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Abstract

We apply the thermodynamical model of the cosmological event horizon of the spatially flat FLRW metrics to the study of
the recent accelerated expansion phase and to the coincidence problem. This model, called “ehT model” hereafter, led to a dark
energy (DE) densityl varying asr—2, wherer is the proper radius of the event horizon. Recently, another model motivated
by the holographic principle gave an independent justification of the same relation betvagetr. We probe the theoretical
results of the ehT model with respect to the Snla observations and we compare it to the model deduced from the holographic
principle, which we call “LHG model” in the following. Our results are in excellent agreement with the observations for
Ho =64 kms*Mpc~t, and &£ =0.63"0.%, which leads tajo = —0.445 andt7 ~ 0.965.
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1. Introduction stance a scalar fiel®] or a bulk viscosityj4]—could
also be valid.

Since the discovery of the presently accelerated ex-  Before the discovery of this acceleration, phenom-
pansion of the universe from supernovae observationsenological ansatze with a variablé(r) were tenta-
[1,2], evidences for such an accelerated phase are in-tively proposed as solutions of the cosmological “con-
creasing. The simplest theoretical candidate to explain stant” problem (e.g[5-11]).
this acceleration is a cosmological “constart’Any- From a different point of view, the generalization
thing producing sufficient negative pressure—for in- [12,13] of the black hole and of the de Sitter event-

horizon thermodynamic§l4,15] to the Friedmann—

E-meil addresses: gariel@ccr jussieu. . Gariel), Lemaltre—Rob_erston—Wa_IIEer (FLRW) space—time has
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This model will be called the event horizon thermody- momentum tensor
namical model (ehT model) hereafter. op o B op o af o p
Recently, this last form forA(¢), or, equivalently, T = prow”“u” — PotA™,  A™ =g" —u"u”,

for the dark energy density 4 (r) through p, (1) = 2
xTA@) (with x = 87 Gc™4), has received further  whereu® is the 4-velocity common to all the compo-
supports based on the holographic princifl&,18]. nents of the energy density,t. We consider two com-
The associated model will be referred to as the LHG ponents such gsot = o + p4 andPiot= P + P4. The
model in the following. first component4, P) is the matter withp the energy

A model such thatt ~ 2 for the DE density can  density, P the pressure and obeys the barotropic state
be used in different ways and different contexts. For equationP = (y — 1)p wherey = const, O< y < 2
instance, in a precedent pap#6] in order to address  (for instance,y = 1 for dust). The second component
the problem of the exit of inflation in the early uni- is the dark energy (DE), withhy = x 1A the vac-
verse, we imposed as second component a perfect fluiduum energy density an#, the pressure, satisfying

of strings § = 2/3). The model led then td = 3;—‘ the state equation
which was independently considered as an ansatz by
some authorf19-22] Py =wpa, ®3)

In the present Letter, in order to settle some is- \yherew (-1 < » < 0) can be variable. The present
sues on the coincidence and the recent deceleration—resunS are valid for any first component of matter

acceleration transition problems, we assume for the namely any value of. In the next section, we will
second component a cold dark matter< 0). In Sec-  regtrict our discussion to the particular case 1 cor-
tion 2, we review some basic equations and relations responding to dust.

common to the ehT and LHG models. The ehT model  The field equations for the spatially flat case are
is developed in SectioB, particularly for thez < 2

epoch. In Sectiod, in order to probe the DE assump-  3H? = xc?(p + pa), (4)
tion in this range of, we discuss how our model fits in G ) )
with the type la supernovae recent observati@s. 2=+ H"=—=xc™(P + Pa), ®)

We deduce then the most likely values for tHg and . .
29 parameters, as well as the deceleration parame-WhereH = ¢ is the Hubble parameter, the velocity
ter go and the deceleration—acceleration transition red- ©f the light and the dot stands for the time derivative.

shift z. Finally, Sectionss and 6contain comments Combining these two equations leads to
and a brief comparative discussion concerning the re- ., 3
sults obtained by the two models. (H™) = E()/ + (14w —y)R24), (6)

where the dimensionless density paramezf =
Ac?/3H? has been introduced. E@) is always valid
provided the DE is a perfect fluid.

. . We consider nowA as a vacuum energy density
In order to set the notations, we introduce some ba- gssociated to the FLRW event-horizon such as
sic equations of the two-component models. The spa-

2. Model for A and field equations

2

tially flat FLRW space—time has the metric A= 2r @)
2 9
,
ds? = 2 dt® — a®(t)[dR? + R?(d6? + sir? 0 d$?)], wherer is the proper radius of the event-horizon, and
(1) « is a dimensionless constant parameter. This form

of A was previously obtained Hi6,17]whena = 1,
and by[18] whena # 1.
Using the quantity2 4, relation(7) becomes

where the scale factar(¢) is a monotonic increasing
function of the cosmic time.

