INFORMATION AND COMPUTATION 119, 283-293 (1995}

Simplifying the Design of Knowledge-Based Algorithms
Using Knowledge Consistency*

GIL NEIGER

Software Technology Laboratory, Intel Corporation, JF3-206, 2111 N.E. 25th Avenue. Hillshoro, Oregon 97124-5961

Processor knowledge is an important tool in the study of distributed
computer systems. It has led to better understanding of existing
algorithms for such systems and to the development of new
knowledge-based algorithms. Some of these algorithms use forms of
knowledge (e.g., common knowledge) that cannot be achieved in
certain systems. This paper considers alternative interpretations of
knowledge under which these forms of knowledge can be achieved. It
explores consistent knowledge interpretations and shows how they can
be used to circumvent the known impossibility results in a number of
cases. This may lead to greater applicability of knowledge-based
algorithms. €. 1995 Academic Press, Inc.

1. INTRODUCTION

The study of knowledge in distributed computer systems
has helped both in the understanding of existing systems
and in the development of new distributed algorithms. This
paper seeks to expand the applicability of knowledge in
distributed systems by examining notions of knowledge
consistency.

Knowledge in distributed systems was first explored by
Halpern and Moses [10]. They formalized the notion of
ascribing knowledge to individual processors in a system
and defined a hierarchy of states of knowledge that a set of
processors may possess. The highest of these is common
knowledge. Intuitively, a fact is common knowledge to a
group if everyone in the group knows it, and everyone in the
group knows that everyone in the group knows it, and so
on. Halpern and Moses showed that, in many systems of
practical interest, common knowledge of interesting facts
cannot be achieved. Following this, they defined several
modifications (weakenings) of common knowledge that can
be achieved in practical systems. They argued that, in
certain cases, these weakenings of common knowledge
might adequately substitute for true common knowledge.

Halpern and Fagin explored the relationship between
knowledge and action in distributed systems and introduced

* Partial support for this work was provided by the National Science
Foundation under Grants DCR-8601864, CCR-8909663, CCR-9106627,
and CCR-9301454. This is a revised and expanded version of a paper that
appeared in the Proceedings of the Second Conference on Theoretical
Aspects of Reasoning about Knowledge, March 1988, pp. 295-308.

knowledge-based protocols (or algorithms), which use
knowledge to determine what actions processors perform
[8]. The ability to specify a processor’s actions with a
knowledge-based algorithm can simplify the development of
solutions to many problems in distributed systems. For
example, Halpern and Zuck considered the sequence trans-
mission problem and developed a knowledge-based solution
to it that would be correct in different types of distributed
systems [12]. In order to implement a knowledge-based
algorithm using a normal one, one must be able to interpret
a processor’s knowledge. This can be done in a variety of
different ways.

Several researchers have examined the relationship
between knowledge and the solutions to specific problems
in distributed systems. Dwork and Moses showed that it is
necessary to attain common knowledge in order to achieve
Simultaneous Byzantine Agreement [6]; Moses and Tuttle
did the same for general simultaneous actions [18]. Neiger
and Tuttle showed similar results for a related class of
problems [21]. Each of these arguments included a
demonstration of a knowledge-based algorithm to solve the
problem being considered or a proof that no solution was
possible because the requisite knowledge could not be
achieved. More recently, Halpern et o/ have explored the

-use of knowledge in deriving round-optimal solutions for

Eventual Byzantine Agreement [11]. Neiger and Bazzi
showed similar results for a related class of problems [4,
19]. These results indicate that an understanding of the
interaction between knowledge and action (through
knowledge-based algorithms) may facilitate the solution
and understanding of important problems in distributed
systems.

The impossibility of achieving common knowledge in
many distributed systems appears to limit its utility when
developing algorithms for these systems. In spite of this,
Neiger and Toueg showed that solutions to certain
problems may be developed for systems in which common
knowledge can be achieved and that these solutions can be
used correctly in systems in which it cannot {20]. They did
so by “interpreting” knowledge in a nonstandard manner
that did not alter the correctness of the algorithms under
consideration. In running these algorithms, processors can

0890-5401,95 $6.00

Copyright ¢ 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

284

detect no inconsistency between this nonstandard inter-
pretation and a standard one.

This technique is related to what Halpern and Moses
termed internal knowledge consistency. This paper more
thoroughly explores the notion of knowledge consistency
and exhibits two types of such consistency. The first is that
of Halpern and Moses and the second is a new form, called
uniform knowledge consistency. It is shown that the latter is
particularly useful when reasoning about the correctness of
a program being run with a nonstandard knowledge inter-
pretation. Several applications of knowledge consistency
are then given, demonstrating its usefulness as a tool in the
development of knowledge-based algorithms,

2. DEFINITIONS, ASSUMPTIONS, AND NOTATION

A distributed system is defined to be a set & of processors
operating in an environment through which they com-
municate. Typically, the environment will be a message-
passing medium, a shared memory, or some combination.
At any given time, a processor has some local state, as does
the environment. The state of the environment contains all
information about the system’s configuration that is not
directly visible to the processors, including the contents of
any communication channels, the shared memory, etc. Let
& be the set of local states of the processors. A processor’s
local state may or may not include the value of a local clock,
whose relationship to real time may or may not be specified.
In general, the processor’s local state is the input to the
protocol being run (see below). The state of a distributed
system, or system state, consists of the local states of the
individual processors and that of the environment. Let .
be the set of system states. If the system is in state s, then
denote processor p’s local state by s(p).

A system’s state changes over time due to events that occur
in the course of an execution. Some events are the results of
commands performed by the processors. Others are not
explicitly controlled by the processors but are performed by
the environment; these include the incrementing of local
clocks and the delivery of messages by the environment. Let
% be the set of commands executable by processors.

