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Abstract

We apply the thermodynamical model of the cosmological event horizon of the spatially flat FLRW metrics to the s
the recent accelerated expansion phase and to the coincidence problem. This model, called “ehT model” hereafter, le
energy (DE) densityΛ varying asr−2, wherer is the proper radius of the event horizon. Recently, another model moti
by the holographic principle gave an independent justification of the same relation betweenΛ andr. We probe the theoretica
results of the ehT model with respect to the SnIa observations and we compare it to the model deduced from the ho
principle, which we call “LHG model” in the following. Our results are in excellent agreement with the observatio
H0 = 64 km s−1 Mpc−1, and Ω0

Λ = 0.63+0.1
−0.01, which leads toq0 = −0.445 andzT � 0.965.

 2005 Elsevier B.V.
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1. Introduction

Since the discovery of the presently accelerated
pansion of the universe from supernovae observat
[1,2], evidences for such an accelerated phase ar
creasing. The simplest theoretical candidate to exp
this acceleration is a cosmological “constant”Λ. Any-
thing producing sufficient negative pressure—for
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stance a scalar field[3] or a bulk viscosity[4]—could
also be valid.

Before the discovery of this acceleration, pheno
enological ansatze with a variableΛ(t) were tenta-
tively proposed as solutions of the cosmological “co
stant” problem (e.g.,[5–11]).

From a different point of view, the generalizatio
[12,13] of the black hole and of the de Sitter eve
horizon thermodynamics[14,15] to the Friedmann–
Lemaître–Roberston–Walker (FLRW) space–time
led to the relationΛ(t) ∼ r−2(t) [16] wherer denotes
the event-horizon in the FLRW model of the univer
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This model will be called the event horizon thermod
namical model (ehT model) hereafter.

Recently, this last form forΛ(t), or, equivalently,
for the dark energy densityρΛ(t) through ρΛ(t) =
χ−1Λ(t) (with χ = 8πGc−4), has received furthe
supports based on the holographic principle[17,18].
The associated model will be referred to as the L
model in the following.

A model such thatΛ ∼ r−2 for the DE density can
be used in different ways and different contexts.
instance, in a precedent paper[16] in order to addres
the problem of the exit of inflation in the early un
verse, we imposed as second component a perfect
of strings (γ = 2/3). The model led then toΛ = 3 ä

a
,

which was independently considered as an ansat
some authors[19–22].

In the present Letter, in order to settle some
sues on the coincidence and the recent decelera
acceleration transition problems, we assume for
second component a cold dark matter (P = 0). In Sec-
tion 2, we review some basic equations and relati
common to the ehT and LHG models. The ehT mo
is developed in Section3, particularly for thez � 2
epoch. In Section4, in order to probe the DE assum
tion in this range ofz, we discuss how our model fits i
with the type Ia supernovae recent observations[23].
We deduce then the most likely values for theH0 and
Ω0

Λ parameters, as well as the deceleration para
terq0 and the deceleration–acceleration transition r
shift zT . Finally, Sections5 and 6contain comments
and a brief comparative discussion concerning the
sults obtained by the two models.

2. Model for Λ and field equations

In order to set the notations, we introduce some
sic equations of the two-component models. The s
tially flat FLRW space–time has the metric

(1)

ds2 = c2 dt2 − a2(t)
[
dR2 + R2(dθ2 + sin2 θ dφ2)],

where the scale factora(t) is a monotonic increasin
function of the cosmic timet .

We assume an universe filled by two type-like p
fect fluids, namely dust (ordinary and dark matter) a
dark energy (DE) with a type-like perfect fluid energ
momentum tensor

(2)
T αβ = ρtotu

αuβ − Ptot∆
αβ, ∆αβ = gαβ − uαuβ,

whereuα is the 4-velocity common to all the comp
nents of the energy densityρtot. We consider two com
ponents such asρtot = ρ +ρΛ andPtot = P +PΛ. The
first component (ρ, P ) is the matter withρ the energy
density,P the pressure and obeys the barotropic s
equationP = (γ − 1)ρ whereγ = const, 0< γ � 2
(for instance,γ = 1 for dust). The second compone
is the dark energy (DE), withρΛ = χ−1Λ the vac-
uum energy density andPΛ the pressure, satisfyin
the state equation

(3)PΛ = ωρΛ,

whereω (−1 � ω < 0) can be variable. The prese
results are valid for any first component of matt
namely any value ofγ . In the next section, we wil
restrict our discussion to the particular caseγ = 1 cor-
responding to dust.

