JOURNAL OF ALGEBRA 130, 191-197 (1990)

Relative Version of Weyl-Kac Character Formula

JONG-MIN KU

Insritute of Mathematics, Academia Sinica. Nankang, Taipei. Taiwan 11529, Republic of China

Communicted by N. Jacobson

Received November 10, 1987

INTRODUCTION

Let G be a Kac-Moody Lie algebra with 31 canonical generators $\{e_1, ..., e_i, h_1, ..., h_i, f_1, ..., f_i\}$. Let H be the span of $h_1, ..., h_i$, the Cartan subalgebra of G. As usual, $\rho \in H^*$ is the function satisfying $\rho(h_i) = 1 \forall i$. Let $\lambda \in H^*$ be an integral function with $\lambda + \rho$ being dominant. If $\pi = {\alpha_1, ..., \alpha_k}$ is the set of simple roots of G, denote by $\pi_{\lambda} = {\alpha_i | \lambda(h_i) \geq 0}, \pi^{\lambda} = \pi \setminus \pi_{\lambda}$, G_{λ} = the subalgebra of G generated by $\{e_i, h_i, f_i | i \in \pi_{\lambda}\}\$, G^{λ} = the subalgebra of G generated by $\{e_i, h_i, f_i | i \in \pi^2\}$. Correspondingly, if W is the Weyl group of G, W_{λ} denotes the subgroup of W generated by those fundamental reflections s_i associated with $\alpha_i \in \pi_i$, W^{λ} = the subgroup of W generated by the fundamental reflections s_i associated with $\alpha_i \in \pi^\lambda$. Let $M(\lambda)$ be the Verma module over G with the highest weight λ and let $L(\lambda)$ be the irreducible quotient of $M(\lambda)$. If $w \in W_{\lambda}$, $M(w \cdot \lambda)$ $(w \cdot \lambda) =$ $w(\lambda+\rho)-\rho$) is a submodule of $M(\lambda)$. Let $K(\lambda)=\sum_{w\in W_{\lambda}\setminus\{e\}} M(w\cdot\lambda)$. In this paper, we present a proof for the following generalization of Weyl-Kac character formula:

THEOREM. For a symmetrizable G_i , ch $M(\lambda)/K(\lambda) = \sum_{w \in W_i} (-1)^{l(w)}$ ch $M(w \cdot \lambda)$.

When $\pi^2 = \phi$, the above theorem reduces to the usual Weyl-Kac character formula. Also, since

$$
f(w \cdot W^{\lambda}) = \begin{cases} (-1)^{\ell(w)}, & \text{if } w \in W_{\lambda} \\ 0, & \text{if } w \notin W_{\lambda} W^{\lambda} \end{cases}
$$

is indeed the relative mobius function of W/W^{λ} , our theorem states precisely the relative version of Weyl-Kac character formula.

Our proof for the above theorem is based on a counting principle developed in the next section. The symmetrizability assumption on G_{λ} is to guarantee the availability of the Kac-Kazhdan theorem [4]. Other than these, the whole proof is purely module-theoretic and at an elementary level.

1. KEY NOTIONS

Recall [5] the category of G-modules O. A module $P \in O$ is called local if P contains a unique (proper) maximal submodule Q. For each $\lambda \in H^*$, denote by $CL_M(\lambda)$ the set of all local submodules P in $M \in O$ such that $P/Q \cong L(\lambda)$. Let $P \in CL_M(\lambda)$, $P'/Q' \simeq L(\lambda)$ be an irreducible subquotient of M. We say P represents P'/Q' if $P \subseteq P'$ and $P \nsubseteq Q'$. Also, if $v \in M$, (v) denotes the submodule of M generated by v . For the sake of self-containedness, we first give a brief summary of concepts and results from [5] of which essential use will be made. Fix a G-module $M \in O$. For $\lambda \in H^*$, $[M: L(\lambda)]$ denotes the multiplicity of $L(\lambda)$ in M.

PROPOSITION 1.1 (Propositions 1.1 and 1.2 [5]). Let $\lambda \in H^*$ and let $P'/Q' \simeq L(\lambda)$ be an irreducible subquotient of M. Then

- (a) $P' \in CL_M(\lambda)$ if and only if $P' = (v)$ for all $v \in P' \backslash Q'$.
- (b) There exists $P \in CL_M(\lambda)$ such that P represents $P' \backslash Q'$.