A specific execution of a system is described by a history.
A history specifies the system states throughout the execu-
tion as well as the commands executed by the processors. It
consists of two functions that describe the execution with
respect to real time (assume that real times are elements of
N, the set of natural numbers). The first is a state history
function s, which describes the states through which the
system passes; §: N+— &. If 8(¢) = s, then the system was in
state s at time ¢; in this case, s(z, p) will refer to s(p). The
second is a command history function ¢, which specifies the
commands performed by processors; ¢: N x #—%. This
function is partial; c(¢, p) may be undefined (L). If ¢(¢, p) =
ce %, then processor p began executing command ¢ at

GIL NEIGER

time ¢ (when the system was in state s(z)). If c(t,p)=1,
then, at time 7, processor p is still busy executing an earlier
invoked command.

Note that a history does not specify all events executed,
only the commands performed by the processors. Other
events, executed by the environment, are reflected by the
changes in the system state. For example, if s(¢) shows p’s
clock reading time 5 and s(z+ 1) shows p’s clock reading
time 6, we can infer that the environment updated the clock
at time t. The type of events the environment executes
depends on system being executed. For example, the
environment in a system with perfectly synchronized clocks
will never execute an event that updates the clock of one
processor but not that of another.

For any history H = {8, ¢}, the states through which the
system passes (given by $) must be compatible with the
commands performed by the processors (given by c); for
example, if c(z, p) = “send message m to ¢,” then s(t) should
reflect that the message has been sent. A formal definition of
this compatibility depends on the particular system being
considered and is thus beyond the scope of this paper.

Given a history H = {8,), define a function L that, given
a processor and a real time, provides that processor’s local
state-command history through that time. This is the
sequence of local states upon which the processor acts, each
state paired with the associated command:

L(p, 1)
A ift=0and (0, p)= L,
) <s(0,p), €5, ift=0and c(0, p)=ce¥,
C\up, -1, ift>0and c(z, p)= 1;

Lip,t—1)-{s(t,p),c), ift>0andc(t,p)=ce%.
Thus, L(p, 0) is the empty sequence 4 if p executes no com-
mand at time 0; otherwise, it is the sequence containing that
command with the local state from which it was executed. At
later times, these sequences are extended based on the com-
mands executed by the processor. Define p’s state-command
history for the entire run by setting L(p)=1lim,_, . L(p,).
Note that L(p) describes all of p’s execution except for times
at which p is busy; in a sense, it conveys the part of p’s execu-
tion that is independent of the real timings of commands.

Two histories H; and H, are state-command-equivalent
(written H, = H,) if, for each processor pe 2, L |(p) =L,(p)
(L, and L, are the state-command history functions for H,
and H,, respectively). If H, = H,, then no processor can dis-
tinguish H, from H,. As will be seen below, the notion of
state-command-equivalent histories will be central to the
definition of uniform knowledge consistency.

As indicated above, a particular distributed system is
determined by the allowable behavior of the environment.
Any history in which the environment behaves appro-
priately is considered an execution of that system. For this

SIMPLIFYING KNOWLEDGE-BASED ALGORITHMS

reason, a system is identified with the set of all histories that
correspond to all such executions. Capital letters are used to
denote such sets. In general, 4 will refer to the actual system
being run, and 7 will refer to a system used to establish a
knowledge interpretation.

A protocol IT is the distributed algorithm run by the
processors. Given the local state of a processor, IT specifies
the next command to be executed by that processor;
IT: # x ¥ %. Thus, if processor p is in local state s when
it performs a command, then it executes the command
H(p,s).

History H is an execution of protocol II if the commands
executed by the processors in H are exactly those specified
by 71, given the local states of the processors. That is,

VieNVpe Z[c(t,p)# L=c(t,p)=I(p,s(t,p))].

If S is a set of histories, define S[/7] to be the subset of S
containing only executions of /7.

Because the protocols defined here base their commands
on the processors’ local states, they cannot distinguish state-
command-equivalent histories.

THEOREM 1. If H, =H, and H, is an execution of I1, then

50 IS H.

Proof. Suppose that H, = H, and that H, is an execution
of I7. The proof must show that H, is also an execution of /1.

Suppose that for some 7 and p, C,(t, p)=ce¥. Let
5 =5,(¢, p). It suffices to show that ¢ = I1(p, s). By the defini-
tion of L, the pair (s, ¢) appears in the sequence L,(p).
Since H, = H,, {s, ¢) also appears in L,(p). Thus, for some
time ', c=c,(¢’, p) and s=s,(¢’, p). Since H, i1s an execu-
tion of 7T, ¢ =I1(p, s) as desired. Thus, H, is an execution
of I1. |

In distributed systems, a problem to be solved can be
specified by a predicate on histories. This is the problem’s
specification. For example, the serializability problem in dis-
tributed databases is specified by a predicate that is satisfied
exactly by those histories of the database in which trans-
actions are serializable. Protocol I7 solves a problem with
specification X in system S if, whenever processors run /7 in
S, X is satisfied. Formally, [T satisfies 2 in S if every history
S[] satisfies X.

Many problems in distributed systems are not sensitive to
the real timings of different events in an execution but
depend, for example, more on the relative ordering of events
at different processors. Examples of such problems include
transaction serializability, deadlock prevention, and stable-
state detection. Recall that the state-command history of a
processor contains all information about a processor’s
execution except these real timings. The definition
of problem specifications can thus be specialized to be

285

a predicate on state-command histories; call such specifica-
tions internal specifications. Formally, specification X is
internal if

YH|, Hy[H; = H, = (Z(H) <> Z(H,))];

that is, any two state-command-equivalent histories either
both satisfy or both fail to satisfy 2.

Not all specifications are internal. Consider a specifica-
tion X that requires all processors to begin executing their
second command at real time 17. Let H, = {§s,, C,> be some
history that satisfies 2. Let H,=<{S,,C,> be a history
defined as follows:

S(¢t, p) if t<17
ta = . c
St p) {Sl(t—l,p) it (>17 nd
C,(t, p) if t<17
C(t,p)=<1 if =17
C{t—1,p) if t>17.

It should be clear that H, =@ H, but, in H,, all processors
begin their second command only at time 18, so H, does not
satisfy Z.

Consider problems that can be solved in totally
asynchronous systems (those in which there is no bound on
relative processor speeds, message-passing delays, or on
memory-access latencies). In such systems, there is no way
to satisfy any requirements on the real-timings of events.
This suggests that any specification satisfiable in such
systems must be internal.

