View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

JOURNAL OF ALGEBRA 130, 191-197 (1990)

Relative Version of Weyl-Kac Character Formula
JonGg-MIN KU

Institute of Mathematics, Academia Sinica.
Nankang, Taipei. Taiwan 11529, Republic of China

Communicted by N. Jacobson

Received November 10, 1987

INTRODUCTION

Let G be a Kac-Moody Lie algebra with 3/ canonical generators
{e, . en hyyhy, fi,. fi}. Let H be the span of Ay, .., h,, the Cartan
subalgebra of G. As usual, p € H* is the function satisfying p(4;)=1 Vi. Let
4 € H* be an integral function with 4 + p being dominant. If = {a, ..., a,}
is the set of simple roots of G, denote by =, = {x,|A(h;) >0}, n*=m\n;,
G, =the subalgebra of G generated by {e;, h;, filien,}, G*=the sub-
algebra of G generated by {e,, h;, f;|ien*}. Correspondingly, if W is the
Weyl group of G, W, denotes the subgroup of W generated by those
fundamental reflections s, associated with a; e ;, W* = the subgroup of W
generated by the fundamental reflections s, associated with a, e 7% Let
M(4) be the Verma module over G with the highest weight 4 and let L(1)
be the irreducible quotient of M(4). If weW,, M(w-i) (w-i=
w(4+p)—p) is a submodule of M(4). Let K(A)=2%, . w,. oy M(w-4). In
this paper, we present a proof for the following generalization of Weyl-Kac
character formula:

THEOREM. For a symmetrizable G;, ch M(A)/K(A)=Y ., (—1)™
ch M(w-4).

When n* = ¢, the above theorem reduces to the usual Weyl-Kac charac-
ter formula. Also, since

. (—=1)"™), if weW,

WY = : R
Slw- W) {0, if wew,w
is indeed the relative mobius function of W/W* our theorem states
precisely the relative version of Weyl-Kac character formula.

Our proof for the above theorem is based on a counting principle
developed in the next section. The symmetrizability assumption on G, is to
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guarantee the availability of the Kac—Kazhdan theorem [4]. Other than
these, the whole proof is purely module-theoretic and at an elementary
level.

1. KEY NOTIONS

Recall [5] the category of G-modules O. A module Pe O is called local
if P contains a unique (proper) maximal submodule Q. For each ie H*,
denote by CL,,(%) the set of all local submodules P in M e O such that
P/Q=L(4). Let Pe CL,(4), P'/Q' ~ L(/) be an irreducible subquotient of
M. We say P represents P'/Q" if PP and P & Q'. Also, if veM, (v)
denotes the submodule of M generated by v. For the sake of self-contained-
ness, we first give a brief summary of concepts and results from [5] of
which essential use will be made. Fix a G-module M eO. For 1e H*,
[M: L(4)] denotes the multiplicity of L(4) in M.

PrROPOSITION 1.1 (Propositions 1.1 and 1.2 [5]). Let ie H* and let
P'/Q" ~ L(A) be an irreducible subquotient of M. Then
(a) P'eCL,(4A) if and only if P' = (v) for all ve P\Q'.
(b) There exists Pe CL,,(A) such that P represents P\Q'.

DEFINITION. A (finite) subset W= {P, P,, ..., P} S CL,(4) is called
independent if for every choice of v,e(P,);, i=1,2, ..,k such that
P,=(v;), the set {v;, v,,..,0,} is linearly independent. A is called
dependent if it is not independent.

ProposiTION 1.2 (Proposition 2.3 [5]). Given a subset {P,, P,, ..., P}
< CL,,(4), the following are equivalent:
(a) {P,,P,, .., P} is independent.
(b) There exists a permutation ¢ on {1,2, ..k} such that P, &
disiPoyforall i<k—1.

(c) For a (nonempty) subset A< {1,2, ...k} and any choice of v,s,

ieA, such that v,e€(P)\(Q)i, (Xica)/(Xica)NXica Qi =L(1),
where Q, is the unique maximal submodule of P; for all i=1, 2, ..., k.

DEFINITION. A subset B < CL,,(4) is called a basis of CL,,(A) if B is a
maximal independent subset of CL,,(A).

ProposiTiON 1.3 (Proposition 2.6 [5]). Let B={P,,P,, .., P,}<
CL,(2) be a basis satisfying P, & 3., P, for all i=1, 2,...,m—1. Let
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PeCLy(%). If PcQu+Y,. P; for some k<m, {P,P,,,,..,P,} is
dependent.

