4

∫
R3 φuu2 dx,

B(u) = 1
p+1

∫
R3 |u|p+1 dx. By Lemma 3.2, Iλ satisfies the assumptions of Proposition 3.1. Thus for almost every λ ∈ [1/2,1],

there exists a bounded (PS)cλ sequence for Iλ . Then Lemma 3.8 implies that there exists uλ ∈ H1(R3), uλ 	= 0, such that

I ′λ(uλ) = 0, Iλ(uλ) = cλ for a.e. λ ∈ [1/2,1].
Choosing λn → 1, then we have a sequence of uλn , denoted by {un}, the critical points of Iλn . Next, we show that {un} is
bounded.

Define an,bn,bn, cn and dn as in (3.8) by replacing u with un respectively. As (3.9), we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
an + 3

2
bn + 1

2
bn + 5

4
cn − 3λn

p + 1
dn = 0,

1

2
an + 1

2
bn + 1

4
cn − λn

p + 1
dn = cλn ,

an + bn + cn − dn = 0.

From these relations, we have

1

4
an + 1

4
bn +

(
1

4
− 1

p + 1

)
λndn = cλn (3.10)

and

bn + 1

2
bn + 2(p − 2)

p + 1
λndn = 3cλn � 3c1/2. (3.11)

Note that (V 4) implies bn + 1
2 bn � 0. Thus (3.11) implies dn is bounded since 2 < p < 5. It turn out that an + bn is bounded

by (3.10), that is, {un} is bounded in H1(R3). Therefore

lim
n→∞ Iλ(un) = lim

n→∞

(
Iλn (un) + (λn − 1)

∫
R3

|un|p+1 dx

)
= lim

n→∞ cλn = c1.

Here we use the fact that the map λ :→ cλ is left-continuous, see [14]. Similarly, I ′(un) → 0 in H−1(R3). Then Lemma 3.8
yields that there exists u0 ∈ H1(R3), u0 	= 0, being a critical point of I .

Next we prove the existence of ground state solution of problem (1.2). Denote

m := inf
{

I(u): u 	= 0, I ′(u) = 0
}
.

As in the proof of Lemma 3.8, we can see that every critical point of I has nonnegative energy. Thus 0 � m � I(u0) < +∞.
To complete the proof, it suffices to prove m can be achieved in H1(R3). Let {un} be a sequence of nontrivial critical points
of I satisfying I(un) → m. Since I(un) is bounded, using the argument in Lemma 3.8, we can deduce that {un} is bounded.
Thus, in particular, {un} is a bounded (PS) sequence of I . Applying Lemma 3.6, we have



162 L. Zhao, F. Zhao / J. Math. Anal. Appl. 346 (2008) 155–169
I(un) → I(u0) +
k=l∑
k=1

I∞
(

wk) (3.12)

with l � 0, u0 a critical point of I and wk critical points of I∞ , where I∞ = I∞1 defined in (3.5). Let

m∞ := inf
{

I∞(u): u 	= 0, I ′∞(u) = 0
}
,

which can be achieved in H1(R3) by Lemma 3.4. As in the proof of Lemma 3.5, we assume V (x) 	≡ V (∞), thus, we have
m � c1 < m∞ . Since I∞(wk) � m∞ > 0, for each k, we deduce u0 	= 0 and l = 0 from (3.12). Thus I(u0) = m, and (u0, φu0) is
the ground state solution of problem (1.2). �
Remark 3.9. In [4], the authors prove the existence of a ground state solution to problem (1.2) with 3 < p < 5 under the
assumptions

(V ′
1) V : R3 → R is measurable function;

(V ′
2) V (∞) := lim inf|x|→∞ V (x) > V (x), for almost every x ∈ R3, and the inequality is strict in a nonzero measure domain;

(V ′
3) there exists C > 0 such that, for any u ∈ H1(R3),∫

R3

|∇u|2 + V (x)u2 dx � C‖u‖2.