3. KNOWLEDGE IN DISTRIBUTED SYSTEMS

This section considers how knowledge can be ascribed to
processors in distributed systems, different interpretations
for such knowledge, and how such interpretations can be
used in knowledge-based protocols.

3.1. Definitions

This section formally ascribes knowledge to processors in
a distributed system and gives a language for a logical
system that can express such knowledge.

Assume the existence of a language for expressing certain
facts about the system without referring to the knowledge of
processors. These are ground facts and express properties
that are or are not true of specific points in executions of the
system. A point is a pair (H, t) that refers to history H at
time ¢. With each ground fact ¢ is associated a set n(¢) of
points for which the fact is true. Ground facts are those such
as “processor p sent message m to processor g,” “the value
of processor g¢’s variable x is 5,” and “processor r has
halted.” The truth of a ground fact should be independent of

286

the system being run and depend only upon the point in the
execution. The language of ground facts is then closed under
the usual propositional connectives (e.g., A and 7). A fact
is valid in a system if it is true at all points in the system. It
is valid if it is valid in all systems.

Halpern and Moses introduced the modality operators
K, (one for each p € 2) to extend a language of ground facts
[10]; K, denotes that processor p “knows” fact ¢. How
these knowledge operators are interpreted is a major con-
cern of this paper. In general, such an interpretation should
have properties that facilitate the design of knowledge-
based protocols (see Section 3.3 below). Ideally, knowledge
operators satisfy the properties of the modal logic S5 [9]:

Al: the knowledge axiom: K, ¢ = ¢;'

A2: the consequence closure axiom: K, o A K (¢ =) =
K,y

A3: the positive introspection axiom: K ¢ =K K ¢,

A4: the negative introspection axiom: 2K, ¢ =K, K ¢,
and

R1: the rule of necessitation: if ¢ is valid in the system,
then K, ¢ is valid in the system.'

Higher levels of knowledge are defined based on the
operators K,. E; @ (everyone in group G knows ¢) is
ArecK,0. f ELo=E @ and E7"'9=E(EZ¢), then
C.o (v is common knowledge to group G) is equivalent to
/\m =1 Ercr:l q”'z

Common knowledge and variants thereof have been
shown to be necessary for the execution of coordinated
actions in distributed systems [4, 6, 11, 18, 19, 21].
However, Halpern and Moses showed that, in systems in
which there is uncertainty in the behavior of the processors
(e.g., due to failures) or of the environment (e.g., due to
asynchrony in the message-passing medium), common
knowledge of many interesting facts may be impossible to
achieve. Because of these impossibility results, it is impor-
tant to understand when achieving true common knowledge
is not necessary and when a suitable weakening may suffice.
This paper addresses that issue by examining different
knowledge interpretations and how and when they can be
used consistently.

3.2. Knowledge Interpretations

This section considers different interpretations of the
knowledge operators K ,. A knowledge interpretation .# is a

! @ =y is shorthand for —1(¢ A W)

% Given that the knowledge operators require an interpretation to be
defined, R1 is more appropriately stated “if ¢ is valid in the system under
a given interpretation, then K,¢ is valid in the system under that same
interpretation.”

3 Halpern and Moses defined C ;¢ to be the greatest solution to the fixed
point equation X = E ;(¢ A X) and showed that this definition is equivalent
to the infinite conjunction given above.

GIL NEIGER

function from points to truth valuations on formulas.
(#, H, 1) ¢ indicates that ¢ holds at point (H, > under
interpretation £. This paper considers only interpretations
that satisfy the following:

(1) if ¢ is a ground fact then (., H, t)=¢ if and only if
(H, 1) en(g);

(2 (£ R t)Ep Ay if and only if (F H,t)E¢ and
(. H,)Y,

(3) (A, 4, t)= ¢ if and only if (£, H, 1) ¥ @; and

(4) ifs(t, p)=s'(t', p), then (#, K, t)=K ¢ if and only if
(S, 1, EK, .

(1) to (3) ensure that .# is consistent with the meaning of
ground facts, conjunction, and negation. (4) states that a
processor’s knowledge must always be a function of its local
state. For that reason, a knowledge interpretation can be
considered a function from local states to a “knowledge
valuation” of formulas.

Many researchers have found it useful to develop
knowledge interpretations that are defined based on a par-
ticular system. Processor knowledge is based on the facts a
processor would know when running in a specified system.
This paper refers to such interpretations as system-based
interpretations, and the remainder of the paper concentrates
on such interpretations. If 7 is a system, let .# denote the
system-based interpretation based on system I, which need
not equal 4, the system being run. The truth valuation of
formulas based on . is defined inductively on the structure
of formulas: ground facts, conjunctions, and negations are
given by (1) to (3) above. The operators K, are interpreted
as follows:

(4) (F,H, 1)K, ¢ if and only if Y(H',¢'>elxN
[s(r,p)=8(l',p)= (S, H.1')E=g]

(note that (4') is consistent with (4) above). This is the only
part of the definition of .# that explicitly depends on /.
Because the operators E ; and C are defined in terms of the
K,. % also interprets formulas using these operators.

For the most part, researchers have used an interpreta-
tion .#, based on the actual system A being run; in such
cases, all of S5 holds. The following lemma generalizes this
fact by considering a situation where the interpretation .# is
not necessarily based on 4 and indicates the cases in which
different parts of S5 hold.

LEMMA 2. Let A and I be two systems. Consider
knowledge interpretation ¥, when used in system A. Then

1. the operators K, satisfy axioms A2, A3, and A4 of S5,

2. if IS A, then rule R1 holds;

3. if A<, then axiom Al holds.

Proof. Suppose that (5, H,1)=K,pAK (¢=y).
Then ¢ and ¢ =y hold at all points in / x N in which p has

SIMPLIFYING KNOWLEDGE-BASED ALGORITHMS

the same local state as at {H, t>. By the definition of = (see
footnote 1), i must also hold at all such points, so
(S, 1, =K, , and A2 holds. A3 and A4 hold because
equality of p’s local states is an equivalence relation over
I'x N, regardless of A.