LemMMa 1.4 (Lemma 2.8 [5]). Let B={P,, Py, ..., P} SCLy(4) be a
basis satisfying P, & Y ,., P, for all t=1,2,..,m—1. Let 1<i<j<m,
v, €(P;); —(Qi)s, v,€(P));—(Q));, where, in general Q is the unique
manmal submodule of Pk, k=1,2,..m Let P,eCL,(i) represent
(v; —v)/(v; —v,) " (Q; + Q,). Then B’ = (%\{P,—})u {P,f} is also a basis of
CL(2).

THEOREM 1.5 (Theorem 2.5 [5]). Any two bases of CL,(A) have the
same cardinal number.

THEOREM 1.6 (Theorem 3.1 [5]). Let ieH* andlet {P\, P,, .., P,} be
a basis of CLy(A). Then [M: L(A)] =m.

Based on the foregomg, we now fix a basis {P,, P,, .., P,,} of CL,(4)
satisfying P, ¢ Y ;. P; for all i<m—1 and introduce:

DerNITION. Let PeCL,(A). ord(P)=k iff PcX7 . P, and
P& YT . P.. We call ord(P) the order of P (relative to the basis
{Pl’ oan P }

DEFINITION. Let N be a submodule of M. A basis {R,,.., R,} of
CL\(4) is said to be compatible with {P,, .., P,} if ord(R,)<od(R,)<
-- <ord(R,).

THEOREM 1.7. Let N be a submodule of M. Then CL\(7) has a basis
compatible with {P,, .., P,}.

Proof. Let n=[N:L(})]. Claim: for each k=n, ..., 1, there exists R, €
CL ,(A) satisfying the following properties:

(i) ord(Ryy<ord(R,,,)< - <ord(R,).

(ii) For any Re CL,(4) such that {R, R, ,, .., R,} is independent,
ord(R) < ord(R,).

Note that (i) implies that {R,, .., R,} is independent using 1.2(b) and the
result follows immediately from the claim when k =1.

To prove the claim, we argue by an induction on k. The case when k=n
is obvious. In general, let us assume that R,,, ..., R, ., have been found with
(i), (ii) being satisfied. Choose R, in such a way that {R,, .., R, R} is
independent and (ii) holds. It remains to show that (i) holds as well.

Since clearly {R,, .., Rc,», R} is independent, ord(R,) < ord(R,, ) by
the choice of R,,,. Suppose, arguing by contradiction, ord(R,)=
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ord(R, , )} =s for some s <m. Clearly there exist v, € (R,); " (Sk),, tk o1 €
(Ri.1):\(Sk1); such that v, —v, €0, +3 .., P;, where §; (resp. Q)
is the maximal submodule of R, (resp. P;. By 12(c)
(e — ey V(e —Ces )N (S +Sei )= L(A). Let ReCL,(4) represent
(0k = e )/ (Cx — Ciwr) N (S + Siyy). Then R< O, + 3., P =
{R,R,,,..,R,} is dependent by 1.3. In particular, ord(R)>s. But the
exchange lemma (Lemma 24), applied to {R,...,R,}, implies that
{R,; .., R, 2. R} is independent. Therefore we obtain a contradiction
since ord(R)<ord(R,,,)=s by the induction hypothesis. As a result,
ord(R,) < ord(R,, ), which concludes the theorem.

CorOLLARY 1.8. Let N be a submodule of M. Let {R,, .., R,} be a basis
of CL\(2) compatible with {P, ..., P,,}. Then
(i) Given any Re CLy(4), ord(R)€e {ord(R,), .., ord(R,)}.
(il) Given another basis {R},.., R,} of CL(}) compatible with
{P,, .., P,}, ord(R;)=o0rd(R,) for all i=1, .., n.
Proof. Part (ii) is an easy consequence of (i) while (i) follows from

the simple fact that ord(R)¢ {ord(R,), .., ord(R,)}={R,, .., R,, R} is
independent, which is absurd.

DEFINITION. Let N be a submodule of M and let {R,,..,R,} be a
basis of CLy(Z) compatible with {P,,..P,}. Call ord(N)=
{ord(R,), .., ord(R,)} the (i —) order of N in M relative to {P,, .., P, }.

CoOROLLARY 1.9. Let K Nc M be submodules of M. Then ord(K) <
ord(N).
Proof. Clear from 1.8.

2. MaIN RESULT
We shall need a couple of more facts towards the end:

PrROPOSITION 2.1. Let M be a G-module, j1e H*. Given an irreducible
subquotient P/Q ~ L(u), and subquotients P,/Q,, .., P,/Q, of M satisfying
the conditions

PcY P, PEQ+Y P Vji=1,2..n
i=1 i=1
i#j

we have [P;/Q;; L(n)]#0, V.
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Proof. Clearly, the assumption implies that (P+Q;+3,.;P)/
(Q+0Q;+%,.,P)=L(p) Since 37_, P,/Q;+ 3., P, is a homomorphic
image of P,;/Q;, the result is obvious.

