A note on the degree for maximal monotone mappings in finite dimensional spaces

Yuqing Chen a, Donal O’Regan b, Fulong Wang a, Ravi P. Agarwal c, *

a Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
b Department of Mathematics, National University of Ireland, Galway, Ireland
c Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

A R T I C L E I N F O

Article history:
Received 22 June 2009
Accepted 22 June 2009

Keywords:
Degree theory
Maximal monotone maps

A B S T R A C T

Let \mathbb{R}^n be the n-dimensional Euclidean space, $T : D(T) \subseteq \mathbb{R}^n \to 2^{\mathbb{R}^n}$ a maximal monotone mapping, and $\Omega \subset \mathbb{R}^n$ an open bounded subset such that $\Omega \cap D(T) \neq \emptyset$ and assume $0 \notin T(\partial \Omega \cap D(T))$. In this note we show an easy way to define the topological degree
$\text{deg}(T, \Omega \cap D(T), 0)$ of T on $\Omega \cap D(T)$ as the limit of the classical Brouwer degree
$\text{deg}(T_\lambda, \Omega, 0)$ as $\lambda \to 0^+$; here T_λ is the Yosida approximation of T. Furthermore, if $T_i : D \to 2^{\mathbb{R}^n}, i = 1, 2$, are two maximal monotone mappings such that $\Omega \cap D \neq \emptyset$ and $0 \not\in \cup_{i \in [0, 1]} [T_i + (1 - t)T_2](\partial \Omega \cap D)$ and if $T_\lambda + (1 - \lambda)T_2$ is maximal monotone for each $t \in [0, 1]$, we give an easy argument to show $\text{deg}(T_i, D \cap \Omega, 0) = \text{deg}(T_\lambda, D \cap \Omega, 0)$.

1. Introduction and preliminaries

In 1983, F. E. Browder established a degree theory for single-valued mappings of class $(S)_+$ in reflexive Banach spaces and based on this degree Browder also constructed a degree theory for mappings of class $(S)_+$ with a perturbation of a maximal monotone mapping or a pseudo-monotone mapping. Browder’s degree has motivated degree theory for various monotone type mappings; see [1–16,19,20] and the references therein. In [16], Zhang and Chen generalized Browder’s theory to multi-valued mappings of class $(S)_+$ (introduced by Petryshyn [17]) and its perturbations with maximal monotone or pseudo-monotone mappings. In particular they construct a degree theory for maximal monotone mappings. To be precise, let E be a reflexive Banach space, $\Omega \subset E$ a non-empty subset, and $T : D(T) \subseteq E \to 2^E$ a maximal monotone mapping and suppose $\Omega \cap D(T) \neq \emptyset$ and $0 \not\in T(\partial \Omega \cap D(T))$. Then the degree of T on $\Omega \cap D(T)$ is defined by

$$\text{deg}(T, \Omega \cap D(T), 0) = \lim_{\lambda \to 0^+} \text{deg}(T + \lambda J, \Omega \cap D(T), 0),$$

where $J : E \to 2^E$ is the duality mapping which is a demi-continuous mapping of $(S)_+$ (for complete details see [16, 12]). However it is quite difficult to obtain a homotopy property for this degree; see [6]. In this work we show an easy way to define the degree for a maximal monotone mapping in a finite dimensional space by using the classical Brouwer degree. To be precise, let \mathbb{R}^n be the n-dimensional Euclidean space, $T : D(T) \subseteq \mathbb{R}^n \to 2^{\mathbb{R}^n}$ a maximal monotone mapping, $\Omega \subset \mathbb{R}^n$ an open bounded subset such that $\Omega \cap D(T) \neq \emptyset$ and assume $0 \not\in T(\partial \Omega \cap D(T))$. Then we define the topological degree
$\text{deg}(T, \Omega \cap D(T), 0)$ of T on $\Omega \cap D(T)$ as the limit of the classical Brouwer degree
$\text{deg}(T_\lambda, \Omega, 0)$ as $\lambda \to 0^+$, where $T_\lambda = (T^{-1} + \lambda I)^{-1}$ is the Yosida approximation of T. Moreover a homotopy property for the degree of a maximal monotone mapping is obtained using a very simple argument. A homotopy property for the degree of a sub-differential of a continuous convex function is also presented and finally we obtain a product formula for the topological degree of the composition of a continuous mapping with a maximal monotone mapping.

* Corresponding author.
E-mail addresses: ychen64@163.com (Y. Chen), donal.oregan@nuigalway.ie (D. O’Regan), agarwal@fit.edu (R.P. Agarwal).

© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2009.06.016
2. Main results

In the following, \mathbb{R}^n is the n-dimensional Euclidean space, $T : D(T) \subseteq \mathbb{R}^n \to 2^{\mathbb{R}^n}$ a maximal monotone mapping, $T_\lambda = (T^{-1} + \lambda I)^{-1}$ is the Yosida approximation of T, and $R_\lambda = I - \lambda T_\lambda$ is the resolvent with respect to T_λ.