If < A, then R1 holds because, if ¢ is valid in 4 (under
#,), then it must also be valid in 7 (under .#). Standard
reasoning can now be used to show that K, ¢ is valid in 4.
If A<=, then Al, the knowledge axiom, also holds: if
(H,t>eAxN and (4, H,)EK,p, then (4, H,!')E@
for all points {H’,t'> e Ix N such that s(z, p) =s'(t, p).
Since A<, (H,t> is one of these points and thus,
(FH e |

Lemma 2 has the following corollary.

CoroLLARY 3. Consider knowledge interpretation %,
when used in system 1. Then the operators K, satisfy all of S5.

Axiom Al need not be satisfied if / is a proper subset of
A. For example, let 4 be an arbitrary distributed system,
with no restrictions on the accuracy or synchronization of
local clocks. Let 7 be a similar system in which clocks are
always perfectly synchronized such that / = 4. Suppose that
system A is being run and let (H, t> € 4 x N be a point at
which processor p’s clock shows 5. If ¢ =“processor ¢’s
clock shows 5” then (%, H,)= K, ¢. This is because system
I, in which clocks are perfectly synchronized, is being used
to interpret the operator K. Since H itself need not be in /,
it may be that ¢’s clock does nor show 5 at (H, t)>, even
though p “knows” that it does.

3.3. Knowledge-Based Protocols

Halpern and Fagin introduced knowledge-based protocols
for distributed systems [8]. This section considers an
adaptation of their work.

Section 2 defined protocols to map local states to com-
mands. A knowledge-based protocol can use a processor’s
knowledge (as well as its state) to determine the next event
to be executed. Such protocols are written in an extended
language that allows the use of the knowledge operators K,
E,, and C to specify tests on the system state.

Recall that, by property (4) of knowledge interpretations,
the facts that a processor knows are dependent only upon its
state and the chosen interpretation. Thus, a knowledge-
based protocol 17 can be defined as a function that, given a
processor’s state and a knowledge interpretation, deter-
mines the next event to be executed by that processor.

History H is an .4 -execution of knowledge-based protocol
IT if processors execute exactly the events specified by
protocol 71, using knowledge interpretation .#. That is,

VteNVpeZ[c(t,p)# L =cl(t, p)=I(p,s(1,p), #)].

643 119:2-11

287

If S'is a set of histories, define S[77, .#] to be those histories
in § that are #-executions of /7. If all histories in S[17, .#]
satisfy specification X, then IT .#-satisfies X in S.

An analogue to Theorem 1 holds for knowledge-based
protocols.

THEOREM 4. If H, = H, and H, is an . -execution of 1,
then so is H,.

Proof. Similar to the proof of Theorem 1. |

As stated earlier, it seems most natural to execute a
knowledge-based protocol using a knowledge interpreta-
tion based upon the system being run; this interpretation
will satisfy S5. There are occasions, however, when it may be
useful to base knowledge upon other systems. These are
discussed in Section 4.

In most cases, the knowledge-based protocol being run is
itself common knowledge to the processors. That is, each
processor will know what protocol the others are running.
To capture this knowledge, it is appropriate to use an inter-
pretation that is based not on the set of all runs of the system
but on the set of runs of the system that are executions of I1.
Although there is a circularity in the resulting definitions
(the set of executions depends on the chosen interpretation,
which in turn depends on the set of executions), Halpern
and Fagin have shown that this set is well-defined if
processor clocks are perfectly synchronized and processors’
commands depend only upon knowledge of the past.

4. KNOWLEDGE CONSISTENCY

Halpern and Moses [10] defined a notion of “internal
knowledge consistency.” This section formalizes this and
other forms of knowledge consistency.

4.1. Two Definitions

Knowledge consistency is a property that a knowledge
interpretation has with respect to a particular system. Infor-
mally, an interpretation is consistent with respect to a given
system if it is “appropriate” to use that interpretation when
running a protocol in the system. A knowledge interpreta-
tion is consistent for a system if the processors running a
knowledge-based protocol in that system can never detect
any inconsistency based on that interpretation.

Consider the use of system-based interpretation .#, as
defined above, when running in a system 4. By Lemma 2, .%,
must satisfy all of S5 with the possible exceptions of Al (the
knowledge axiom) and R1 (the rule of necessitation). A pro-
cessor can detect an inconsistency only if it can determine
that the knowledge axiom does not hold. It can do this only
by knowing a fact and its negation.

When considering system-based interpretations, knowl-
edge consistency represents a relation between two systems.
One of these, 4, 1s the system actually being run. The other,

288

I, is the “ideal” system, used to interpret the knowledge
operators. As defined by Halpern and Moses, knowledge
interpretation % is internally knowledge-consistent with
system A if the following holds;

Y{H, 1> e(AxN)Vpe#I(n,,t,> e(IxN)

[s(e, p)=5,(1,.p)]. (1)
This states that, at any point in an execution of system A
there is for each processor a point in system [at which that
processor has the same local state. Because of this, no pro-
cessor can ever detect that it is not running in the system /.
Recall that the knowledge axiom holds when using .% in
system /. Thus, no processor running in 4 can ever detect
that the knowledge axiom (using .%) does not hold. The
following theorems formalize this by showing that this
definition is necessary and sufficient to prevent processors
from detecting any inconsistency.

THEOREM 5. Suppose that ¥, is internally knowledge-
consistent with system A. Then, for any fact ¢, it cannot be
the case that, for some HE A, teN, and pe P, (F, H,)=
K, AK,70.

Proof. Suppose the contrary for some ¢, H, ¢, and p.
Since .4 is internally knowledge consistent with A, there is
a point {H,,t,> € I xN such that s(¢, p) =s,(¢,, p). Since
(I, 1=K, 0AK, g, it must be that (5, H,,1,)
@ A 1, which contradicts condition (3) of the definition of
a knowledge interpretation. |}

THEOREM 6. Suppose that ., is not internally knowledge-
consistent with system A. Then, for some HE A, te N, and
peP, (I, H 1)E=K, 0 AK, ¢ for all facts .