As pointed out in [4], under conditions (V ′
1), (V ′

2) and (V ′
3), V is allowed to be unbounded from below. Since we can

easily obtain the boundedness of (PS) sequence when 3 < p < 5, it is not difficult to give an alternative proof of Theorem 1.2
in [4] using Lemma 3.6.

4. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2. Following [5], we show Theorem 1.2 by a superposition principle
established in [5]. We recall it below.

Let E be a Hilbert space with the inner product 〈·,·〉E . Let G be a Abelian group acting isometrically on E . Assume G
satisfies

(G) Every infinite subset A of G contains a cofinal sequence.

For the definition of cofinal sequence, we refer to [5]. Remark that G = Z3 satisfies (G).
Define the functional Φ : E → R by

Φ(u) := 1

2
〈Lu, u〉E − Ψ (u).

We consider L ∈L(E) with the following properties

(L1) L is a selfadjoint isomorphism. Its spectrum is a finite set.
(L2) L is equivariant under the action of G .

And we consider a differentiable map Ψ : E → R and denote its gradient by Λ. We assume the following properties for Ψ

(F1) There is α in (0,1] such that Ψ ∈ C2+α(E,R), uniformly on bounded subsets.
(F2) Ψ,Ψ ′ and Ψ ′′ have the BL-splitting property.
(F3) Λ is weakly sequentially continuous.
(F4) For every u in E , the operator Λ′(u) is compact.
(F5) Ψ ′ is invariant under the action of G .

We need to recall some notions, see [5]. If X , Y are normed spaces and f : X → Y is a map, we call f is bounded if
it maps bounded subsets of X into bounded subsets of Y . We say that f ∈ Cn(X, Y ) uniformly on bounded subsets if all
derivatives up to order n are bounded in this sense. For α ∈ (0,1) we say that f ∈ Cn+α(X, Y ) uniformly on bounded subsets
if f ∈ Cn(X, Y ) uniformly on bounded sunsets and if the nth derivative of f is uniformly Hölder continuous with exponent
α on bounded subsets of X . And we say that f has the BL-splitting property, if for every weakly convergent sequence {xn}
in X with xn ⇀ x it holds that

f (xn) − f (xn − x) → f (x) in Y as n → ∞.

Let us recall the superposition principle in [5].
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Proposition 4.1. Suppose that (G), (L1), (L2) and (F1)–(F5) hold. Let u 	= 0 is an isolated critical point of Φ , such that Φ has
nonzero reduced local degree at u. Then Kkc+ε

kc−ε/G is infinite for c := Φ(u) and for every ε > 0 and every k in N \ {1}, where Kb
a =

{u ∈ E: Φ ′(u) = 0, a � Φ(u) � b}.

In H1(R3), we introduce the inner product

〈u, v〉V =
∫
R3

(∇u∇v + V (x)uv
)

dx.

Define N̂ : H1(R3) → R by

N̂(u) =
∫
R3

F (x, u)dx.

Thus the functional I defined in (2.3) is rewritten as

I(u) = 1

2
‖u‖2

V + 1

4
N(u) − N̂(u).

Similar to N , under the assumptions ( f1)–( f4), the functional N̂ and its derivative N̂ ′ , N̂ ′′ posses BL splitting property. For
the proofs of Lemmas 4.2 and 4.3 we refer to [5].

Lemma 4.2. Assume ( f1)–( f4) hold. Let un ⇀ u in H1(R3) and un → u a.e. in R3 . Then as n → ∞

(i) N̂(un − u) = N̂(un) − N̂(u) + o(1);

(ii) N̂ ′(un − u) = N̂ ′(un) − N̂ ′(u) + o(1), in H−1(R3);

(iii) N̂ ′′(un − u) = N̂ ′′(un) − N̂ ′′(u) + o(1) in L(H1(R3), H−1(R3)).