DEFINITION. A (finite) subset $\mathfrak{A} = \{P_1, P_2, ..., P_k\} \subseteq CL_M(\lambda)$ is called independent if for every choice of $v_i \in (P_i)_\lambda$, $i = 1, 2, ..., k$, such that $P_i = (v_i)$, the set $\{v_i, v_2, ..., v_k\}$ is linearly independent. It is called dependent if it is not independent.

PROPOSITION 1.2 (Proposition 2.3 [5]). Given a subset $\{P_1, P_2, ..., P_k\}$ $\subseteq CL_M(\lambda)$, the following are equivalent:

(a) $\{P_1, P_2, ..., P_k\}$ is independent.

(b) There exists a permutation σ on $\{1, 2, ..., k\}$ such that $P_{\sigma(i)} \neq$ $\sum_{i>i} P_{\sigma(i)}$ for all $i \leq k-1$.

(c) For a (nonempty) subset $A \subseteq \{1, 2, ..., k\}$ and any choice of v_i 's, $i \in A$, such that $v_i \in (P_i)_\lambda \setminus (Q_i)_\lambda$, $(\sum_{i \in A} v_i)/(\sum_{i \in A} v_i) \cap \sum_{i \in A} Q_i \simeq L(\lambda)$, where Q_i is the unique maximal submodule of P_i for all $i = 1, 2, ..., k$.

DEFINITION. A subset $\mathfrak{B} \subseteq CL_M(\lambda)$ is called a basis of $CL_M(\lambda)$ if \mathfrak{B} is a maximal independent subset of $CL_M(\lambda)$.

PROPOSITION 1.3 (Proposition 2.6 [5]). Let $\mathfrak{B} = \{P_1, P_2, ..., P_m\} \subseteq$ $CL_M(\lambda)$ be a basis satisfying $P_i \notin \sum_{j>i} P_j$ for all $i = 1, 2, ..., m-1$. Let $P \in CL_M(\lambda)$. If $P \subset Q_k + \sum_{j>k} P_j$ for some $k < m$, $\{P, P_{k+1}, ..., P_m\}$ is dependent.

LEMMA 1.4 (Lemma 2.8 [5]). Let $\mathfrak{B} = \{P_1, P_2, ..., P_m\} \subseteq CL_M(\lambda)$ be a basis satisfying $P_i \notin \sum_{s > t} P_s$ for all $t = 1, 2, ..., m - 1$. Let $1 \le i < j \le m$, $v_i \in (P_i)_\lambda - (Q_i)_\lambda$, $v_j \in (P_j)_\lambda - (Q_j)_\lambda$, where, in general, Q_k is the unique maximal submodule of P_k , $k = 1, 2, ..., m$. Let $P'_i \in CL_M(\lambda)$ represent $F(x_i-v_i)/(v_i-v_j) \cap (Q_i+Q_j)$. Then $\mathfrak{B}' = (\mathfrak{B} \setminus \{P_i\}) \cup \{P_i'\}$ is also a basis of $CL_M(\lambda)$.

THEOREM 1.5 (Theorem 2.5 [5]). Any two bases of $CL_M(\lambda)$ have the same cardinal number.

THEOREM 1.6 (Theorem 3.1 [5]). Let $\lambda \in H^*$ and let $\{P_1, P_2, ..., P_m\}$ be a basis of $CL_M(\lambda)$. Then $[M: L(\lambda)] = m$.

Based on the foregoing, we now fix a basis $\{P_1, P_2, ..., P_m\}$ of $CL_M(\lambda)$ satisfying $P_i \notin \sum_{i>i} P_i$ for all $i \le m - 1$ and introduce:

DEFINITION. Let $P \in CL_M(\lambda)$. ord $(P) = k$ iff $P \subset \sum_{i=k}^m P_i$ and $P \notin \sum_{i=k+1}^{m} P_i$. We call ord(P) the order of P (relative to the basis $\{P_1, ..., P_m\}$).

DEFINITION. Let N be a submodule of M. A basis $\{R_1, ..., R_n\}$ of $CL_N(\lambda)$ is said to be compatible with $\{P_1, ..., P_m\}$ if $\text{ord}(R_1) < \text{odd}(R_2) <$ \cdots < ord (R_n) .

THEOREM 1.7. Let N be a submodule of M. Then $CL_N(\lambda)$ has a basis compatible with $\{P_1, ..., P_m\}$.

Proof. Let $n = [N: L(\lambda)]$. Claim: for each $k = n, ..., 1$, there exists $R_k \in$ $CL_N(\lambda)$ satisfying the following properties:

(i) ord (R_k) < ord (R_{k+1}) < \cdots < ord (R_n) .