Lemma 2.1. Let $T : D(T) \subseteq \mathbb{R}^n \to 2^{\mathbb{R}^n}$ be a maximal monotone mapping and $\Omega \subseteq \mathbb{R}^n$ an open bounded set such that $\Omega \cap D(T) \neq \emptyset$ and assume $0 \not\in T(\partial \Omega \cap D(T))$. Then there exists $\lambda_0 > 0$ such that $0 \not\in T_\lambda(\partial \Omega)$ for all $\lambda \in (0, \lambda_0)$.

Proof. Suppose the conclusion is not true. Then there exist $\lambda_j \to 0$, $x_j \in \partial \Omega$ such that $x_j \to x_0 \in \partial \Omega$ and

$$T_{\lambda_j}x_j = 0.$$ \hspace{1cm} (2.1)

By the monotonicity of T we have

$$(f - T_{\lambda_j}x_j, x - R_{\lambda_j}x_j) \geq 0, \quad \text{for all } f \in D(T), \; x \in Tx,$$

and $R_{\lambda_j}x_j = x_j - \lambda_j^{-1}T_{\lambda_j}x_j \to x_0$, and therefore we have

$$(f, x - x_0) \geq 0, \quad \text{for all } f \in D(T), \; x \in Tx.$$

The maximal monotonicity of T implies that $x_0 \in D(T)$ and $0 \in Tx_0$, which is a contradiction. The proof is complete. \hspace{1cm} \square

Under the assumption of Lemma 2.1, there exists $\lambda_0 > 0$ such that $0 \not\in T_\lambda(\partial \Omega)$ for all $\lambda \in (0, \lambda_0)$. Since $T_\lambda : \mathbb{R}^n \to \mathbb{R}^n$ is continuous (see [6]) the Brouwer degree $\deg(T_\lambda, \Omega, 0)$ is well defined for $\lambda \in (0, \lambda_0)$.

We define the degree $\deg(T, \lambda_0 \cap D(T), 0)$ on $\lambda \cap D(T)$ as

$$\deg(T, \lambda_0 \cap D(T), 0) = \lim_{\lambda \to 0^+} \deg(T_\lambda, \Omega, 0).$$

Note that Lemma 2.6 in [6] guarantees that $T_{\lambda_1 + (1 - \lambda_2)x} : [0, 1] \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous for $\lambda_1, \lambda_2 > 0$. Thus the homotopy property of the Brouwer degree implies that $\deg(T_{\lambda_1}, \lambda_0, 0) = \deg(T_{\lambda_2}, \lambda_0, 0)$ for $\lambda_1, \lambda_2 \in (0, \lambda_0)$. As a result our degree is well defined.

Theorem 2.2. Let $T : D \subseteq \mathbb{R}^n \to 2^{\mathbb{R}^n}$, $S : D \subseteq \mathbb{R}^n \to 2^{\mathbb{R}^n}$ be two maximal monotone mappings and $\Omega \subseteq \mathbb{R}^n$ an open bounded set. Assume that $IT + (1 - t)S$ is maximal monotone for each $t \in (0, 1)$ and $0 \not\in \cup_{t \in [0, 1]}(IT + (1 - t)S)(\partial \Omega \cap D(T))$. Then

$$\deg(T, \lambda_0 \cap D(T), 0) = \deg(S, \lambda_0 \cap D(T), 0).$$

Proof. We first prove that there exists $\lambda_0 > 0$ such that

$$0 \not\in \cup_{t \in (0, 1]}(IT + (1 - t)S)_t(\partial \Omega \cap D)$$

for all $\lambda \in (0, \lambda_0)$ \hspace{1cm} (2.3)

where $[IT + (1 - t)S]_t$ is the Yosida approximation of $IT + (1 - t)S$.

Assume this is not true. Then there exist $t_j \to t_0, \lambda_j \to 0, x_j \in \partial \Omega \cap D$ such that $x_j \to x_0 \in \partial \Omega$ and $[t_jT + (1 - t_j)S]_{\lambda_j}x_j = 0$.

