A note on the degree for maximal monotone mappings in finite dimensional spaces

Yuqing Chen a, Donal O’Regan b, Fulong Wang a, Ravi P. Agarwal c

a Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
b Department of Mathematics, National University of Ireland, Galway, Ireland
c Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

1. Introduction and preliminaries

In 1983, F. E. Browder established a degree theory for single-valued mappings of class (S_+) in reflexive Banach spaces and based on this degree Browder also constructed a degree theory for mappings of class (S_+) with a perturbation of a maximal monotone mapping or a pseudo-monotone mapping. Browder’s degree has motivated degree theory for various monotone type mappings; see [1–16,19,20] and the references therein. In [16], Zhang and Chen generalized Browder’s theory to multi-valued mappings of class (S_+) (introduced by Petryshyn [17]) and its perturbations with maximal monotone or pseudo-monotone mappings. In particular they construct a degree theory for maximal monotone mappings. To be precise, let E be a reflexive Banach space, $\Omega \subset E$ a non-empty subset, and $T : D(T) \subseteq E \rightarrow 2^E$ a maximal monotone mapping and suppose $\Omega \cap D(T) \neq \emptyset$ and $0 \notin T(\partial \Omega \cap D(T))$. Then the degree of T on $\Omega \cap D(T)$ is defined by

$$\deg(T, \Omega \cap D(T), 0) = \lim_{\lambda \rightarrow 0^+} \deg(T + \lambda J, \Omega \cap D(T), 0),$$

where $J : E \rightarrow 2^E$ is the duality mapping which is a demi-continuous mapping of (S_+) (for complete details see [16, 12]). However it is quite difficult to obtain a homotopy property for this degree; see [6]. In this work we show an easy way to define the degree for a maximal monotone mapping in a finite dimensional space by using the classical Browder degree. To be precise, let R^d be the n-dimensional Euclidean space, $T : D(T) \subseteq R^d \rightarrow 2^{R^d}$ a maximal monotone mapping, $\Omega \subset R^d$ an open bounded subset such that $\Omega \cap D(T) \neq \emptyset$ and assume $0 \notin T(\partial \Omega \cap D(T))$. Then we define the topological degree $\deg(T, \Omega \cap D(T), 0)$ of T on $\Omega \cap D(T)$ as the limit of the classical Browder degree $\deg(T_{\lambda}, \Omega, 0)$ as $\lambda \rightarrow 0^+$, where $T_{\lambda} = (T^{-1} + \lambda J)^{-1}$ is the Yosida approximation of T. Moreover a homotopy property for the degree of a maximal monotone mapping is obtained using a very simple argument. A homotopy property for the degree of a sub-differential of a continuous convex function is also presented and finally we obtain a product formula for the topological degree of the composition of a continuous mapping with a maximal monotone mapping.
2. Main results

In the following, \(R^n \) is the \(n \)-dimensional Euclidean space, \(T : D(T) \subseteq R^n \rightarrow 2^{R^n} \) a maximal monotone mapping, \(T_\lambda = (T^{-1} + \lambda I)^{-1} \) is the Yosida approximation of \(T \), and \(R_\lambda = I - \lambda T_\lambda \) is the resolvent with respect to \(T_\lambda \).

Lemma 2.1. Let \(T : D(T) \subseteq R^n \rightarrow 2^{R^n} \) be a maximal monotone mapping and \(\Omega \subseteq R^n \) an open bounded set such that \(\Omega \cap D(T) \neq \emptyset \) and assume 0 \(\notin \) \((\partial \Omega \cap D(T)) \). Then there exists \(\lambda_0 > 0 \) such that 0 \(\notin \) \(T_\lambda (\partial \Omega) \) for all \(\lambda \in (0, \lambda_0) \).

Proof. Suppose the conclusion is not true. Then there exist \(\lambda_j \rightarrow 0 \), \(x_j \in \partial \Omega \) such that \(x_j \rightarrow x_0 \in \partial \Omega \) and

\[
T_{\lambda_j} x_j = 0.
\]

By the monotonicity of \(T \) we have

\[
(f - T_{\lambda_j} x_j, x - R_{\lambda_j} x_j) \geq 0, \quad \text{for all} \ x \in D(T), \ f \in Tx,
\]

and \(R_{\lambda_j} x_j = x_j - \lambda_j^{-1} T_{\lambda_j} x_j \rightarrow x_0 \), and therefore we have

\[
(f, x - x_0) \geq 0, \quad \text{for all} \ x \in D(T), \ f \in Tx.
\]

The maximal monotonicity of \(T \) implies that \(x_0 \in D(T) \) and 0 \(\notin \) \(Tx_0 \), which is a contradiction. The proof is complete. \(\square \)