The field equations for the spatially flat case are

(4)3H2 = χc2(ρ + ρΛ),

(5)2
ä

a
+ H 2 = −χc2(P + PΛ),

whereH ≡ ȧ
a

is the Hubble parameter,c the velocity
of the light and the dot stands for the time derivativ

Combining these two equations leads to

(6)
(
Ḣ−1) = 3

2

(
γ + (1+ ω − γ )ΩΛ

)
,

where the dimensionless density parameterΩΛ ≡
Λc2/3H2 has been introduced. Eq.(6) is always valid
provided the DE is a perfect fluid.

We consider nowΛ as a vacuum energy densi
associated to the FLRW event-horizon such as

(7)Λ = 3α2

r2
,

wherer is the proper radius of the event-horizon, a
α is a dimensionless constant parameter. This fo
of Λ was previously obtained by[16,17]whenα = 1,
and by[18] whenα �= 1.

Using the quantityΩΛ, relation(7) becomes

(8)
√

ΩΛ = αc

rH
.
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The proper radius of the flat FLRW event-horizon is

(9)r(t) = a(t)

∞∫
t

c dt ′

a(t ′)
.

The derivative of(9) with respect to time gives

(10)H − ṙ

r
= c

r
.

For convenience, we introduce the variablex ≡ lna(t)

such asx = 0 today. Relation(10)becomes then

(11)1− r ′

r
= c

rH
=

√
ΩΛ

α

(
r ′ ≡ dr

dx

)
,

where the prime means the derivative with resp
to x.

In the same manner, we can rewrite relation(6)

(12)
( 1
H

)′

( 1
H

)
= 3

2

(
γ + (1+ ω − γ )ΩΛ

)
.

Finally, by combining Eqs.(11) and (12)with the
derivative of Eq.(8), one obtains

Ω ′
Λ = ΩΛ

{
3
[
γ + (1+ ω − γ )ΩΛ

]

(13)− 2

[
1−

√
ΩΛ

α

]}
.

Let us emphasize that this equation is valid for a
values ofγ (constant) andω (constant or variable)
independently of the fact that the two componentρ

andρΛ are interacting or not.
It is useful to derive from the field equations(4)

and (5)the deceleration parameterq

(14)q ≡ −ä

aH 2
= 1

2

[
(3γ − 2)+ 3(ω+ 1− γ )ΩΛ

]
which is valid in the two models.

In the following, we assume that the “matter” com
ponentρ is dust (γ = 1), so that(13) and (14)become

(15)Ω ′
Λ = ΩΛ

(
1+ 2

√
ΩΛ

α
+ 3ωΩΛ

)
,

(16)q = 1

2
(1+ 3ωΩΛ).

The relations(1)–(16), as well as the energy–mome
tum conservation law∇βT αβ = 0 (or, equivalently, the
Bianchi identity), are valid in the two models und
consideration, which we denoteΛ(t)CDM models
hereafter.

From now on, the assumptions of the ehT mo
will be different from those of the LHG model.

3. Model with interacting components

In the ehT model, we assume that the DE co
ponent satisfies thermodynamical state equati
i.e., relations between its thermodynamical variab
which are valid in any space–time. Therefore, a
thermodynamical state equation valid in the de S
ter’s space–time[15,24]—for instance,PΛ = −ρΛ or
ρΛ = 12π2T 2

Λ (TΛ the temperature)—remains val
in the FLRW space–time. Thus, if the DE is an a
tual cosmological component, its thermodynami
state equations will stay the same independently
the choice of the space–time, as well as for any o
component. Now, the DE energy density in the de
ter space–time, as cosmological constant, satisfie
state equation(3) with ω = −1.

Then, the energy conservation lawuα∇βT αβ = 0
leads to the two following alternatives:

(i) Either, the energy of each component is conser
separately and, of course,Λ has to be constant.