We assume an universe filled by two type-like per-
fect fluids, namely dust (ordinary and dark matter) and \/-Q_A _xc ®)
dark energy (DE) with a type-like perfect fluid energy— rH
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The proper radius of the flat FLRW event-horizon is

T cdt’
’0):““)/aaq‘ 9)
The derivative of9) with respect to time gives
¢ (10)
roor

For convenience, we introduce the variable Ina(z)
such asc = 0 today. Relatior{10) becomes then

r’ c V24 r,:ﬂ
T dx )’

1 _———= — =
r rH o

where the prime means the derivative with respect

tox.

In the same manner, we can rewrite relatjéh
()
Gr
Finally, by combining Egs(11) and (12)with the
derivative of Eq(8), one obtains

(11)

3
gy+ﬂ+w—w90.

12)

2 ZQA{3[V+(1+0)_V)-QA]
-2 1_\/~Q_A .
)

o
Let us emphasize that this equation is valid for any
values ofy (constant) andv (constant or variable),
independently of the fact that the two components
andp 4 are interacting or not.
It is useful to derive from the field equatior4)
and (5)the deceleration parametgr

13)

_('1' .
aH?
which is valid in the two models.

In the following, we assume that the “matter” com-
ponentp is dust ¢ = 1), so tha{13) and (14pecome

e

o

1
q E[(BV_2)+3(CU+1_V)~QA] (14)

93::9A<1+2 +3wQA>, (15)

q=%ﬂ+%ﬂﬂ. (16)

The relationg1)—(16) as well as the energy—momen-
tum conservation laWz T = 0 (or, equivalently, the
Bianchi identity), are valid in the two models under

consideration, which we denota(r)C DM models
hereafter.

From now on, the assumptions of the ehT model
will be different from those of the LHG model.

3. Model with interacting components

In the ehT model, we assume that the DE com-
ponent satisfies thermodynamical state equations,
i.e., relations between its thermodynamical variables
which are valid in any space-time. Therefore, any
thermodynamical state equation valid in the de Sit-
ter's space—tim§l5,24}—for instance,P4 = —p4 Or
pa = 127°T2 (T, the temperature)—remains valid
in the FLRW space—time. Thus, if the DE is an ac-
tual cosmological component, its thermodynamical
state equations will stay the same independently on
the choice of the space-time, as well as for any other
component. Now, the DE energy density in the de Sit-
ter space—time, as cosmological constant, satisfies the
state equatio3) with w = —1.

Then, the energy conservation Iaz/,yV,gT“f’ =0
leads to the two following alternatives:

(i) Either, the energy of each componentis conserved
separately and, of coursd, has to be constant.

(i) Or, more generally, the components’ energies are
only conserved togethen = A(z) is then possi-
ble.

The ehT model assumes the point (ii), which sup-
poses an interaction between the matter and the DE. In
the same vein, other models assuming an interaction
between the DE and dark matter (DM) components of
the cosmic fluid were recently studied (e[@5-27).

This suggests to retain the relati¢n) which is
valid in the de Sitter’s space-time when= 1. In
Section5, some consequences of the presence of the
parametera in the ehT and LHG models are dis-
cussed. Using the holographic principle can lead also
to choose the relatio(v) [17,18] These two last ref-
erences assume a variable state equatios: ((x))
for the DE, and independent energy conservation laws
for the matter and DE components. Conversely, the
present model assumes= —1 (vacuum), and that the
energy conservation is only valid for the two compo-
nents considered together.



Eqg. (15) can be rewritten

2, =324(B2—V24)B1+ v/ 24) 17)
where the constany® andg, are given by

1, —
,315 5( 1+3O[2 - 1),

1
/3255(\/14-3012%-1)7 B1. B2 > 0. (18)
By settinge = 1, Eq.(17) becomes
2y =241-V2)BV24+1). (19)

which differs from Eq. (8) in[18]. Nevertheless a
straightforward calculation (usin¢l2), (15)and the
derivative of the definition 0f24) gives

A =2AW 24 - 1), (20)

which is common to the two models. A% is always
negative,A is decreasing with time. Observational ev-
idences provide a very small present value fof
(fine-tuning problem) and of the same orderpa&o-
incidence problem).