Lemma 4.3. Assume ( f1)–( f4) hold. Then

(i) N̂ ′ : H1(R3) → H−1(R3) is weakly sequentially continuous;

(ii) N̂ ′′(u) ∈ L(H1(R3), H−1(R3)) is compact for any u ∈ H1(R3).

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. We use Proposition 4.1 with E = H1(R3), G = Z3, L = Id, Ψ (u) = − 1
4 N(u) + N̂(u) and Φ(u) = I(u).

Then

I(u) = 1

2
‖u‖2

V − Ψ (u).

As in the proof of Lemma 3.2, we can see that I possesses the mountain pass geometry. By Ekeland’s variational princi-
ple [13], there exists {un} ⊂ H1(R3) and c > 0 such that

I(un) → c, I ′(un) → 0, in H−1(R3). (4.1)

By ( f3),

c + 1 + ‖un‖V � I(un) − 1

4

〈
I ′(un), un

〉
� 1

4
‖un‖2

V ,

which implies that {un} ⊂ H1(R3) is bounded. Since I is invariant under the action of Z3, we claim that after an appropriate
translation, un ⇀ u, in H1(R3), for some u ∈ H1(R3), u 	= 0. Otherwise, by a standard argument, we can deduce c = 0, a con-
tradiction. From (4.1), it is easy to see I ′(u) = 0. And as in the proof of Proposition 4.1 in [5], I has nonzero reduced local
degree at u 	= 0. Thus to apply Proposition 4.1, we need to verify that Ψ satisfies (F1)–(F5). In fact, by simple computation,
we can see N satisfies (F1), and by ( f2), N̂ satisfies (F1), see [5]. Thus (F1) holds for Ψ . (F2) follows from Lemmas 2.2
and 4.2. (F3)–(F4) hold by Lemmas 2.3 and 4.3. (F5) is obvious since V and f (·, u) is 1-periodic. By Proposition 4.1, we
complete the proof of Theorem 1.2. �
Appendix A

In this section, we give the proof of Lemmas 2.2 and 2.3. We need the well-known Hardy–Littlewood–Sobolev inequality.
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Lemma A.1 (Hardy–Littlewood–Sobolev inequality). Let

Ir f (x) =
∫
Rn

|x − y|−n/r f (y)dy.

If r > 1 and 1
r = 1 − ( 1

p − 1
q ) for some 1 < p < q < ∞, then there exists a C = C(p,q, r,n) such that

‖Ir f ‖q � C‖ f ‖p .

Proof of Lemma 2.2. Let un ⇀ u in H1(R3) and un → u a.e. in R3. We use these notations

G(x, y) := 1

4π

1

|x − y| , A :=
∫
R3

∫
R3

u2(y)u2(x)G(x, y)dx dy,

I(1)
n :=

∫
R3

∫
R3

u2
n(y)u2(x)G(x, y)dx dy, I(2)

n :=
∫
R3

∫
R3

un(y)u(y)un(x)u(x)G(x, y)dx dy,

I(3)
n :=

∫
R3

∫
R3

u2
n(y)un(x)u(x)G(x, y)dx dy, I(4)

n :=
∫
R3

∫
R3

un(y)u(y)u2(x)G(x, y)dx dy,

(i) Using above notations, we have

N(un − u) − (
N(un) − N(u)

) = 2I(1)
n + 4I(2)

n − 4I(3)
n − 4I(4)

n + 2A,

thus it suffices to show that

lim
n→∞ I(i)

n = A, i = 1,2,3,4. (A.1)

Set

vn(x) := 1

4π

∫
R3

u2
n(y)

1

|x − y| dy, v(x) := 1

4π

∫
R3

u2(y)
1

|x − y| dy. (A.2)

First, we have

vn → v a.e. on R3. (A.3)

In fact,∣∣vn(x) − v(x)
∣∣ �

∫
R3

∣∣u2
n(y) − u2(y)

∣∣G(x, y)dy

� C
∥∥u2

n − u2
∥∥

L2(B R (x))

( ∫
|y−x|�R

1

|x − y|2 dy

)1/2

+ C
∥∥u2

n − u2
∥∥

L4/3(Bc
R (x))

( ∫
|y−x|�R

1

|x − y|4 dy

)1/4

.