Proof. Since .4 is not internally knowledge-consistent
with A, it must be that

I(H, 1> e(AxN)IpeZ —13{H
[S(I’P)=S,,(t,np)]-

> e(IxN)

r o

Let ¢ any fact. By the definition of .#, it is vacuously true
that (4, H, HEK, ¢ A K, ¢, as desired. ||

Although internally knowledge-consistent interpretations
are necessary and sufficient to prevent inconsistencies from
being detected, they do not provide some important proper-
ties that are useful in the design of knowledge-based
protocols. For example, note that, for any point
{H, t)> € A xN, each processor p e % may have a different
point {H,, ¢, in I x N at which it has the same local state;
there is no guarantee that H,=H, for distinct p and q.
Furthermore, if the definition gives (H;, ¢|) for {H, ¢,)
(with s(t,, py=s,(#,,p)) and {H,,t,) for {H, 1, (with
S(t5, p) =S,(t5, p)), for two distinct times there is no

GIL NEIGER

guarantee that H, = H,. The histories in [that p considers
possible may change with time.* There are cases when one
needs a stricter notion of knowledge consistency than this.
For example, it may be necessary for all processors to believe
that the same history of the ideal system is taking place. This
motivates the idea of uniform knowledge consistency.

S, 18 uniformly knowledge-consistent with system A if

VHeAIH e l[H=H']. (2)
Given any history H in the actual system A, there is (at least)
one history of a system I that appears the same as H to all
processors at all times and in which all processors act as they
do in H. Furthermore, all processors execute the same com-
mands (in the same order) in both histories; this is not a
serious restriction, as a processor’s local state often will
encode all the commands it has performed. This definition
is strictly stronger than the previous. Thus, the remarks
regarding the knowledge axiom apply to it as well, as does
Theorem 5 (of course, Theorem 6 does not apply).

(There is another property that makes uniform
knowledge consistency more useful. As expressed, both
forms of consistency are defined as relations between
systems; they do not consider the protocols that processors
are running. Suppose a processor is running knowledge-
based protocol I7 in system A, with a knowledge interpreta-
tion based on system /. In the case of internal knowledge
consistency, it may be the that the history H,,, used to form
point (H,, ¢, in Eq. (1), is not a history of /7. In this case,
p could use its knowledge of I7 to detect an inconsistency.
This cannot occur with uniform knowledge consistency.
By Theorem 4, the history H' used in Eq. (2), must be an
execution of 7.}

Consider the following example from the domain of
replicated databases. Let 7 be a system in which all transac-
tions are performed serially and in the same order at each
processor. Let 4 be a system that ensures one-copy
serializability [5].° If a processor’s view includes no more
than the transactions that it has initiated and any results
returned by them from the database, then .# is uniformly
knowledge-consistent with A.

4.2. Using Knowledge Consistency

The use of knowledge-consistent interpretations can sim-
plify the design of knowledge-based protocols because an

4 Some systems are such that processors never “forget” facts that they
once knew. This is the case if processor p’s local state at time ¢ in history
H, (1, p), includes L(p, 1 — 1), p’s entire sequence of states and commands
before point (H, t). In that case, each processor has at least one history
that it always believes to be possible.

* This essentially means that running a set of transactions in A4 has the
transactions return the same results that they would if they had been run
in the same serial order at all sites.

SIMPLIFYING KNOWLEDGE-BASED ALGORITHMS

appropriately chosen knowledge interpretation can allow a
protocol designer to make certain simplifying assumptions.
That is, he or she can assume that processors can learn facts
that they would (or could) not know when using a standard
interpretation. Specifically, if system 7 is a subset of system
A then, using # as a knowledge interpretation, a processor
may act as if it knows facts that it would not if it used inter-
pretation .#,. Although this may appear to allow the
designer to make spurious (and potentially dangerous)
assumptions, knowledge consistency can be used to show
that making such assumptions does not invalidate the
correctness of the resulting protocol.

For example, let 4 be a system with asynchronous
message passing (in which there is no bound on delivery
times) and let / be a system in which messages are delivered
exactly one second after they are sent and suppose that .#, is
internally knowledge-consistent with 4.° By using .#, pro-
cessors can “know” facts that they would not if using .#,:
using .%, a processor knows that, if one second has elapsed
since it sent a message, then the message has been delivered;
this is not true when using .#,. If . is truly knowledge-
consistent with A4, the processor can never detect that its
message was not promptly delivered. Thus, any commands
based on this “knowledge” should not be inconsistent.

Internal knowledge consistency guarantees that at no
point in any history can any processor detect an incon-
sistency. This does not mean, however, that one can always
use internally knowledge-consistent interpretations to
simplify protocol design. One must also consider together
all commands of all processors. The correctness of a
knowledge-based protocol may depend upon facts that
cannot be discerned by any single processor at a given time;
specifically, it may depend upon the states through which
the system passes in an execution of the protocol. However,
when solving problems with internal specifications, a
uniformly knowledge-consistent interpretation can be used
to simplify the develop of a solution:

THEOREM 7. Let I and A be two systems such that 9, is
uniformly knowledge-consistent with A and let X be an inter-
nal specification. If knowledge-based protocol I #-satisfies
2 in I, then II also J;-satisfies X in A.

Proof. Let He A be an S-execution of I1. Since .7 is
uniformly knowledge-consistent with A4, there is an H' €[
such that H' = H. By Theorem 4, H’ is also an #,-execution of
I1. Since II f#-satisfies X in [, history H' satisfies 2. X' is
internal so history H also satisfies 2. Since H was chosen
arbitrarily, /T must #-satisfy Zin 4.}

Theorem 7 indicates that uniformly knowledge-consis-
tent interpretations can be used when developing solutions

¢ The truth of this assumption depends on the specific systems 4 and 7;
it is made here for the benefit of this example.

289

to problems with internal specifications. In fact, the
protocol designer need only prove the protocol to be correct
in the ideal system; Theorem 7 guarantees its correctness in
the actual system. The abstraction of an ideal system
provides a designer with additional properties that simplify
the design task. Thus, the use of uniform knowledge con-
sistency can simplify the derivation of solutions to problems
with internal specifications.

