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� We investigate the energy, economic and environmental implications of deploying EVs for China’s power system by 2030.
� EVs outperform gasoline-powered vehicles in terms of average fueling costs.
� Controlled EV charging given the expected 2030 capacity portfolio results in more CO2 emissions than uncontrolled charging.
� Controlled charging has absolute advantages in mitigating the peak load and facilitating RES generation.
� Controlled (dis)charging will not reduce CO2 for China without generation decarbonization and CO2-influenced dispatch.
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This work investigates different scenarios for electric vehicle (EV) deployment in China and explores the
implications thereof with regard to energy portfolio, economics and the environment. Specifically, we
investigate how to better deliver the value of EVs by improving designs in the power system and charging
strategies, given expected developments by 2030 in both the power system and EV penetration levels.
The impact of EV charging is quantified by applying an integrated transportation-power system model

on a set of scenarios which represent uncertainties in charging strategies. We find that deploying EVs
essentially shifts the use of gasoline to coal-fired power generation in China, thus leading to more coal
consumption and CO2 emissions of the power system. Economically, EVs outperform gasoline-powered
vehicles in terms of average fueling costs. However, the impact of EVs in terms of CO2 emissions at the
national level largely depends on the charging strategy. Specifically, controlled charging results in more
CO2 emissions associated with EVs than uncontrolled charging, as it tends to feed EVs with electricity
produced by cheap yet low-efficiency coal power plants located in regions where coal prices are low.
Still, compared with uncontrolled charging, controlled charging shows absolute advantages in:
(1) mitigating the peak load arising from EV charging; (2) facilitating RES generation; and (3) reducing
generation costs and EV charging costs. Hence, in light of this trade-off of controlled charging with the
goals of energy security, economic efficiency and reducing environmental impacts, policy interventions
in the Chinese power system should opt for controlled charging strategies in order to best realize the
benefits of EVs. Accordingly, this paper proposes that increasing the use of cleaner forms of electricity
generation, such as RES power and gas power, and establishing energy efficiency and CO2 emission
regulations in power dispatch are critical for China. Lastly, this work illustrates what the optimized
charging profiles from the power system perspective look like for different regions. These results can
inform Chinese policy makers in creating a better integration of the transportation and the power system.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The transportation sector accounts for about half of the oil
consumption in China, and is the fastest growing contributor to
national greenhouse gas (GHG) emissions [1]. To improve the
security of energy supply and address climate change, a transition
of the transportation sector towards low-carbon and sustainable
energy resources is needed [2]. One possible strategy is to electrify
transportation through using electric vehicles (EVs), and the
Chinese government has been making substantial efforts in this
aspect [3]. However, whether EVs are low-carbon and sustainable
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for China compared with conventional vehicles is an open
question, as the benefits from deploying EVs is highly dependent
on the fuel consumption, costs and CO2 emissions associated with
electricity generation [4]. Given substantial differences in the
regional generation portfolios and the expanding inter-regional
transmission grid in China, a comprehensive assessment is needed
to evaluate the value of deploying EVs in such a large-scale and
complicate power system [5].

Furthermore, the implications of EVs are largely influenced by
charging strategies. Most studies indicate that uncontrolled EV
charging entails a series of challenges for the investments in and
the operation of the power system [6]. For instance, it may require
additional generation capacity [7] and upgrading of the existing
power grid [8]. Accordingly, demand response of EVs has been
proposed to cope with this. The key idea behind the EV demand
response is that with certain mechanisms, EVs’ charging (and
discharging) can be controlled as a dispatchable load or as an
energy storage system to coordinate with the power system
operation [7]. Based on various controlled charging strategies,
many benefits can be expected from EV demand response. For
instance, studies show that EVs can provide ancillary services in
the electricity market [9,10], manage the intermittency issues of
RES generation [11,12], and mitigate the need for grid expansion
[13,14]. The questions left here are how the implications of EVs
are affected by different charging strategies, and which charging
strategy would be more suitable in light of the characteristics of
China’s power system.

In short, this work aims to assess the implications of deploying
EVs in the Chinese power system considering regional differences
in generation portfolio and the constraints of inter-regional
transmission grid capacity, and investigate the influences of the con-
textual power system and charging strategies on the value of EVs.
The results of this work are expected to inform policy makers
regarding the possible benefits and threats associated with EV
deployment, and how to better exploit the promises of EVs by
improving designs in the power system and charging strategies.
Specifically, this work will answer three questions: (1) what are
the implications of EV deployment in China from the energy portfo-
lio, economic efficiency and environmental sustainability perspec-
tives? (2) to what degree can the implications of EVs be affected
by charging strategies? and (3) what can be improved in the power
system and charging strategies to better deliver the value of EVs?

Although many studies assessing the value of EVs have been
conducted in the literature, this paper distinguishes itself in two
main areas. First of all, this paper distinguishes itself by providing
a comprehensive evaluation of the value of EVs in China from the
combined perspectives of energy portfolio, economic efficiency
and environmental sustainability. We argue that these three
perspectives are all desirable for policy designs to achieve an effec-
tive and efficient low-carbon transition in the long-term. Hence,
this work can provide well-rounded policy evaluations of the value
of EVs with regard to the different aspects and trade-offs involving
goals related to these perspectives. However, the existing literature
has omitted certain perspectives of the three, which might lead to
biased policy decisions. For instance, [1,5,15,16] only focused on
the environmental aspect of deploying EVs; [7,12,17–20] focused
more on energy portfolio effects especially for the integration for
renewable energy; other studies, such as [21,22], focused more
on a mix of two perspectives. Also, there are studies of EVs focusing
on their impact on the distribution and transmission grids, such as
[13,14]; and other studies focusing more on aspects of the electric-
ity market, such as [9,23].