(ii) For any $R \in CL_N(\lambda)$ such that $\{R, R_{k+1}, ..., R_n\}$ is independent, $\mathrm{ord}(R) \leqslant \mathrm{ord}(R_k).$

Note that (i) implies that $\{R_k, ..., R_n\}$ is independent using 1.2(b) and the result follows immediately from the claim when $k = 1$.

To prove the claim, we argue by an induction on k. The case when $k = n$ is obvious. In general, let us assume that R_n , ..., R_{k+1} have been found with (i), (ii) being satisfied. Choose R_k in such a way that $\{R_n, ..., R_{k+1}, R_k\}$ is independent and (ii) holds. It remains to show that (i) holds as well.

Since clearly $\{R_n, ..., R_{k+2}, R_k\}$ is independent, ord $(R_k) \leq \text{ord}(R_{k+1})$ by the choice of R_{k+1} . Suppose, arguing by contradiction, ord (R_k) =

ord $(R_{k+1}) = s$ for some $s \le m$. Clearly there exist $v_k \in (R_k)_k \setminus (S_k)_k$, $v_{k+1} \in$ (R_{k+1}) ; (S_{k+1}) ; such that $v_k - v_{k+1} \in Q_s + \sum_{i>s} P_i$, where S_i (resp. Q_i) is the maximal submodule of R_i (resp. P_i). By 1.2(c), $(v_k-v_{k+1})/(v_k-v_{k+1})\cap (S_k+S_{k+1})\simeq L(\lambda)$. Let $R\in CL_{N}(\lambda)$ represent $(v_k - v_{k+1})/(v_k - v_{k+1}) \cap (S_k + S_{k+1}).$ Then $R \subset Q_s + \sum_{i>s} P_i \Rightarrow$ $\{R, R_{s+1}, ..., R_m\}$ is dependent by 1.3. In particular, ord $(R) > s$. But the exchange lemma (Lemma 2.4), applied to $\{R_n, ..., R_k\}$, implies that $\{R_n, ..., R_{k+2}, R\}$ is independent. Therefore we obtain a contradiction since ord(R) \le ord(R_{k+1}) = s by the induction hypothesis. As a result, ord(R_k) < ord(R_{k+1}), which concludes the theorem.

COROLLARY 1.8. Let N be a submodule of M. Let $\{R_1, ..., R_n\}$ be a basis of $CL_{\mathcal{N}}(\lambda)$ compatible with $\{P_1, ..., P_m\}$. Then

(i) Given any $R \in CL_N(\lambda)$, $\text{ord}(R) \in \{ \text{ord}(R_1), ..., \text{ord}(R_n) \}.$

(ii) Given another basis $\{R'_1, ..., R'_n\}$ of $CL_N(\lambda)$ compatible with $\{P_1, ..., P_m\}$, ord (R_i) = ord (R_i) for all $i = 1, ..., n$.

Proof. Part (ii) is an easy consequence of (i) while (i) follows from the simple fact that $\text{ord}(R) \notin \{ \text{ord}(R_1), ..., \text{ord}(R_n) \} \Rightarrow \{ R_1, ..., R_n, R \}$ is independent, which is absurd.

DEFINITION. Let N be a submodule of M and let $\{R_1, ..., R_n\}$ be a basis of $CL_N(\lambda)$ compatible with $\{P_1, ..., P_m\}$. Call ord (N) = { $\text{ord}(R_1), ..., \text{ord}(R_n)$ } the $(\lambda -)$ order of N in M relative to $\{P_1, ..., P_m\}$.

COROLLARY 1.9. Let $K\subset N\subset M$ be submodules of M. Then $\text{ord}(K)\subseteq$ $ord(N)$.

Proof. Clear from 1.8.

2. MAIN RESULT

We shall need a couple of more facts towards the end:

PROPOSITION 2.1. Let M be a G-module, $\mu \in H^*$. Given an irreducible subquotient $P/Q \simeq L(\mu)$, and subquotients P_1/Q_1 , ..., P_n/Q_n of M satisfying the conditions

$$
P \subset \sum_{i=1}^{n} P_{i}, \qquad P \notin Q_{j} + \sum_{\substack{i=1 \\ i \neq j}}^{n} P_{i} \qquad \forall j = 1, 2, ..., n,
$$

we have $[P_j/Q_j; L(\mu)] \neq 0, \forall j$.