(ii) Or, more generally, the components’ energies
only conserved together,Λ = Λ(t) is then possi-
ble.

The ehT model assumes the point (ii), which s
poses an interaction between the matter and the D
the same vein, other models assuming an interac
between the DE and dark matter (DM) component
the cosmic fluid were recently studied (e.g.,[25–27]).

This suggests to retain the relation(7) which is
valid in the de Sitter’s space–time whenα = 1. In
Section5, some consequences of the presence o
parameterα in the ehT and LHG models are di
cussed. Using the holographic principle can lead a
to choose the relation(7) [17,18]. These two last ref
erences assume a variable state equation (ω = ω(x))
for the DE, and independent energy conservation l
for the matter and DE components. Conversely,
present model assumesω = −1 (vacuum), and that th
energy conservation is only valid for the two comp
nents considered together.
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Eq.(15)can be rewritten

(17)Ω ′
Λ = 3ΩΛ(β2 − √

ΩΛ )(β1 + √
ΩΛ )

where the constantsβ1andβ2 are given by

β1 ≡ 1

3α

(√
1+ 3α2 − 1

)
,

(18)β2 ≡ 1

3α

(√
1+ 3α2 + 1

)
, β1, β2 > 0.

By settingα = 1, Eq.(17)becomes

(19)Ω ′
Λ = ΩΛ(1− √

ΩΛ)(3
√

ΩΛ + 1),

which differs from Eq. (8) in[18]. Nevertheless a
straightforward calculation (using(12), (15)and the
derivative of the definition ofΩΛ) gives

(20)Λ′ = 2Λ(
√

ΩΛ − 1),

which is common to the two models. AsΛ′ is always
negative,Λ is decreasing with time. Observational e
idences provide a very small present value forρΛ

(fine-tuning problem) and of the same order asρ (co-
incidence problem).

Introducing the functiony(x) ≡ √
ΩΛ, rela-

tion (17)becomes

(21)2y′ = 3y(β2 − y)(β1 + y).

Its solution is (in the only case considered here wh
y < β2)

(22)K1a = y2

(β2 − y)

α

β2
√

1+3α2
(β1 + y)

α

β1
√

1+3α2

.

K1 is a constant of integration which can be related

the initial conditiony0 =
√

Ω0
Λ.

We derive now the expression ofr = r(y). Using
Eqs.(11) and (21)yields

(23)d(ln r) = dx − 2dy

3α(β2 − y)(β1 + y)
.

After integration, one obtains

(24)K2r = a

(
β2 − y

β1 + y

) 1√
1+3α2

or equivalently

Kr = y2

α−β2
β2

√
1+3α2

α+β1
β1

√
1+3α2

,

(β2 − y) (β1 + y)
(25)K ≡ K1K2.

K2 is a second constant of integration which d
pends ony0 and r0 = αc(y0H0)

−1. The expression
of K1 andK2 depend explicitly on the two priorsΩ0

Λ

andH0. The current values ofΩ0
Λ andH0 areΩ0

Λ =
0.7 andH0 = 72 kms−1 Mpc−1 [28]. With these two
numerical values, it is interesting to deal with the ca
whereα = 1 for which β1 = 1

3 andβ2 = 1. One ob-
tains

K1a = y2

(1− y)
1
2 (1

3 + y)
3
2

,

(26)K1 ≡ y2
0

(1− y0)
1
2 (1

3 + y0)
3
2

= 1.3686,

K2r = a

(
1− y

1
3 + y

)1/2

, or Kr ≡
(

y

1
3 + y

)2

,

r0 = c

H0y0
= 4980.12 Mpc,

K2 ≡ 1

r0

(
1− y0
1
3 + y0

)1/2

= 7.50265× 10−5 Mpc−1,

(27)K = 1.02681× 10−4 Mpc−1.

However the previous values ofH0 andΩ0
Λ are model-

dependent. They were obtained in the framework
the ΛCDM model. We shall see that starting wi
the same observational SnIa data, the best fit to
Λ(t)CDM models give appreciably different centr
values ofH0 andΩ0

Λ.