Under the assumption of Lemma 2.1, there exists \(\lambda_0 > 0 \) such that 0 \(\notin \) \(T_\lambda (\partial \Omega) \) for all \(\lambda \in (0, \lambda_0) \). Since \(T_\lambda : R^n \rightarrow R^n \) is continuous (see [6]) the Brouwer degree \(\deg(T_\lambda, \Omega, 0) \) is well defined for \(\lambda \in (0, \lambda_0) \). We define the degree \(\deg(t, \Omega \cap D(T), 0) \) of \(T \) on \(\Omega \cap D(T) \) as

\[
\deg(t, \Omega \cap D(T), 0) = \lim_{\lambda \rightarrow 0^+} \deg(T_\lambda, \Omega, 0).
\]

Note that Lemma 2.6 in [6] guarantees that \(T_{\lambda_1 + (1 - t)\lambda_2} x : [0, 1] \times R^n \rightarrow R^n \) is continuous for \(\lambda_1, \lambda_2 > 0 \). Thus the homotopy property of the Brouwer degree implies that \(\deg(T_{\lambda_1}, \Omega, 0) = \deg(T_{\lambda_2}, \Omega, 0) \) for \(\lambda_1, \lambda_2 \in (0, \lambda_0) \). As a result our degree is well defined.

Theorem 2.2. Let \(T : D \subseteq R^n \rightarrow 2^{R^n}, S : D \subseteq R^n \rightarrow 2^{R^n} \) be two maximal monotone mappings and \(\Omega \subseteq R^n \) an open bounded set. Assume that \(iT + (1 - t)S \) is maximal monotone for each \(t \in (0, 1) \) and 0 \(\notin \) \(\cup_{t \in [0, 1]} iT + (1 - t)S(\partial \Omega \cap D) \). Then \(\deg(T, \Omega \cap D, 0) = \deg(S, \Omega \cap D, 0) \).

Proof. We first prove that there exists \(\lambda_0 > 0 \) such that

\[
0 \notin \cup_{t \in [0, 1]} iT + (1 - t)S, \quad \text{for all} \ \lambda \in (0, \lambda_0)
\]

where \(iT + (1 - t)S \) is the Yosida approximation of \(iT + (1 - t)S \).

Assume this is not true. Then there exist \(t_0, \lambda_j \rightarrow 0, x_j \in \partial \Omega \cap D \) such that \(x_j \rightarrow x_0 \in \partial \Omega \) and \([t_0 T + (1 - t_0)S] x_j \neq 0 \). Since

\[
(t_0 f + (1 - t_0) g - [t_0 T + (1 - t_0)S] x_j, x - R_{t_0} x_j) \geq 0,
\]

for all \(x \in D, f \in Tx, g \in Sx, \) where \(R_{t_0} x_j \) is the resolvent with respect to \([t_0 T + (1 - t_0)S] x_j \), and \(R_{t_0} x_j = x_j - \lambda_j [t_0 T + (1 - t_0)S] x_j \), letting \(j \rightarrow \infty \) we have

\[
(t_0 f + (1 - t_0) g, x - x_0) \geq 0, \quad \text{for all} \ x \in D, \ f \in Tx, \ g \in Sx.
\]

This (see [10, pg. 122]) \(x_0 \in D \) and 0 \(\notin \) \(t_0 Tx_0 + (1 - t_0)Sx_0 \), which is a contradiction. Therefore (2.3) is true. By Lemma 2.6 in [6], \([iT + (1 - t)S] x : [0, 1] \times R^n \rightarrow R^n \) is continuous, so the homotopy property of the Brouwer degree implies that

\[
\deg(T_{\lambda_1}, \Omega, 0) = \deg(S_{\lambda_2}, \Omega, 0).
\]

Thus \(\deg(T, \Omega \cap D, 0) = \deg(S, \Omega \cap D, 0) \). \(\square \)

Corollary 2.3. Let \(T : D \subseteq R^n \rightarrow 2^{R^n}, S : D \subseteq R^n \rightarrow 2^{R^n} \) be two maximal monotone mappings and \(\Omega \subseteq R^n \) an open bounded set. Assume that \(iT + (1 - t)S \) is maximal monotone for each \(t \in (0, 1) \), 0 \(\notin \) \(\partial \Omega \cap D \), 0 \(\notin \) \(S(\partial \Omega \cap D) \), and \((f, g) \geq 0 \) for all \(f \in Tx, \ g \in Sx, \ x \in \partial \Omega \cap D \). Then \(\deg(T, \Omega \cap D, 0) = \deg(S, \Omega \cap D, 0) \).