Proof. Clearly, the assumption implies that $(P + Q_i + \sum_{i \neq j} P_i)$ $(Q + Q_j + \sum_{i \neq j} P_i) \simeq L(\mu)$. Since $\sum_{i=1}^n P_i/Q_j + \sum_{i \neq j} P_i$ is a homomorphic image of P_i/Q_i , the result is obvious.

PROPOSITION 2.2. Let A be a subset of W_i . If there exists $\alpha_i \in \pi_i$ such that $w < s_i w$ $\forall w \in A$, then $\sum_{w' \in \bar{A}} \det w' = 0$, where $\bar{A} = \{w' \in W_{\lambda} | w \leq w' \text{ for } \lambda \leq w' \}$ some $w \in A$.

Proof. The result is an easy consequence of the fact that $s_i\overline{A} = \overline{A}$, using Deodhar's characterization of the Bruhat ordering in W_{λ} [1].

We now prove the main theorem stated as in the Introduction.

Proof of Main Theorem. To prove the theorem, it suffices to show that

$$
-\mathrm{ch}\; K(\lambda)=\sum_{\substack{w\in W_{\lambda}\\w\neq e}}(-1)^{l(w)}\mathrm{ch}\; M(w\cdot \lambda).
$$

Equivalently, we shall show that

$$
-[K(\lambda):L(\mu)]=\sum_{\substack{w\in W_{\lambda}\\w\neq e}}(-1)^{l(w)}[M(w\cdot\lambda):L(\mu)],\qquad\forall\mu\in H^*.
$$

Fix $\mu \in H^*$. Write $\mu = \lambda - \mu_1 - \mu_2$, where $\mu_1 \in Z_+ \cdot \pi_\lambda =$ $\{\sum_{\alpha_i \in \pi_i} k_i \alpha_i | k_i \in Z_+\}$, $\mu_2 \in Z_+ \cdot \pi^{\lambda}$. Identifying $M_0 = U(G_{\lambda}) \cap U(G_{-})$ as a subspace of $M(\lambda)$ and viewing it as a G_{λ} -module, let $M_0 \supset M_1 \supset M_2 \supset \cdots$ be a local composition series of M_0 at $\lambda - \mu_1$. Without loss of generality, we may assume that this local composition series refines a decreasing sequence of submodules of M_0 of the form

$$
M_0 \supset \sum_{\substack{w \in W_i \\ w \neq w_0 = e}} M(w \cdot \lambda) \cap U(G_{\lambda})
$$

$$
\supset \sum_{\substack{w \in W_{\lambda} \\ w \neq w_0, w_1}} M(w \cdot \lambda) \cap U(G_{\lambda})
$$

$$
\supset \sum_{\substack{w \in W_{\lambda} \\ w \neq w_0, w_1, w_2}} M(w \cdot \lambda) \cap U(G_{\lambda}) \supset \cdots,
$$

where $w_0, w_1, w_2, ...$ is an enumeration of elements in W_{λ} with increasing length. Let $\{P_1, ..., P_n\}$ be a basis of $CL_{K(\lambda)}(\mu)$. For each $i = 1, ..., n$ let d_i be the largest integer s with $P_i \subset U(G^{\lambda})M_{s}$. Note that we may assume $i>j \Rightarrow d_i \ge d_j$. Fix $i \le n$. Suppose $i \in \text{ord}(M(w \cdot \lambda))$ for some $w \in W_\lambda$ and $i \notin \text{ord}(K(w \cdot \lambda))$, where

$$
K(w \cdot \lambda) = \sum_{\substack{w' \in W_{\lambda} \\ w' < w}} M(w' \cdot \lambda).
$$

This means that \exists a local submodule $P \in CL_{M(w),\lambda}(\mu)$ with $P \subset K(w \cdot \lambda)$ and ord $P=i$. As before, let $N_0=M(w\cdot\lambda)\cap U(G_{\lambda})\supset N_1\supset N_2\supset \cdots \supset N_{\tau-1}\supset N_t$ = $K(w \cdot \lambda) \cap U(G_{\lambda})$ be a local composition series of $M(w \cdot \lambda) \cap$ $U(G_{\lambda})/K(w \cdot \lambda) \cap U(G_{\lambda})$ at μ_1 . Suppose $P \subset N_q$, $P \notin N_{q+1}$ for some $q < t$.