Consider again the example of replicated databases from
Section 4.1, where 7 is a system in which transactions are
truly serial, and A4, where transactions are one-copy
serializable. In general, the correctness of a replicated
database depends only on the views of the database that
processors observe in response to the transactions that they
execute; it is not hard to see that this can be specified inter-
nally. Thus, a knowledge-based protocol, written to process
transactions in system /, will run correctly in system A if .%,
is used as the knowledge interpretation. Since it i8 much
simpler to design such a protocol if transactions are
executed serially, this simplifies the design of such systems.
Knowledge-based protocols can be designed for these
systems and proven correct with the simplifying assumption
that transactions are executed serially.

5. APPLICATIONS OF KNOWLEDGE CONSISTENCY

This section considers some cases in which knowledge
consistency can be applied in distributed systems.

5.1. Granularity of Perception

Recall that each processor perceives only the part of
the system state that is its local state. Because of this, the
granularity at which a processor perceives changes in the
system state may be different from the granularity at which
these changes actually occur. For example, one command,
as executed by a processor, may be implemented by several
distinct events (determined by the environment), each one
of which changes the system state and possibly the pro-
cessor’s local state. However, because the processor is
“busy” during these implementing events, it cannot perceive
(or at least act upon) these changes to its local state. In such
cases, one may want to use an interpretation based upon a
system in which each command is one aromic event.

Fischer and Immerman consider two related systems that
allow processors different views of the system state [7]. In
one of these, C (coarse), one processor command consists of
sending and receiving messages to and from all other pro-
cessors in the system, as well as changing the processor’s
local state. Processors execute these once per “tick” on a
global clock. The second system, F (fine), considers a finer
granularity of execution. The sending and receipt of each
message is a separate event, as is the final change of local
state. (A processor’s state may also change after the

290

individual sending and receiving events.) No assumptions
are made regarding the synchronization of processors
nor message transmission rates.” Nevertheless, execution
proceeds in rounds: in each round, a processor first sends
messages, then receives messages, and then changes its state.
Note that, in both systems, a protocol consults a processor’s
current state and the messages it has just received in deter-
mining its new state and messages to send in the next round.
Thus, the part of the system state perceived by a processor
is the same in both cases: the current state and messages
received in the current “round” (the intermediate local
states in system F are not used by the protocols).

Fischer and Immerman observe that, in C, it is relatively
easy to obtain common knowledge. This is because of
guarantees provided by the system: for example, when
executing a command, a processor knows that the messages
it sent in the previous round have been received. Because F
is a more loosely coupled system, it provides no such
guarantees and, for this reason, common knowledge cannot
be attained in F.

Fischer and Immerman argue that these two systems are,
in a sense, isomorphic and that it is therefore counter-
intuitive that common knowledge can be achieved in one
and not in the other. This apparent contradiction can be
explained by considering knowledge consistent interpreta-
tions. Because of the nature of the protocols considered and
the fact that no messages are ever lost, interpretation %
must be uniformly knowledge-consistent with system F.
Therefore, one may write knowledge-based protocols for C
and then run them in F, evaluating knowledge as if in C.*
Such protocols thus operate as if common knowledge can
indeed be achieved and are still correct when used to solve
problems with internal specifications. If some protocol 17
F-solves a non-internal specification X in C, then it might
not do so in F. For example, £ may specify that all pro-
cessors send each round’s messages simultaneously. This
can be accomplished in C but not in F.

5.2. Simulation of Restricted Systems

The system upon which a knowledge interpretation is
based is often not simply an “isomorphic” version of the
system being run. Sometimes, it is a system with different
(and usually more useful) properties. One may want to

"The two systems described here, C and F, correspond to the
“protocols” # and o/ of Fischer and Immerman. They do not define
protocols as done in this paper but instead posit the existence of a function
that determines the next (local) state and messages to be sent. Although
they call F “asynchronous,” some synchronization is provided by the fact
that a processor can detect whether or not the messages it has sent have
been received.

Fischer and Immerman do approximately the same thing by
introducing the operators Kf, where S is the system upon which the
interpretation of these operators is based.

GIL NEIGER

simulate the execution of such an “ideal” system while
actually running a more practical one. For example, it may
not be practical to execute transactions serially in a
distributed database system; a system with one-copy
serializability is practicai and simulates one with serial
executions.

Neiger and Toueg considered such cases in systems with
different message-passing and clock properties [20]. R,
was defined to be such a system with asynchronous
message passing and perfectly synchronized real-time
clocks; L, was a similar system with a form of logical clocks
[14]. Consider an execution He L,; define RT(H) to be an
execution that is identical in that all processors execute the
same commands from the same local states (and thus at the
same local times) but in which processors’ clocks always
show real time. It is not hard to see that H= RT(H)
and that RT(H)e R,. This means that .#; is uniformly
knowledge-consistent with L, and can be used when
solving internal specifications in L,.

Following this, they considered systems with syn-
chronous message passing. They defined R, to be such a
system with perfectly synchronized clocks and L, to be one
in which clocks are only approximately synchronized but in
which communication is modified so that clocks have the
causality properties of logical clocks. Once again, %, is
uniformly knowledge-consistent with L, and can thus be
used when solving internal specifications in L_.°

In the same paper, they defined a message passing
primitive, called the publication, that, if implemented, would
achieve common knowledge in the ideal systems R, and
R,." They implemented publications in L, and L, and
showed that these implementations can be used as if they
achieve true common knowledge. These arguments can be
formalized by appealing to the uniform knowledge con-
sistency of interpretations .#,_and .#; with systems L, and
L., respectively.

5.3. Distributed Shared Memory

Another area in which knowledge consistency can play a
role is the study of distributed shared memories. Here,
researchers study and compare different abstractions of
shared memory that may be implemented in distributed
systems that lack a true shared memory. This section shows
how these abstractions can be expressed using the for-
malisms developed here and how they can be understood in
terms of knowledge consistency.

? Although both system R, and L, have synchronous message passing,
the bounds on message delays must be greater in R, for the indicated
knowledge consistency to hold.

19 As defined, publications achieve timestamped common knowledge [10,
20] in any system; in systems with perfectly synchronized clocks, this is
identical to true common knowledge.