4. SnIa constraints on the ehT model

In order to compare these theoretical results w
the observations of the SnIa magnitudes, the lumin
ity distancedL has to be expressed with respect to
redshiftz = a−1 − 1. In the ehT model, it yields

dL = (1+ z)
[
(1+ z)r − r0

]

(28)= c(1+ z)

y0H0

[
(1+ z)

r

r0
− 1

]
,

where the expression ofr depends onz. As before,
we only consider the caseα = 1. Both Eqs.(22)
and (25)give a parametric representation (via the “p
rameter”y) of r as function ofz. Indeed,(22) yields
immediatelyz = z(y) (with a = (1+ z)−1).
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Fig. 1. The “distance moduli”µ(z) of the ehT model.
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The set of the theoretical curves “distance modu
µ versus the redshiftz,

µ ≡ m − M = 25+ 5 log10(dL),

(29)with dL in Mpc,

predicted by the model parametrized by the two c

mological parametersy0 =
√

Ω0
Λ andH0, can be plot-

ted. For the two parametersΩ0
Λ andH0 free, the bes

fit to the magnitude observational data of the 157 S
“Gold sample”[23] can be determined by minimizin
the functionχ2 = ∑

(
µ(z)−µi(zi )

σi
)2, whereµi(zi) de-

notes the values of the magnitude for the observatio
data,σi the corresponding error and the summat
is taken over any of the 157 data of the sample. T
corresponding values ofΩ0

Λ and H0 are derived by
numerical computation. More precisely, Eq.(21) is in-
tegrated by the method of Runge–Kutta of order 4,
the expression ofz(y) is deduced by use of(22). With
the help of Eqs.(28) and (29), the values ofµ(z) for z

ranging from 0 to 100 are then obtained. After a s
ple numerical evaluation ofχ2 for Ω0

Λ ranging from 0
to 1 andH0 from 50 to 100, the best fit correspondin
to χ2 = 178,7 is obtained for

(30)

H0 = 64+7
−4 kms−1 Mpc−1, Ω0

Λ = 0.63+0.1
−0.01.
The functionµ(z) is plotted inFig. 1 for z ranging
from 0 to 2.

The likelihood functionL(Ω0
Λ) (seeFig. 2) is de-

rived by marginalization ofH0 and furnishes the sam
value of the parameterΩ0

Λ.
Finally, the deceleration parameterq can be ex-

pressed as a function ofy in the ehT model (forα = 1)
from Eq.(16) (with ω = −1)

(31)q = 1

2

(
1− 3y2).

In Fig. 3 the curveq(z) of the ehT model is plot
ted. Today the deceleration isq0 = −0.445, and the
deceleration–acceleration transition occurred atzT �
0.965.

5. The event horizon and the parameter α

We examine here the influence of the parameteα

on the limits of the proper radiusr of the event horizon
(eh) in the two models. First, let us consider the LH
model.

By comparison with the relations(22) and (25)of
the ehT model, the LHG model would lead to the
lations (a is given by (9) of[18] andr , not explicitly
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Fig. 2. The likelihood functionL(Ω0
Λ) of the ehT model.
he
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Fig. 3. The deceleration parameterq(z) of the ehT model.

given, can be deduced from their Eqs. (6) and (9)):

Y0a = y2(1+ y)
α

2−α

(1− y)
α

2+α (α + 2y)
8

4−α2

, α �= 2,

(32)Y0 ≡ y2
0(1+ y0)

α
2−α

(1− y0)
α

2+α (α + 2y0)
8

4−α2

,

(33)r = α

Y
3
2

0 H0

√
1− Ω0

Λ

y2(1+ y)
1+α
2−α (1− y)

1−α
2+α

(α + 2y)
12

4−α2

.

For α = 2, the LHG model requires to start again t
calculation from the differential equation(15) which
becomes:

(34)2y′ = y(1− y)(1+ y)2.
Its integration yields

a = (1− y0)
4
3 (1+ y0)

2
3

y2
0

y2

(1− y)
4
3 (1+ y)

2
3

(35)× exp

(
8

3

(
1

1+ y
− 1

1+ y0

))
.

Then,

(36)r = 2c(1− y0)
2(1+ y0)

H0

√
1− Ω0

Λy3
0

y2 exp( 4
1+y

− 4
1+y0

)

(1− y)
3
2 (1+ y)

1
2

.