Letting n → ∞ and then R → ∞, we get vn(x) → v(x), as n → ∞.
We note that vn = φun ∈ D1,2(R3), and

‖vn‖6 � C‖vn‖D � C‖un‖2
12/5 � C .

Therefore we can assume, vn ⇀ v in L6(R3). Since u ∈ H1(R3) thus u2 ∈ L6/5(R3), the dual space of L6(R3), we have∫
R3

vnu2 dx →
∫
R3

vu2 dx,

that is limn→∞ I(1)
n = A.

To prove limn→∞ I(2)
n = A, we set

ṽn(x) := 1

4π

∫
R3

un(y)u(y)
1

|x − y| dy. (A.4)

As before it is easy to verify that ṽn → v a.e. in R3.
Now by Hardy–Littlewood–Sobolev inequality, ṽn ∈ L6(R3) and

‖̃vn‖6 � C‖unu‖6/5 � C‖un‖12/5‖u‖12/5,
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which implies that

‖̃vnun‖2 � ‖̃vn‖6‖un‖3 � C‖un‖2‖u‖ � C .

Therefore up to a subsequence ṽnun ⇀ vu in L2(R3). Since u ∈ L2(R3),∫
R3

ṽnunu dx →
∫
R3

vu2 dx,

that is limn→∞ I(2)
n = A. In a similar way, we can verify (5.1) with i = 3,4. We omit the details. Thus we have (i).

(ii) For any ϕ ∈ H1(R3) with ‖ϕ‖ � 1, we need to show〈
N ′(un − u) − N ′(un) + N ′(u),ϕ

〉 → 0, uniformly with respect to ϕ.

In fact,

〈
N ′(un − u) − N ′(un) + N ′(u),ϕ

〉 = ∫
R3

∫
R3

(−u2
n(y)G(x, y)u(x)ϕ(x) − 2un(y)u(y)G(x, y)un(x)ϕ(x)

+ 2un(y)u(y)G(x, y)u(x)ϕ(x) + u2(y)G(x, y)un(x)ϕ(x)
)

dx dy

= −̃I(1)
n − 2̃I(2)

n + 2̃I(3)
n + Ĩ(4)

n

where

Ĩ(1)
n =

∫
R3

∫
R3

u2
n(y)G(x, y)u(x)ϕ(x)dx dy, Ĩ(2)

n =
∫
R3

∫
R3

un(y)u(y)G(x, y)un(x)ϕ(x)dx dy,

Ĩ(3)
n =

∫
R3

∫
R3

un(y)u(y)G(x, y)u(x)ϕ(x)dx dy, Ĩ(4)
n =

∫
R3

∫
R3

u2(y)G(x, y)un(x)ϕ(x)dx dy.

Thus it suffices to show

lim
n→∞ Ĩ(i)

n =
∫
R3

∫
R3

u2(y)G(x, y)u(x)ϕ(x)dx dy, i = 1,2,3,4, (A.5)

uniformly with respect to ϕ .
First,∣∣∣∣̃I(1)

n −
∫
R3

∫
R3

u2(y)G(x, y)u(x)ϕ(x)dx dy

∣∣∣∣ �
∫
R3

∣∣(vn(x) − v(x)
)
u(x)ϕ(x)

∣∣dx

� ‖ϕ‖2

( ∫
R3

(vn − v)2u2 dx

)1/2

� C

( ∫
R3

(vn − v)2u2 dx

)1/2

where vn and v are defined by (5.2). Since {(vn − v)2} ⊂ L3(R3) is bounded and vn → v a.e. in R3, up to a subsequence,