Introducing the functiony(x) = /2,4, rela-
tion (17) becomes
2y =3y(B2—y)(B1+ ). (21)

Its solution is (in the only case considered here where
y < B2)

2
— — (22
(B2 — y) P2/1532 (B + y) V132

K, is a constant of integration which can be related to

K1ia =

the initial conditionyg = ,/£29.
We derive now the expression ef= r(y). Using
Egs.(11) and (21)yields

2dy

d(nr)y=dx — . 23
Ba(f2 — y)(B1+y) (23)
After integration, one obtains
1
K2r=a<132_y>\/1+3a2 (24)
Pr+y

or equivalently

y2

a—po atpy

(B2 — y) P2V I3 (By 4 y) P

Kr=
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K =K1K>. (25)

K> is a second constant of integration which de-
pends onyg and ro = ac(yoHo) 1. The expressions
of K1 and K, depend explicitly on the two priorﬁﬂ
and Ho. The current values o9 and Ho are 29 =
0.7 andHp = 72 kms*Mpc~1 [28]. With these two
numerical values, it is interesting to deal with the case
wherea = 1 for which g1 = % and 2> = 1. One ob-
tains

2

Kla: iy 1 3
1-y)2(3+y)2
y2
Ki= 101 - =1.3686, (26)
1-yo2(3+y0)?2
1 y\ V2 2
K2r=a<1 y) s or KVE<1y )1
3+ 3ty
ro= —— = 4980.12 Mpc
Hoyo
1/1— 1/2
Ko = _<1 yo) = 7.50265x 10~° Mpc1,
ro §+yo

K =1.02681x 1074 Mpc L. (27)

However the previous values & andQ?1 are model-
dependent. They were obtained in the framework of
the ACDM model. We shall see that starting with
the same observational Snla data, the best fit to the
A(t)CDM models give appreciably different central
values ofHo and$29.

4. Snlaconstraintson theehT model

In order to compare these theoretical results with
the observations of the Snla magnitudes, the luminos-
ity distanced;, has to be expressed with respect to the
redshiftz =a~1 — 1. In the ehT model, it yields

dp =14 2)[(A+2)r —ro]

_ o [(1+z)i —1},
yoHo ro
where the expression aof depends orx. As before,
we only consider the case = 1. Both Egs.(22)
and (25)give a parametric representation (via the “pa-
rameter”y) of r as function ofz. Indeed,(22) yields
immediatelyz = z(y) (with a = (1 +2)7%).

(28)
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Fig. 1. The “distance moduliz(z) of the ehT model.

The set of the theoretical curves “distance moduli” The functionu(z) is plotted inFig. 1 for z ranging

u versus the redshif, from O to 2.
The likelihood functionZ(29) (seeFig. 2) is de-
w=m—M=25+5log;odL), rived by marginalization o and furnishes the same
with d;, in Mpc, (29)  value of the paramete®}.

_ _ Finally, the deceleration parametgrcan be ex-
predicted by the model parametrized by the two cos- pressed as a function efin the ehT model (foer = 1)

mological parametergy = /2% andHo, can be plot-  from Eq.(16) (with & = —1)
ted. For the two parametersg and Hy free, the best

fit to the magnitude observational data of the 157 Snla ; — }(1 — 3y2). (31)
“Gold sample”[23] can be determined by minimizing 2
the functiony? = y° (421 ED)2, wherey, (z;) de- In Fig. 3the curveg(z) of the ehT model is plot-

notes the values of the magnitude for the observational ted. Today the deceleration ig = —0.445, and the
data,o; the corresponding error and the summation geceleration-acceleration transition occurredsat-

is taken over any of the 157 data of the sample. The g gg5.

corresponding values cx‘r?o and Hy are derived by

numerical computation. More precisely, Egl)is in-

tegrated by the method of Runge—Kutta of order 4, and i

the expression of(y) is deduced by use ¢22). With 5. Theevent horizon and the parameter «

the help of Eqs(28) and (29)the values of.(z) for z

ranging from 0 to 100 are then obtained. After a sim- We examine here the influence of the parameter
ple numerical evaluation of? for 99‘ ranging from O on the limits of the proper radiusof the event horizon
to 1 andHp from 50 to 100, the best fit corresponding (eh) in the two models. First, let us consider the LHG

to x2 =178 7 is obtained for model.
; 1 N By comparison with the relation®2) and (25)of
Ho=64", kms*Mpc ™+, 29 =0.6375,. the ehT model, the LHG model would lead to the re-

(30) lations @ is given by (9) of[18] andr, not explicitly
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Fig. 2. The likelihood functiorﬁ((z%) of the ehT model.

Fig. 3. The deceleration parametgt) of the ehT model.

given, can be deduced from their Egs. (6) and (9)):

2 1 Zi_a
Yoa: Y (oc +y) 8 a7527
(1—y)z+a (a +2y)4-?
2 o
v5(1+ yo) 2=
Yo= o —— (32)
(1 — yo)Z+a (a + 2yp) 4—*
201 pa 1— e
. o ye(1+y)2—a( y)+. (33)

3 12
Y& Ho\/1— 2§ (o + 2y)4-?