SIMPLIFYING KNOWLEDGE-BASED ALGORITHMS

In a shared-memory system, processors do not com-
municate by message passing but by reading and writing
shared memory locations. Assume that the memory consists
of some finite set .# of locations. To access the memory,
processors may execute two kinds of commands: processor
p uses Read,(x) to read location x and Write (x)v to write
value v to x. The environment “responds” to such com-
mands with two kinds of events: ReadReturn,(x)v reports
to p that v is stored in x, while WriteReturn (x)uv signals to
p that its write of v to x has completed. Histories of a shared-
memory system have the following properties: after
executing a memory-access command and before receiving
a response, a processor initiates no commands. Further-
more, the environment returns only responses that “match”
commands already executed by the processors. The
remainder of this section considers asynchronous shared-
memory systems. In these, there is no bound on relative
processor speeds or on memory-access latencies (the latter
being the delay between the initiation of a memory-access
command and its response). Furthermore, processors do
not have access to clocks that measure real time.

The consistency of a shared-memory system is deter-
mined by how its histories correspond to linearizations
of their memory-access commands. A linearization of a
history is a total order of its commands such that, if
ReadReturn (x)v Is a response to some command
¢ = Read,(x), then v is the value stored by the latest Write
to x in the ordering that appears before c.

Ideally, the memory should appear as if processors are
atomically accessing a single shared memory. Such a
memory 1s atomic [16] or linearizable [13]. Let H be a
history of a shared-memory system. Let ¢, and ¢, be two
memory-access commands executed in H. If the environ-
ment’s response to ¢, occurs before ¢, is initiated, we write
¢, — ¢,. This is a partial order that indicates that ¢, strictly
precedes ¢, in real time. History H is atomic (or linearizable)
if there is a linearization of H such that, if ¢; > ¢,, ¢
precedes ¢, in the linearization. A system provides atomic
memory if all its histories are atomic.

While the abstraction of atomic memory is the closest to
that of a real shared memory, it is quite expensive to imple-
ment. Attiya and Welch [3] have shown that sequential
consistency, a related but weaker form of memory, can be
implemented more efficiently. Sequential consistency was
defined by Lamport [15] as follows. History H is sequen-
tially consistent if there is a linearization of H such that, if ¢,
and ¢, are memory-access commands by the same processor
and ¢, s initiated first, ¢, precedes ¢, in the linearization.
A system provides sequential consistency if all its histories
are sequentially consistent.

An atomic memory system is an ideal abstraction for
distributed memory systems; often, it is more practical to
provide only sequential consistency. It turns out that a
knowledge interpretation based on a system with atomic

291

memory is uniformly knowledge consistent with a system
with sequentially shared memory:

THEOREM 8. Let A and I be systems with the same
processors and memory locations such that A is sequentially
consistent and I is atomic. Then 9, is uniformly knowledge-
consistent with A.

Proof. The proof must show that YheAddIw el
[H2H']. Let H be a history in A. Since H is sequentially
consistent, there is a linearization of H such that, if ¢, and ¢,
are memory-access commands by the same processor and ¢,
is initiated first, ¢, precedes ¢, in the linearization. Now
define H’ as follows: if ¢ is ith in the linearization, then it is
initiated at time 2/ — 1 and receives a response at time 2i.
The two histories differ only with respect to the real times at
which events occur. History H' is atomic as the same
linearization exists and, by definition, respects the real-time
ordering of the commands in H'. Thus, H e/ In both
histories, each processor executes the same commands in
the same order and receives the same responses. Thus,
H=H', as desired. |}

Theorems 7 and 8 imply now that knowledge-based
protocols for shared-memory systems can be developed
with the assumption that memory is atomic and then run in
systems with sequential consistency. If the knowledge inter-
pretation used is based on atomic memory, then such
protocols will correctly solve internal specifications.

Although sequential consistency can be implemented
more efficiently than atomic memory, its implementations
can still be quite costly [17]. For this reason, researchers
have proposed a variety of even weaker forms of distributed
shared memory. One example is causal memory [1]. This
memory is based on a partial causal order of memory-access
commands; this is similar to the causal order Lamport
defined for message-passing systems [14]. A formal defini-
tion of causal memory is beyond the scope of this paper,
but it differs from sequential consistency in the following
ways:

« instead of a single linearization of all memory-access
commands, there is a (possibly different) linearization for
each processor;

« a processor’s linearization does not include the Read
commands of other processors; and

o cach linearization must be consistent with the causal
ordering of commands.

Causal memory can be implemented more efficiently than
sequential consistency because its implementations require
no blocking.

Unfortunately, a result such as Theorem § cannot be
shown for causal memory. In some programs, processors

292

may be able to detect that they are not running with sequen-
tial consistency. Thus, even internal knowledge consistency
does not hold. However, there is a large class of programs
that do not allow any inconsistencies to be detected. These
are the data-race free protocols; Ahamad et al. provide a
definition and the following result [2, Theorem 5].

THEOREM 9 [Ahamad et al]. If A is a system with
causal memory, I is a system with sequential consistency, and
I1 is a data-race free protocol, A[IT) < I[IT].

The following is a corollary to Theorem 9.

COROLLARY 10. Let A and [be systems with the same
processors with the same processors and memory locations
such that A provides causal memory and I is sequentially con-
sistent. Let I1 be a data-race free knowledge-based protocol.
Then 9y 17y is uniformly knowledge-consistent with A[IT].

Corollary 10 and Theorem 7 imply that data-race free
knowledge-based protocols for shared-memory systems can
be developed with the assumption that memory is sequen-
tially consistent and then run in systems with causal
memory. If the knowledge interpretation used is based on
sequential consistency, then such protocols will correctly
solve internal specifications. (In fact, the protocols will
correctly solve any specification, because of the subset
relation given in Theorem 9.)

6. CONCLUSIONS

The study of processor knowledge in distributed systems
has been useful in the analysis of distributed algorithms. The
development of knowledge-based protocols has permitted
the design of algorithms that can take advantage of the
knowledge requirements of different problems.