Proof. It is easy to see that 0 \(\notin \) \(\cup_{t \in [0, 1]} iT + (1 - t)S(\partial \Omega \cap D) \). The conclusion follows from Theorem 2.2. \(\square \)

Let \(\phi(x) : D(\phi) \subseteq R^n \rightarrow R \) be a lower semi-continuous convex function. The sub-differential \(\partial \phi(u) \) at \(u \) is defined by

\[
\partial \phi(u) = \{ f \in R^n : \phi(x) - \phi(u) \geq (f, x - u), \ \text{for all} \ x \in D(\phi) \}.
\]

Note that \(\partial \phi \) is a maximal monotone mapping. For \(\lambda > 0 \), let

\[
\phi_\lambda(x) = \inf_{y \in R^n} \left[\phi(y) + \frac{1}{2\lambda} \| x - y \|^2 \right]
\]

be the so-called Yosida–Moreau regularization of \(\phi \). It is well known that \(\phi_\lambda(x) = \phi(R_\lambda x) + \frac{1}{2\lambda} \| x - R_\lambda x \|^2 \), where \(R_\lambda \) is the resolvent with respect to \((\partial \phi)_\lambda \), \(\lim_{\lambda \rightarrow 0^+} \phi_\lambda(x) = \phi(x) \) for all \(x \in D(\phi) \), and \((\partial \phi)_\lambda = \partial \phi_\lambda = \Delta \phi_\lambda \).
Theorem 2.4. Let \(\phi(t, x) : [0, 1] \times \mathbb{R}^n \to \mathbb{R} \) be a continuous function such that \(\phi(t, x) \) is convex in \(x \) for each \(t \in [0, 1] \), and \(\Omega \subset \mathbb{R}^n \) an open bounded set. Suppose \(\phi(t, \cdot) \) does not obtain a minimum on \(\partial \Omega \) for each \(t \in [0, 1] \). Then \(\text{deg}(\partial \phi(t, \cdot), \Omega, 0) \) does not depend on \(t \in [0, 1] \).

Proof. Since \(\phi(t, \cdot) \) does not obtain a minimum on \(\partial \Omega \) for each \(t \in [0, 1] \), \(0 \not\in \partial \phi(t, \partial \Omega) \) for \(t \in [0, 1] \). We claim that there exists \(\lambda_0 > 0 \) such that
\[
0 \not\in (\partial \phi(t_j, \cdot), (\partial \Omega)), \quad \text{for all } \lambda \in (0, \lambda_0), \ t \in [0, 1].
\]
Assume this is false. Then there exist \(\lambda_j \to 0^+, t_j \to t_0, x_j \in \partial \Omega \) with \(x_j \to x_0 \) such that
\[
(\partial \phi(t_j, \cdot))_j x_j = 0, \quad j = 1, 2, \ldots
\]
Since \(\phi_j(t_j, \cdot)x_j - \phi_j(t_j, \cdot)x_j \geq (\partial \phi_j(t_j, \cdot)x_j, x - x_j) \), for all \(x \in \mathbb{R}^n, j = 1, 2, \ldots \), letting \(j \to \infty \) we get
\[
\phi(t_0, x) - \phi(t_0, x_0) \geq 0, \quad \text{for all } x \in \mathbb{R}^n.
\]
Therefore \(0 \in \partial \phi(t_0, x_0) \), which is a contradiction. From [18], we know that \(\partial \phi \) is a maximal monotone mapping. By the homotopy property of the Brouwer degree implies that \(\text{deg}(\partial \phi(t_j, \cdot), \partial \Omega, 0) \) does not depend on \(t \in [0, 1] \). Therefore \(\text{deg}(\partial \phi(t, \cdot), \Omega, 0) \) does not depend on \(t \in [0, 1] \). \(\square \)

Let \(\Omega \subset \mathbb{R}^n \) be an open bounded set, \(p \in \mathbb{R}^n \) and \(T : D(T) \subset \mathbb{R}^n \to 2^{\mathbb{R}^n} \) a maximal monotone mapping. By the homotopy property we have that \(\text{deg}(T, \Omega \cap D(T), p) \) has the same value as \(p \) ranges through the same connected component \(U \) of \(\mathbb{R}^n \setminus (\partial \Omega \cap D(T)) \). We denote this value by \(\text{deg}(T, \Omega \cap D(T), U) \).

Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be a continuous function, \(T : D(T) \subset \mathbb{R}^n \to 2^{\mathbb{R}^n} \) a maximal monotone mapping, \(\Omega \subset \mathbb{R}^n \) an open bounded set such that \(\Omega \cap D(T) \neq \emptyset \) and \(p \in \mathbb{R}^n \). Suppose \(p \not\in f(T(\partial \Omega \cap D(T))) \). Then it is straightforward to prove that there exists \(\lambda_0 > 0 \) such that \(p \not\in f(T_\lambda(\partial \Omega)) \) for \(\lambda \in (0, \lambda_0) \). We can define \(\text{deg}(f(T), \Omega \cap D(T), p) = \lim_{\lambda \to 0^+} \text{deg}(f(T_\lambda), \Omega, p) \). This degree is well defined (use a homotopy argument similar to the one used after (2.2)).

Theorem 2.5. Let \(f, T, \Omega \) be as above, and \(p \in \mathbb{R}^n \) such that \(T(\overline{\Omega} \cap D(T)) \subset B(0, r) \), where \(r > 0 \) is a constant and \(B(0, r) \) is the open ball centered at zero with radius \(r \), and \(p \not\in f(T(\overline{\Omega} \cap D(T))) \). Then
\[
\text{deg}(f(T), \Omega \cap D(T), p) = \bar{\Sigma}_i \text{deg}(f(U_i), p) \text{deg}(T, \Omega \cap D(T), U_i), \quad (2.4)
\]
where the right hand side only has finitely many nonzero terms, and \(U_i \) are bounded connected components of \(\mathbb{R}^n \setminus (\partial \Omega \cap D(T)) \).

Proof. We first prove that (2.4) only has finitely many nonzero terms. Now \(f^{-1}(p) \cap B(0, r) \) is compact, \(f^{-1}(p) \cap \overline{B(0, r)} \subset \mathbb{R}^n \setminus (\partial \Omega \cap D(T)) = \cup_{i=1}^{k+1} U_i \) where \(U_i \) are connected components (note that the maximal monotonicity of \(T \) implies that \(T(\partial \Omega \cap D(T)) \) is closed in \(\mathbb{R}^n \), so \(R^n \setminus (\partial \Omega \cap D(T)) \) is open). Therefore there exist finitely many \(i \), say \(i = 1, 2, \ldots, k, k+1 \), such that
\[
f^{-1}(p) \cap \overline{B(0, r)} \subset \cup_{i=1}^{k+1} U_i \quad \text{and} \quad f^{-1}(p) \cap U_i = \emptyset \text{ for } i \geq k+2
\]
and \(U_{k+1} = U_\infty \cap B(0, r+1) \) where \(U_\infty \) is the unbounded connected component of \(\mathbb{R}^n \setminus (\partial \Omega \cap D(T)) \). Now \(\text{deg}(f, U_i, p) = 0 \) (since \(f^{-1}(p) \cap U_i = \emptyset \) for \(j \geq k+2 \) and \(\text{deg}(T, \Omega \cap D(T), U_{k+1}) = 0 \) (since \(T(\overline{\Omega} \cap D(T)) \subset B(0, r) \)). Thus the right hand side of (2.4) only has finitely many nonzero terms.

Finally from the Brouwer degree (see [12, Theorem 1.2.13]) we have
\[
\Sigma_{i=1}^{k+1} \text{deg}(f(U_i), p) \text{deg}(T, \Omega \cap D(T), U_i) = \sum_{i=1}^{k+1} \text{deg}(f(U_i), p) \lim_{\lambda \to 0^+} \text{deg}(T_\lambda, \Omega, U_i) \\
= \lim_{\lambda \to 0^+} \text{deg}(f(T_\lambda), \Omega, p) = \text{deg}(f(T), \Omega \cap D(T), p). \quad \square
\]

A proof similar to that of Theorem 2.5 yields the following result.

Theorem 2.6. Let \(f, T, \Omega \) be as above, and \(p \in \mathbb{R}^n \) such that \(f^{-1}(p) \subset B(0, r) \), where \(r > 0 \) is a constant and \(B(0, r) \) is the open ball centered at zero with radius \(r \), and \(p \not\in f(T(\overline{\Omega} \cap D(T))) \). Then
\[
\text{deg}(f(T), \Omega \cap D(T), p) = \Sigma \text{deg}(f(U_i), p) \text{deg}(T, \Omega \cap D(T), U_i),
\]
where the right hand side only has finitely many nonzero terms, and \(U_i \) are bounded connected components of \(\mathbb{R}^n \setminus (\partial \Omega \cap D(T)) \subset B(0, r) \).

Acknowledgement

The first author was supported by a NSFC grant, grant no. 10871052.
References

[15] W.V. Petryshyn, Antipodes theorems for A-proper mappings of the modified type (S) or $(S)_L$ and to mappings with the P_m property, J. Funct. Anal. 71 (1971) 165–211.