(vn − v)2 ⇀ 0 in L3(R3).
Since u2 ∈ L3/2(R3), we have∫

R3

(vn − v)2u2 dx → 0,

that is, (5.5) with i = 1.
The verification of (5.5) with i = 2,3,4 can be done in a similar way. For the sake of simplicity, we prove only the case

i = 2, since it is the most complicated one.
By Minkowski inequality, we have
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∣∣∣∣̃I(2)
n −

∫
R3

∫
R3

u2(y)G(x, y)u(x)ϕ(x)dx dy

∣∣∣∣ �
∫
R3

∫
R3

∣∣(un(y)un(x) − u(y)u(x)
)
G(x, y)u(y)ϕ(x)

∣∣dx dy

� ‖ϕ‖3

( ∫
R3

( ∫
R3

∣∣(un(y)un(x) − u(y)u(x)
)
G(x, y)u(y)

∣∣dy

)3/2

dx

)2/3

� C

∫
R3

( ∫
R3

∣∣(un(y)un(x) − u(y)u(x)
)
G(x, y)u(y)

∣∣3/2
dx

)2/3

dy

= C

∫
R3

( ∫
R3

∣∣(un(y)un(x) − u(y)u(x)
)∣∣3/2

G3/2(x, y)dx

)2/3∣∣u(y)
∣∣dy

= C

∫
R3

w2/3
n (y)

∣∣u(y)
∣∣dy,

where wn is defined by

wn(y) :=
∫
R3

∣∣(un(y)un(x) − u(y)u(x)
)∣∣3/2

G3/2(x, y)dx. (A.6)

First we claim wn → 0 a.e. in R3.
Set

wn(y) :=
∫
R3

∣∣un(x) − u(x)
∣∣3/2

G3/2(x, y)dx,

w̃n(y) :=
∫
R3

∣∣un(x)
∣∣3/2

G3/2(x, y)dx, w̃(y) :=
∫
R3

∣∣u(x)
∣∣3/2

G3/2(x, y)dx.

In fact,

wn(y) =
∫
R3

∣∣(un(x) − u(x)
)
un(y) + (

un(y) − u(y)
)
u(x))

∣∣3/2
G3/2(x, y)dx

�
∣∣un(y)

∣∣3/2
wn(y) + ∣∣un(y) − u(y)

∣∣3/2
w̃(y). (A.7)

For y ∈ R3 fixed,

wn(y) �
( ∫

|x−y|�R

(
un(x) − u(x)

)9/2
dx

)1/3( ∫
|x−y|�R

G9/4(x, y)dx

)2/3

+
( ∫

R3

|un − u|2 dx

)3/4( ∫
|x−y|�R

G6(x, y)dx

)1/4

. (A.8)

Letting n → ∞ and then R → ∞, we get wn(y) → 0, as n → ∞. By (5.7), wn(y) → 0.
Next we consider the integrability of wn . By Hardy–Littlewood–Sobolev inequality, w̃n ∈ L4(R3), for all q � 4, and

‖w̃n‖4 �
∥∥u3/2

n

∥∥
4/3 � ‖un‖3/2

2 � C .

Similarly, w̃ ∈ L4(R3). Thus∫
R3

∣∣w2/3
n (y)

∣∣2
dy �

∫
R3

(|un|2|w̃n|4/3 + |u|2|w̃|4/3)dy

�
( ∫

R3

|un|3 dy

)2/3( ∫
R3

|w̃n|4 dy

)1/3

+
( ∫

R3

|u|3 dy

)2/3( ∫
R3

|w̃|4 dy

)1/3

� C .

Thus w2/3
n ∈ L2(R3) is bounded and by wn → 0 a.e. in R3, we have

w2/3
n ⇀ 0 in L2(R3).
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Since u ∈ L2(R3),
∫

R3 w2/3
n u dx → 0, that is (5.5) with i = 2.