Now suppose $d_i = d_{i+1} = \cdots = d_{i+m} < d_{i+m+1}$ for some m. By the choice of μ_1 , $M_{d_i}/M_{d_{i+1}}$ is an irreducible G_{λ} -module. So let $y + M_{d_i+1}$ be a highest weight vector of M_{d_i}/M_{d_i+1} . Since ord $(P) = i$, $P \subset \sum_{i \geq i} P_i$. Let $x, x_1, ..., x_n$ be highest weight vectors of P, P_1 , ..., P_n , respectively. Then \exists scalars $b_i, ..., b_n$ such that $x = \sum_{j \geq i} b_j x_j$. Since for each $j = i, i + 1, ..., i + m$, $\exists z_j \in U(G_{-})$ such that $x_j = z_j$ y (mod $U(G_{-}) M_{d_i+1}$), we have $\sum_{i\geq j\geq i+m} b_i z_j y=x-\sum_{j>i+m} b_j x_j \pmod{U(G_A)M_{d_i+1}}$. This easily implies that $y \in M_{d_i+1} + N_q$.

Pick a pair of integers (r, k) satisfying the following conditions:

- (i) $r \ge d$, $+ 1$, $q \le k \le t$.
- (ii) $y \in M_r + N_k$.
- (iii) $y \notin M_r + N_{k+1}, y \notin M_{r+1} + N_k.$

Case 1. $k < t$. Apply Proposition 2.1, and we get $[N_k/N_{k+1}:L_G(\theta)]$ $\neq 0$, where θ is the highest weight of M_{d_i}/M_{d_i-1} and $L_{G_i}(\theta)$ denotes the irreducible G_{λ} -module with highest weight θ . In particular, $[M(w \cdot \lambda) \cap$ $U(G_{\lambda})/K(w \cdot \lambda) \cap U(G_{\lambda})$: $L_{G_{\lambda}}(\theta) \neq 0$.

Case 2. $k = t$. That is, $y \in M_r + K(w \cdot \lambda)$. By our assumption together with the fact $r > d_i$, $i \notin ord(U(G)M_r) \cup ord(K(w \cdot \lambda)) \Rightarrow i \notin ord(U(G)M_r +$ $K(w \cdot \lambda)$, a contradiction since $x_i = z_i y \pmod{U(G^{\lambda}) M_{d+1}}$ and $\text{ord}(P_i) = i$. Therefore, this cannot happen.

To conclude, since G_{λ} is symmetrizable, $\theta = w_0 \cdot \lambda$ for some $w_0 \in W_{\lambda}$ - ${e}$. In particular, $\exists j$ such that $w_0 \cdot \lambda(h_j) < 0$, or equivalently, $s_j w_0 > w_0$. Now, for each $w \in A_u^i = \{w \in W_\lambda | i \in \text{ord } M(w \cdot \lambda), \quad i \notin \text{ord}(K(w \cdot \lambda))\},$ $[M(w \cdot \lambda)/K(w \cdot \lambda): L_{G}(\theta)] \neq 0$ by the foregoing argument. Thus we have $s_i w > w$, $\forall w \in A_u^i$. Thus

$$
\sum_{\substack{v \in \overline{A}_{\mu}^i \\ w \neq e}} (-1)^{l(w)} = -1 \qquad \forall i
$$

using Proposition 2.2. As a result,

$$
-\left[K(\lambda):L(\mu)\right] = -n = \sum_{i=1}^{n} \sum_{\substack{w \in \overline{A}_{\mu}^i \\ w \neq e}} (-1)^{l(w)}
$$

$$
= \sum_{i=1}^{n} \sum_{\substack{i \in \text{ord}(M(w \cdot \lambda)) \\ w \in W_{\lambda} \\ w \neq e}} (-1)^{l(w)}
$$

$$
= \sum_{\substack{w \in W_{\lambda} \\ w \neq e}} (-1)^{l(w)} \left[M(w \cdot \lambda):L(\mu)\right]
$$

This completes the proof.

REFERENCES

- 1. V. V. DEODHAR, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative mobius function, Invent. Math. 39 (1977), 187-198.
- 2. J. DIXMIER, "Enveloping Algebras," North-Holland Math. Library, No. 14, North-Holland, New York, 1977.
- 3. J. C. JANTZEN, "Moduln mit einem hochsten Gewicht," Lecture Notes in Mathematics, Vol. 750, Springer-Verlag, Berlin, 1979.
- 4. V. G. KAC AND D. A. KAZHDAN, The structure of representations with highest weight of infinite dimensional Lie algebras, $Adv.$ in Math. 34 (1979). 97-108.
- 5. J. M. Kv, Local submodules and the multiplicity of irreducible subquotients in category 0, J. Algebra 106 (1987), 403-412.
- 6. J. LEPOWSKY, Lectures on Kac-Moody Lie algebras, mimeographed notes, Université de Paris VI, 1978.