How a processor determines, or interprets, its knowledge
profoundly affects the behavior of a knowledge-based
protocol. An interpretation is knowledge-consistent with a
system if processors using it in that system can detect no
inconsistencies. This paper has formally developed the
notion of knowledge consistent interpretations and has
shown that uniformly consistent knowledge interpretations
can be used to simplify the design of knowledge-based
protocols; a designer can assume that the distributed system
being used had certain useful properties (e.g., perfectly syn-
chronized clocks) and then correctly run his or her protocol
in a system without such properties.

It has been shown that in systems with perfectly syn-
chronized clocks, timestamped common knowledge 1s identi-
cal to true common knowledge [10, 20]. If a knowledge
interpretation based on such a system is uniformly
knowledge consistent with some practical system, then

GIL NEIGER

achieving timestamped common knowledge in the practical
system is as good as achieving true common knowledge
when solving problems with internal specifications. This can
be explained by appealing to uniform knowledge con-
sistency. There are other weakenings of common knowledge
that can be achieved in practical distributed systems; in
addition to those described by Halpern and Moses [10],
there is also concurrent common knowledge, introduced
by Panangaden and Taylor [22]. New formulations of
knowledge consistency may be related to the difference
between true knowledge and its other weakened forms.

ACKNOWLEDGMENTS

I thank Micah Beck, Phillip W. Hutto, Murray Mazer, Amitabh Shah,
Patrick Stephenson, and Sam Toueg for reading and commenting on
earlier drafts of this paper. In addition, the anonymous referees provided
many helpful comments.

Received July 1992; final manuscript received March 1, 1994

REFERENCES

1. Ahamad, M., Burns, J. E., Hutto, P. W., and Neiger, G. (1991},
Causal memory, in “Proceedings of the Fifth International Work-
shop on Distributed Algorithms” (S. Toueg, P. G. Spirakis,
and L. Kirousis, Eds.), Lectures Notes in Computer Science,
Vol. 579, pp. 9-30, Springer-Verlag, A revised and expanded version
exists [2].

2. Ahamad, M., Neiger, G., Bumns, J. E., Kohli, P., and Hutto, P. W.
(1995), Causal memory: Definitions, implementation, and program-
ming, Distribut. Comput. 9, in press.

3. Attiya, H., and Welch, J. L. (1994), Sequential consistency versus
linearizability, ACM Trans. Computer System 12(2), 91-122.

4. Bazzi, A., and Neiger, G. (1992), The complexity and impossibility of
achieving fault-tolerant coordination, in “Proceedings of the Eleventh
ACM Symposium on Principles of Distributed Computing,”
pp. 203-214, ACM PRESS, New York.

5. Bernstein, A., and Goodman, N. (1986), Serializability theory for
replicated databases, J. Comput. Systems Sci. 31(3), 355-374.

6. Dwork, C., and Moses, Y. (1990), Knowledge and common knowledge
in a Byzantine environment: Crash failures, Inform. and Comput. 88(2),
156-186.

7. Fischer, M. J., and Immerman, N. (1986}, Foundations of knowledge
for distributed systems, in “Proceedings of the First Conference on
Theoretical Aspects of Reasoning about Knowledge” (J. Y. Halpern,
Ed.), pp. 171-185, Morgan Kaufmann, San Mateo, CA.

8. Halpern, J. Y., and Fagin, R. (1989), Modelling knowledge and action
in distributed systems, Distribut. Comput. 3(4), 159-177.

9. Halpern, J. Y., and Moses, Y. (1985), A guide to the modal logic of
knowledge and belief, in “Proceedings of the Ninth International
Joint Conference on Artificial Intelligence,” pp. 480-490, Morgan
Kaufmann, San Mateo, CA.

10. Halpern, J. Y., and Moses, Y. (1990}, Knowledge and common
knowledge in a distributed environment, J. Assoc. Comput. Mach.
37(3), 549-587.

11. Halpern, J. Y., Moses, Y., and Waarts, O. (1990), A characterization
of eventual Byzantine agreement, in “Proceedings of the Ninth ACM
Symposium on Principles of Distributed Computing,” pp. 333-346,
ACM Press, New York.

SIMPLIFYING KNOWLEDGE-BASED ALGORITHMS

. Halpern,). Y., and Zuck, L. D. {1990), A little knowledge goes a long

way: Knowledge-based derivations and correctness proofs for a family
of protocols, J. Assoc. Comput. Mach. 39(3), 449-478.

. Herlihy, M. P., and Wing, J. M. (1990), Linearizability: A correctness

condition for concurrent objects, ACM Trans.

Languages Systems 12(3), 463-492.

Programming

. Lamport, L. (1978), Time clocks, and the ordering of events in a

distributed system, Comm. ACM 21(7), 558-565.

. Lamport, L. {1979), How to make a multiprocessor computer that

correctly executes multiprocess programs, [EEE Trans. Comput.
C-28(9). 690-691.

. Lamport, L. (1986), On interprocess communication; part I: Basic

formalism, Distribut. Comput. 1(2), 77-85.

. Lipton, R. J., and Sandberg, S. (1988), “PRAM: A Scalable Shared

Memory,” Technical Report
Science, Princeton University.

180-88, Department of Computer

18.

19.

20.

21

22.

293

Moses, Y., and Tuttle, R. (1988), Programming simultaneous actions
using common knowledge, Algorithmica 3(1), 121-169.

Neiger, G., and Bazzi, R. (1992), Using knowledge to optimally
achieve coordination in distributed systems. in “Proceedings of the
Fourth Conference on Theoretical Aspects of Reasoning about
Knowledge” (Y. Moses, Ed.). pp. 43-59, Morgan Kaufmann,
San Mateo, CA.

Neiger, G., and Toueg, S. (1993). Simulating synchronized clocks and
common knowledge in distributed systems. J. Assoc. Compur. Mach.
40(2), 334-367.

Neiger, G., and Tuttle, M. R. (1993), Common knowledge and

consistent simultaneous coordination, Distribut. Comput. 6(3),
181-192.
Panangaden, P., and Taylor, K. (1992), Concurrent common

knowledge: Defining agreement for asynchronous systems, Distribut.
Comput. 6(2), 73-94.