Since $(tf + (1 - t_j)g - [t_jT + (1 - t_j)S]_{\lambda_j}x_j, x - R_{\lambda_j}^{g}x_j) \geq 0$, for all $x \in D, f \in Tx, g \in Sx$, where $R_{\lambda_j}^{g}x_j$ is the resolvent with respect to $[t_jT + (1 - t_j)S]_{\lambda_j}$, and $R_{\lambda_j}^{g}x_j - x_j = -\lambda_j[tf + (1 - t_j)S]_{\lambda_j}x_j = 0$, letting $j \to \infty$ we have

$$(t_0f + (1 - t_0)g, x - x_0) \geq 0, \quad \text{for all } x \in D, \; f \in Tx, \; g \in Sx.$$

Thus (see [10, pg. 122]) $x_0 \in D$ and $0 \in t_0T_{x_0} + (1 - t_0)S_{x_0}$, which is a contradiction. Therefore (2.3) is true. By Lemma 2.6 in [6], $[IT + (1 - t)S]_t : [0, 1] \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous, so the homotopy property of the Brouwer degree implies that

$$\deg(T_{\lambda_j}, \Omega, 0) = \deg(S_{\lambda_j}, \Omega, 0).$$

Thus $\deg(T, \Omega \cap D(T), 0) = \deg(S, \Omega \cap D(T), 0)$. \hspace{1cm} \square

Corollary 2.3. Let $T : D \subseteq \mathbb{R}^n \to 2^{\mathbb{R}^n}$, $S : D \subseteq \mathbb{R}^n \to 2^{\mathbb{R}^n}$ be two maximal monotone mappings and $\Omega \subseteq \mathbb{R}^n$ an open bounded set. Assume that $IT + (1 - t)S$ is maximal monotone for each $t \in (0, 1)$, $0 \not\in T(\partial \Omega \cap D)$, $0 \not\in S(\partial \Omega \cap D)$, and $(f, g) \geq 0$ for all $f \in Tx, g \in Sx, x \in \partial \Omega \cap D$. Then $\deg(T, \Omega \cap D(T), 0) = \deg(S, \Omega \cap D(T), 0)$.

Proof. It is easy to see that $0 \not\in \cup_{t \in (0, 1]}(IT + (1 - t)S)(\partial \Omega \cap D)$. The conclusion follows from Theorem 2.2. \hspace{1cm} \square

Let $\phi(x) : D(\phi) \subseteq \mathbb{R}^n \to R$ be a lower semi-continuous convex function. The sub-differential $\partial \phi(u)$ at u is defined by

$$\partial \phi(u) = \{f \in \mathbb{R}^n : \phi(x) - \phi(u) \geq (f, x - u), \quad \text{for all } x \in D(\phi)\}.$$

Note that $\partial \phi$ is a maximal monotone mapping. For $\lambda > 0$, let

$$\psi_{\lambda}(x) = \inf_{y \in \mathbb{R}^n} \left[\phi(y) + \frac{1}{2\lambda} \|x - y\|^2 \right]$$

be the so called Yosida–Moreau regularization of ϕ. It is well known that $\psi_{\lambda}(x) = \phi(R_{\lambda}x) + \frac{1}{2\lambda} \|x - R_{\lambda}x\|^2$, where R_{λ} is the resolvent with respect to $(\partial \phi)_{\lambda}$, $\lim_{\lambda \to 0^+} \psi_{\lambda}(x) = \phi(x)$ for all $x \in D(\phi)$, and $(\partial \phi)_{\lambda} = \partial \psi_{\lambda} = \Delta \phi_{\lambda}$.\hspace{1cm}
Theorem 2.4. Let \(\phi(t, x) : [0, 1] \times \mathbb{R}^n \to \mathbb{R} \) be a continuous function such that \(\phi(t, x) \) is convex in \(x \) for each \(t \in [0, 1] \), and \(\Omega \subset \mathbb{R}^n \) an open bounded set. Suppose \(\phi(t, \cdot) \) does not obtain a minimum on \(\partial \Omega \) for each \(t \in [0, 1] \). Then \(\deg(\partial \phi(t, \cdot), \Omega, 0) \) does not depend on \(t \in [0, 1] \).

Proof. Since \(\phi(t, \cdot) \) does not obtain a minimum on \(\partial \Omega \) for each \(t \in [0, 1] \), \(0 \not\in \partial \phi(t, \partial \Omega) \) for \(t \in [0, 1] \). We claim that there exists \(\lambda_0 > 0 \) such that

\[
0 \not\in (\partial \phi(t, \cdot)_j(\partial \Omega)), \quad \text{for all } \lambda \in (0, \lambda_0), \ t \in [0, 1].
\]

Assume this is false. Then there exist \(\lambda_j \to 0^+, t_j \to t, x_j \in \partial \Omega \) with \(x_j \to x_0 \) such that

\[
(\partial \phi(t_j, \cdot))_j x_j = 0, \quad j = 1, 2, \ldots.
\]

Since \(\phi_j(t, \cdot)x - \phi_j(t, \cdot)x_j \geq (\partial \phi_j(t, \cdot)x_j, x - x_j) \), for all \(x \in \mathbb{R}^n, j = 1, 2, \ldots \), letting \(j \to \infty \) we get

\[
\phi(t_0, x) - \phi(t_0, x_0) \geq 0, \quad \text{for all } x \in \mathbb{R}^n.
\]