(iii) For any ϕ,h ∈ H1(R3) with ‖ϕ‖ � 1 and ‖h‖ � 1, we need to show〈
N ′′(un − u)h,ϕ

〉 − 〈
N ′′(un)h,ϕ

〉 + 〈
N ′′(u)h,ϕ

〉 → 0,

uniformly with respect to ϕ and h. In fact,

〈
N ′′(u)h,ϕ

〉 = ∫
R3

(
8u(y)h(y)G(x, y)u(x)ϕ(x) + 4u2(y)G(x, y)h(x)ϕ(x)

)
dx, (A.9)

thus

〈
N ′′(un − u)h,ϕ

〉 − 〈
N ′′(un)h,ϕ

〉 + 〈
N ′′(u)h,ϕ

〉
=

∫
R3

∫
R3

((−8un(y)u(x) − 8u(y)un(x) + 16u(y)u(x)
)
h(y)G(x, y)ϕ(x) + (−8un(y)u(y) + 8u2(y)

)
G(x, y)h(x)ϕ(x)

)
dx dy

= −8̂I (1)
n − 8̂I (2)

n − 8̂I (3)
n + 16B + 8B̂,

where

Î (1)
n :=

∫
R3

∫
R3

un(y)u(x)h(y)G(x, y)ϕ(x)dx dy,

Î (2)
n :=

∫
R3

∫
R3

u(y)un(x)h(y)G(x, y)ϕ(x)dx dy,

Î (3)
n :=

∫
R3

∫
R3

un(y)u(y)G(x, y)h(x)ϕ(x)dx dy,

B :=
∫
R3

∫
R3

u(y)u(x)h(y)G(x, y)ϕ(x)dx dy,

B̂ :=
∫
R3

∫
R3

u(y)2G(x, y)h(x)ϕ(x)dx dy.

Thus it suffices to show

lim
n→∞ Î (i)

n = B, i = 1,2, lim
n→∞ Î (3)

n = B̂,

uniformly with respect to ϕ and h.

∣∣ Î (1)
n − B

∣∣ �
∫
R3

∫
R3

∣∣(un(y) − u(y)
)
u(x)G(x, y)h(y)ϕ(x)

∣∣dx dy

� ‖ϕ‖2

( ∫
R3

( ∫
R3

∣∣(un(y) − u(y)
)
u(x)G(x, y)h(y)

∣∣dy

)2

dx

)1/2

� ‖ϕ‖2

∫
R3

( ∫
R3

∣∣(un(y) − u(y)
)
u(x)G(x, y)h(y)

∣∣2
dx

)1/2

dy

= ‖ϕ‖2

∫
R3

( ∫
R3

∣∣u(x)G(x, y)
∣∣2

dx

)1/2∣∣un(y) − u(y)
∣∣∣∣h(y)

∣∣dy

� ‖ϕ‖2‖h‖2

( ∫
R3

v̂(y)
(
un(y) − u(y)

)2
dy

)1/2

,

where v̂(y) is defined by

v̂(y) :=
∫

3

∣∣u(x)G(x, y)
∣∣2

dx.
R
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Again, by Hardy–Littlewood–Sobolev inequality, we have v̂ ∈ L2(R3). Since {(un − u)2} is bounded in L2(R3), and un → u a.e.
in R3, we have (un − u)2 ⇀ 0 in L2(R3). Thus∫

R3

v̂(un − u)2 dy → 0,

that is limn→∞ Î (1)
n = B . Similarly, we can verify that limn→∞ Î (2)

n = B . Next we show that limn→∞ Î (3)
n = B̂. First, by Hölder

inequality yields that∫
R3

G(x, y)h(x)ϕ(x)dx �
( ∫

R3

h2(x)G(x, y)dx

)1/2( ∫
R3

ϕ2(x)G(x, y)dx

)1/2

= φ
1/2
h (y)φ

1/2
ϕ (y).