Fora = 2, the LHG model requires to start again the

calculation from the differential equatiqid5) which
becomes:

2y =y(1—y) 1+ y)> (34)

Its integration yields

2
C (1—y0)3(1+y0)8 %
a= 2 3 2
Yo 1-y3Q+y)3
8 1 1
expl =| —— — . 35
<oo{3(r5 1) @
Then,

2 4 4
L 2c(— yo)* (A + yo) V" X5 ~ i)

3 1 -
Ho/1- 25y (A—y»2(1+y)2

We can see fron(32) or (35) thata tends to infinity
wheny tends to 1, for any values ef (positive, see
(8)). But the behaviour of differs because it depends
on the parameteax, as it can be seen froif83) and
(36). Three cases can be distinguished for the behav-
iour of r in the limit y — 1:

(36)

r—0

ifa <1, (37)
if @ >1, (38)

-(3) =
r—-ri=cst=| = 3
9 HoJ1- 2077
2(1+2y0)2>2 c
=ro|\ =— =— ifa=1 39
(9(1+yo)yo H; (39)

The first two cases (i.e5 — 0 andr — o0) dis-
agree with the holographic point of view, because they

r — o0
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would prevent any cut-off (IR and UV, respectively).
In particular, the case < 1 seems to be proscribed
because it could not prevent the singularity formation
and would correspond to the absence of black hole for-
mation.

The third case onlyo = 1) corresponds to a de
Sitter asymptotic limit. In Eq(39), the indexi of H
means exponential “inflation”. Note that the Iinﬁg

depends only oy, and its value is’—" =1.06813 if

we takeyg = +/0.7. Asrg = ) = 4980 12 Mpcy;
is equal to 53192 Mpc. The expression af, is for-

mally the same in the two models and depends only '

on the choice of the observational priatl and yo.
However, each model leading to slightly different ad-
justments of these parameters gives slightly different
values ofrg andr; then.

In the case of the ehT model, for any arbitrary
the same phenomenon appears and the value2
does not necessitate a special study. In the limit 1,
Egs.(22) and (25)yive

a—oco and r—=0 ifa<1

(equivalently 8> > 1)
3

1
K\

a— o0 and r — cst = -
ifa =1 (equivalently 8> =1).

2
) =5478.13 Mpc

Whena > 1, 8> < 1, theny — B, before reaching 1,
anda — oo, while r — oo for this asymptotical limit
B2 of y. From the today observational evaluatiofis,

has to be> +/0.63=0.79, and sax < 524283, =

1.78. In the futurep range from 1 to /8 will be-
come more and more narrow, tending to 1, as long as
Eq. (17) of the model, indicating a growth a2 4, re-
mains valid.

Thus, the case = 1 appears to us as the most at-
tractive. The corresponding de Sitter's limit is =
5478.13 Mpc. It is a little greater than the limit of
the LHG model (5319.42 Mpc), which means a little
weaker exponential inflation.

6. Conclusion
We have seen that the form ~ r—2 of the ehT

model[16] for the DE, clearly also supported by the
holographic principlg17,18], leads, in our study, to

two somewhat different models, owing to the chosen
energy conservation equation. In the ehT modek 1
and the best fit)(v2 =1.14) to the Snla’s data from the
“gold” sample[23] gives usHg = 64 kmMpc st
and 2% = 0.63. If « # 1 (as in the LHG model) it

is worth observing that the < 1 values are not very
attractive because they lead to the singularity O
when2, — 1.

For the deceleration—acceleration transition epoch
we find a redshiftz = 0.96, a value slightly higher
than the ones recently published28< z7 < 0.72)
[18,23] and very sensitive to th@ﬁ value. Compar-
ing the values of the cosmological parameters in vari-
ous models requires to discuss not only the choice of
the parametew but also the forms or relations taken
for ¢(z) (for instance,q(z) = qo + g1z valid when
z K 1), for w(z), or for dr (z). Besides, in a given
model, one has to take into account the energy con-
servation laws for DM and DE. In most cases, the
authors assume an energy conservation law for each
component separately. Here we have considered the
more general situation of a global conservation of the
whole energy and so, necessarily, an interaction be-
tween DM and DE. Such an interaction could induce
higher values for the transition redshift, as noted by
Amendola et al. for models with coupliig9,30]. Fu-
ture observations in the high redshift range could allow
to discriminate between theories with coupled compo-
nents and theories with distinct conservation laws.
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