PROPOSITION 2.2. Let A be a subset of W;,. If there exists o, €n,; such
that w<s;w YNwe A, then Y. ;det w' =0, where A= {w'e W,|w<w' for
some we A}.

Proof. The result is an easy consequence of the fact that 5,4 = A4, using
Deodhar’s characterization of the Bruhat ordering in W, [1].

We now prove the main theorem stated as in the Introduction.

Proof of Main Theorem. To prove the theorem, it suffices to show that

—chK(A)= Y (=1)ch M(w-41).
weWw,
w#e

Equivalently, we shall show that

—[K(2): L(w)]= Y (=D [M(w-4):L(w)], VueH*

we W;
w#e
Fix pe H*. Write pu=4— yu, —u,, where pu, €2, -zn, =
{uem kitilki€Z, }, pyeZ, -n’. Identifying Mo=U(G,)nU(G_) as a
subspace of M(2) and viewing it as a G -module, let Mo M, D M,> --.
be a local composition series of M, at 2 — u,. Without loss of generality,
we may assume that this local composition series refines a decreasing
sequence of submodules of M of the form

M,> ¥ M(w-1)nU(G,)
we W;
w#Euy=e

5 Y Mw-i)nU(G;)
we W,
W oFE wg, )

> Y Mw-2)nU(G;)>D -,
we W,
W # Wo. W, W2

where wg, w,, w5, .. is an enumeration of elements in W, with increasing
length. Let {P,, .., P,} be a basis of CLg;, (). For each i=1,..,n let 4,
be the largest integer s with P, c U(G*)M,. Note that we may assume
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i>j=>d, >d;, Fix i<n Suppose ieord(M(w-4}) for some we W, and
i¢ord(K(w -4)), where

Kw-2)= Z M(w - 4).
weW,

This means that 3 a local submodule Pe CL ,,,, .;(¢) with Pc K(w - 4) and
ord P =1. As before, let Ny=M(w-2)n U(G;) DN, 2N, ---oN,_, DN,
= K(w-2})nU(G;) be a local composition series of M(w-i)n
U(G;)/K(w-2Yn U(G;) at u,. Suppose P< N, P ¢ N, , for some g<t.

Now suppose d; =d,, = --- =d,, . <d, ., . for some m. By the choice
of uy, M,/M, is an irreducible G,;-module. So let y + M, , | be a highest
weight vector of M, /M, . ,. Since ord(P)=i, P<} ;. P;. Let x, xy, ..., X,
be highest weight vectors of P, P,,.., P,, respectively. Then 3 scalars
b; ., b, such that x=3 . bx;, Since for each j=i i+1,.,i+m,
3z;eU(G_) such that x,=zy (modU(G_)M,,,), we have
YisiziembiZiy=x—%, ., ,bx, (mod UG _)M,, ). This easily
implies that ye M, , , + N,.

Pick a pair of integers (r, k) satisfying the following conditions:

(i) r=d +1,g<k<t
(i) yeM,+N,.
(i) y¢M,+Ny,\, y¢M,  +N,.

Case 1. k<t Apply Proposition 2.1, and we get [N, /N, ,:Ls(0)]
#0, where 6 is the highest weight of M,/M, _, and L;,(6) denotes the
irreducible G;-module with highest weight 8. In particular, [M(w-4)n
UG/ K(w-2)nU(G;): L (6)]#0.

Case 2. k=1 That is, ye M, + K(w-4). By our assumption together
with the fact r>d;, i¢ ord(U(G)M,)uord(K(w-A))=i¢ord(U(G)M, +
K(w-1)), a contradiction since x;=z;y (mod U(G)M,.,) and
ord(P,) =i. Therefore, this cannot happen.

To conclude, since G is symmetrizable, 8 = w,- A for some wy e W, —
{e}. In particular, 3; such that w,-i(h;) <0, or equivalently, s;wq > w,.
Now, for each wed),={weW,licord M(w-4), i¢ord(K(w-4))},
[M(w-4)/K(w-4): L;(6)]#0 by the foregoing argument. Thus we have
s;w>w, Ywe 4], Thus

Y (=) =—1 Vi

. i
ueAu
we
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using Proposition 2.2. As a result,

—[K(4): L(p)]

—n=

NSE

Z (—1)“"’
1 weZ;‘

wHEe

1

n

Z Z (_l)ltw)
i=1 ieord(M(w- 1))

we W;

w#e

Y (=D [M(w-4): L(w)].

This completes the proof.
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