We can see from(32) or (35) that a tends to infinity
wheny tends to 1, for any values ofα (positive, see
(8)). But the behaviour ofr differs because it depend
on the parameterα, as it can be seen from(33) and
(36). Three cases can be distinguished for the beh
iour of r in the limit y → 1:

(37)r → 0 if α < 1,

(38)r → ∞ if α > 1,

r → ri = cst =
(

2

9

)2
c

H0

√
1− Ω0

ΛY
3
2

0

(39)= r0

(
2

9

(1+ 2y0)
2

(1+ y0)y0

)2

≡ c

Hi

if α = 1.

The first two cases (i.e.,r → 0 and r → ∞) dis-
agree with the holographic point of view, because t
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would prevent any cut-off (IR and UV, respectively
In particular, the caseα < 1 seems to be proscribe
because it could not prevent the singularity format
and would correspond to the absence of black hole
mation.

The third case only (α = 1) corresponds to a d
Sitter asymptotic limit. In Eq.(39), the indexi of H

means exponential “inflation”. Note that the limitri
r0

depends only ony0, and its value is:ri
r0

= 1.06813 if

we takey0 = √
0.7. Asr0 = c

H0y0
= 4980.12 Mpc,ri

is equal to 5319.42 Mpc. The expression ofr0 is for-
mally the same in the two models and depends o
on the choice of the observational priorsH0 andy0.
However, each model leading to slightly different a
justments of these parameters gives slightly differ
values ofr0 andri then.

In the case of the ehT model, for any arbitraryα,
the same phenomenon appears and the valueα = 2
does not necessitate a special study. In the limity → 1,
Eqs.(22) and (25)give

a → ∞ and r → 0 if α < 1

(equivalently, β2 > 1)

a → ∞ and r → cst = 1

K

(
3

4

)2

= 5478.13 Mpc

if α = 1 (equivalently, β2 = 1).

Whenα > 1, β2 < 1, theny → β2 before reaching 1
anda → ∞, while r → ∞ for this asymptotical limit
β2 of y. From the today observational evaluations,β2

has to be>
√

0.63= 0.79, and soα < 2
√

0.63
3×0.63−1 =

1.78. In the future,α range from 1 to 1.78 will be-
come more and more narrow, tending to 1, as long
Eq. (17) of the model, indicating a growth ofΩΛ, re-
mains valid.

Thus, the caseα = 1 appears to us as the most
tractive. The corresponding de Sitter’s limit isri =
5478.13 Mpc. It is a little greater than the limit o
the LHG model (5319.42 Mpc), which means a lit
weaker exponential inflation.

6. Conclusion

We have seen that the formΛ ∼ r−2 of the ehT
model [16] for the DE, clearly also supported by th
holographic principle[17,18], leads, in our study, to
two somewhat different models, owing to the chos
energy conservation equation. In the ehT model,α = 1
and the best fit (χ2

ν = 1.14) to the SnIa’s data from th
“gold” sample[23] gives usH0 = 64 kmMpc−1 s−1

and Ω0
Λ = 0.63. If α �= 1 (as in the LHG model) i

is worth observing that theα < 1 values are not ver
attractive because they lead to the singularityr → 0
whenΩΛ → 1.

For the deceleration–acceleration transition ep
we find a redshiftzT = 0.96, a value slightly highe
than the ones recently published (0.28 � zT � 0.72)
[18,23] and very sensitive to theΩ0

Λ value. Compar-
ing the values of the cosmological parameters in v
ous models requires to discuss not only the choic
the parameterα but also the forms or relations take
for q(z) (for instance,q(z) = q0 + q1z valid when
z 
 1), for ω(z), or for dL(z). Besides, in a given
model, one has to take into account the energy c
servation laws for DM and DE. In most cases,
authors assume an energy conservation law for e
component separately. Here we have considered
more general situation of a global conservation of
whole energy and so, necessarily, an interaction
tween DM and DE. Such an interaction could indu
higher values for the transition redshiftzT , as noted by
Amendola et al. for models with coupling[29,30]. Fu-
ture observations in the high redshift range could al
to discriminate between theories with coupled com
nents and theories with distinct conservation laws.
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