Therefore \(0 \not\in \partial \phi(t_0, x_0) \), which is a contradiction. From [18], we know that \(\partial \phi_\lambda = \Delta \phi_\lambda : [0, 1] \times \mathbb{R}^n \to \mathbb{R}^n \) is continuous, so the homotopy property of the Brouwer degree implies that \(\deg(\partial \phi_\lambda(t, \cdot), \Omega, 0) \) does not depend on \(t \in [0, 1] \). Therefore \(\deg(\partial \phi(t, \cdot), \Omega, 0) \) does not depend on \(t \in [0, 1] \). \(\square \)

Let \(\Omega \subset \mathbb{R}^n \) be an open bounded set, \(p \in \mathbb{R}^n \) and \(T : D(T) \subset \mathbb{R}^n \to 2^{\mathbb{R}^n} \) a maximal monotone mapping. By the homotopy property we have that \(\deg(T, \Omega \cap D(T), p) \) has the same value as \(p \) ranges through the same connected component \(U \) of \(\mathbb{R}^n \setminus (\partial \Omega \cap D(T)). \) We denote this value by \(\deg(T, \Omega \cap D(T), U)_p \).

\[
\deg(f(T), \Omega \cap D(T), p) = \Sigma_i \deg(f, U_i, p) \deg(T, \Omega \cap D(T), U_i), \quad (2.4)
\]

where the right hand side only has finitely many nonzero terms, and \(U_i \) are bounded connected components of \(\mathbb{R}^n \setminus (\partial \Omega \cap D(T)). \)

Proof. We first prove that (2.4) only has finitely many nonzero terms. Now \(f^{-1}(p) \cap B(0, r) \) is compact, \(f^{-1}(p) \cap B(0, r) \subset \mathbb{R}^n \setminus (\partial \Omega \cap D(T)) = \bigcup_{i=1}^{k} U_i \) where \(U_i \) are connected components (note that the maximal monotonicity of \(T \) implies that \(T(\partial \Omega \cap D(T)) \) is closed in \(\mathbb{R}^n \), so \(\mathbb{R}^n \setminus (\partial \Omega \cap D(T)) \) is open). Therefore there exist finitely many \(i, \) say \(i = 1, 2, \ldots, k, k+1 \), such that

\[
f^{-1}(p) \cap B(0, r) \subset \bigcup_{i=1}^{k+1} U_i \quad \text{and } f^{-1}(p) \cap U_i = \emptyset \quad \text{for } i \geq k + 2
\]

and \(U_{k+1} = U_{\infty} \cap B(0, r + 1) \) where \(U_{\infty} \) is the unbounded connected component of \(\mathbb{R}^n \setminus (\partial \Omega \cap D(T)) \). Now \(\deg(f, U_i, p) = 0 \) (since \(f^{-1}(p) \cap U_j = \emptyset \) for \(j \geq k + 2 \) and \(\deg(T, \Omega \cap D(T), U_{k+1}) = 0 \) (since \(T(\partial \Omega \cap D(T)) \subset B(0, r) \)). Thus the right hand side of (2.4) only has finitely many nonzero terms.

Finally from the Brouwer degree (see [12, Theorem 1.2.13]) we have

\[
\Sigma_{i=1}^{k+1} \deg(f, U_i, p) \deg(T, \Omega \cap D(T), U_i) = \Sigma_{i=1}^{k+1} \deg(f, U_i, p) \lim_{\lambda \to 0^+} \deg(T, \lambda, \Omega, U_i)
\]

\[
= \lim_{\lambda \to 0^+} \deg(f(T, \lambda), \Omega, p) \deg(f(T), \Omega \cap D(T), p). \quad \square
\]

A proof similar to that of Theorem 2.5 yields the following result.

Theorem 2.6. Let \(f, T, \Omega \) be as above, and \(p \in \mathbb{R}^n \) such that \(f^{-1}(p) \subset B(0, r) \), where \(r > 0 \) is a constant and \(B(0, r) \) is the open ball centered at zero with radius \(r \), and \(p \not\in f(T(\partial \Omega \cap D(T))). \) Then

\[
\deg(f(T), \Omega \cap D(T), p) = \Sigma_i \deg(f, U_i, p) \deg(T, \Omega \cap D(T), U_i),
\]

where the right hand side only has finitely many nonzero terms, and \(U_i \) are bounded connected components of \(\mathbb{R}^n \setminus (T(\partial \Omega \cap D(T)) \subset B(0, r)). \)

Acknowledgement

The first author was supported by a NSFC grant, grant no. 10871052.
References

[17] W.V. Petryshyn, Antipodes theorems for A-proper mappings of the modified type (S) or $(S)_i$ and to mappings with the P_m property, J. Funct. Anal. 71 (1971) 165–211.