Thus ∣∣̂I (3)
n − B̂

∣∣ �
∫
R3

∣∣(un(y) − u(y)
)
u(y)

∣∣( ∫
R3

G(x, y)h(x)ϕ(x)dx

)
dy

�
∫
R3

∣∣(un(y) − u(y)
)
u(y)

∣∣φ1/2
h (y)φ

1/2
ϕ (y)dy

�
( ∫

R3

∣∣(un(y) − u(y)
)∣∣6/5∣∣u(y)

∣∣6/5
dy

)5/6( ∫
R3

φ6
h (y)dy

)1/12( ∫
R3

φ6
ϕ(y)dy

)1/12

� C‖h‖12/5‖ϕ‖12/5

( ∫
R3

∣∣(un(y) − u(y)
)∣∣6/5∣∣u(y)

∣∣6/5
dy

)5/6

.

Since {(un − u)6/5} is bounded in L2(R3), and un → u a.e. in R3, we have (un − u)6/5 ⇀ 0 in L2(R3). Thus∫
R3

(un − u)6/5u6/5 dy → 0,

and then limn→∞ Î (3)
n = B̂. �

Proof of Lemma 2.3. (i) Let {un} ⊂ H1(R3) and un ⇀ u in H1(R3), we need to show for any ϕ ∈ H1(R3), 〈N ′(un) −
N ′(u),ϕ〉 → 0.

In fact〈
N ′(un) − N ′(u),ϕ

〉 = 4
∫
R3

(φun unϕ − φuuϕ)dx = 4
∫
R3

(
φun (un − u)ϕ + (φun − φu)uϕ

)
dx.

Since ∫
R3

∣∣φun (un − u)
∣∣2

dx �
∥∥φun

∥∥2
6‖un − u‖2

3 � C‖un‖4‖un − u‖2 � C

and un → u a.e. in R3, we have φun (un − u) ⇀ 0 in L2(R3). Thus∫
R3

φun (un − u)ϕ dx → 0.

Similarly,∫
R3

(φun − φu)uϕ dx → 0.

Thus we have (i).
(ii) Let {vn} ⊂ H1(R3) be a bounded sequence. Without loss of generality, we may assume, up to a subsequence, vn ⇀ 0.

We need to prove for ϕ ∈ H1(R3), ‖ϕ‖ � 1〈
N ′′(u)vn,ϕ

〉 → 0, uniformly with respect to ϕ.

In fact, by (5.9),
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〈
N ′′(u)vn,ϕ

〉 = ∫
R3

(
8u(y)vn(y)G(x, y)u(x)ϕ(x) + 4u2(y)G(x, y)vn(x)ϕ(x)

)
dx

� 8‖ϕ‖2

( ∫
R3

( ∫
R3

∣∣u(y)vn(y)G(x, y)u(x)
∣∣dy

)2

dx

)1/2

+ 4‖ϕ‖3

( ∫
R3

( ∫
R3

∣∣u2(y)G(x, y)vn(x)
∣∣dy

)3/2

dx

)2/3

� 8‖ϕ‖2

∫
R3

v̂1/2(y)u(y)vn(y)dy + 4‖ϕ‖3

∫
R3

ŵ2/3
n u2(y)dy

where v̂(y) and ŵ(y) are defined respectively by

v̂(y) :=
∫
R3

∣∣u(x)G(x, y)
∣∣2

dx, ŵn(y) :=
∫
R3

∣∣vn(x)G(x, y)
∣∣3/2

dx.

It is easy to see v̂ ∈ L2(R3) by Hardy–Littlewood–Sobolev inequality. Thus∫
R3

(̂
v1/2(y)u(y)

)2
dy � ‖̂v‖2‖u‖2

4 < +∞,

which implies∫
R3

v̂1/2(y)u(y)vn(y)dy → 0.

And similarly, ŵn ∈ L4(R3) and is bounded in L4(R3). As in the proof of (5.8), we have ŵn → 0 a.e. in R3, thus

ŵ2/3
n ⇀ 0 in L6(R3),

and from u2 ∈ L6/5(R3), we have∫
R3

ŵ2/3
n u2(y)dy → 0.

Thus 〈
N ′′(u)vn,ϕ

〉 → 0, uniformly with respect to ϕ. �
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