Additionally, this paper distinguishes itself by developing a new
integrated transportation-power system model, which enables a
better quantification of the value of EVs. First, the model can
statistically estimate the temporal availability of EVs connecting
to the grid. This addresses the lack of accurate driving data which
has been identified as a key issue in creating EV-grid models [6].
Additionally, the model enables the simulation of power system
operation with a high temporal and spatial resolution. Temporally,
the model simulates power system operation on an hourly basis,
which can estimate what types of power plants are reacting to
the changes in EV load. Because of this, the model is better in terms
of evaluation accuracy when compared with life-cycle assessment
methods (e.g. [1,21]), or with methods assuming a fixed generation
portfolio or a given merit order (without considering start-up
constraints of power plants) for EV charging (e.g. [5,15,24]).
Spatially, the Chinese power system is modeled as a six-region
power system, which incorporates the constraints of inter-
regional transmission capacity and the differences in regional gen-
eration portfolio by technology. In particular, this work highlights
the influence of inter-regional power exchange on the value of EVs
given the fact that it might shift EV-associated regional power
supply to interconnected regions [4]. This shift is likely to be more
significant in China in light of its mismatches of distribution
between power resources and electricity demand as well as the
fast expanding inter-regional transmission grid [25]. However,
existing model-based studies for the Chinese case, such as
[17,20], fail to take this into consideration. Hence, this model
enables a more accurate estimation of the value of EVs, and can
provide a theoretical reference for the methods that can be used
in studies that model the integration of EVs into the power system.

The model is applied to a set of scenarios which represent the
Chinese power system by 2030 with different charging strategies.
The Chinese power system consists of six regional power systems,
whose diversity in generation portfolio and grid connections
enables us to explore the implications of EVs with different power
systems. Further, four charging strategies are modeled, including:
(1) two uncontrolled charging strategies which allow EV users to
charge freely, yet differ in the accessibility of EV charging
infrastructures; and (2) two controlled charging strategies in
which EV charging is optimized from the power system operators’
perspective, with one strategy where EVs can also discharge back
into the grid when needed.

This paper is organized as follows. Section 2 introduces the
transportation-power system model. Section 3 presents the
scenario definitions and the key data used in this work. Section 4
analyzes the scenario results regarding the energy-economic-
environmental implications of EVs. Section 5 discusses the policy
implications of the scenario results and how to better deliver the
value of EVs for real applications. The final conclusions are
provided in Section 6.
2. Research methods

2.1. An integrated transportation-power system model

This paper develops an integrated transportation-power system
model to quantify the interactions between EVs and the power
system. The framework of the model is shown in Fig. 1. Specifically,
the transportation model calculates the electricity demand of EVs,
statistically estimates the availability of EVs connecting with the
grid, and defines the strategies of using EVs. The statistic estima-
tion method used in our transportation model can be useful for
similar studies, since the lack of accurate driving data has been
identified as a key issue in creating useful EV-grid models [6].
Specifically, the possible strategies of using EVs in this work are:
(1) using EVs as loads (only charging) or as an energy storage
system (both charging and discharging); and (2) having EVs’
charging and discharging controlled by the power system operator
or by EV owners [26].
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Fig. 1. The schematic diagram of the integrated transportation-power system model used in this work. The arrows represent the directions of power flows.
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With the data from the transportation model as inputs, the
power dispatch model computes how power plants across regions
can be optimally dispatched in response to hourly load changes
arising from EV charging considering technical, constraints of the
power system (e.g. ramping and transmission constraints). The
power dispatch model here is expressed as a multi-region unit
commitment (UC) optimization problem. Note that the inter-
regional power exchange here is constrained by market-based
net transfer capacity of the transmission grid rather than physical
power flows. Instead of using the conventional mixed-integer UC
optimization, this work adopts the clustered integer approach in
[27] to group power plants by generation technology, which lar-
gely reduces the amount of commitment state variables in the
UC optimization. Accordingly, the cluster integer based optimiza-
tion method enables us to model detailed power system operation
with less computational efforts, which makes our model applicable
for the simulation of large-scale power systems.
2.2. Transportation system model

This part mainly introduces how the model estimates EVs’ tem-
poral availability which determines how many EVs are connected
to the grid at a given time. It is desirable to simulate EVs’ availabil-
ity using realistic patterns that mimic people’s actual travel behav-
iors. However, comprehensive travel behavior data for EVs are
unavailable yet. This work therefore builds a statistical transporta-
tion model based on actual travel survey data in the Netherlands to
estimate EVs’ temporal availability in China. Hereby we assume
that: (1) EV driving patterns are similar to those of conventional
cars; and (2) the driving time does not differ much between
regions.

First, as a proxy to generate travel patterns, the Mobiliteitson-
derzoek Nederland (MON) survey data for the year 20081 was used
(see more details in Appendix A). To perturb the model and simulate
expected variability in the number of EVs available for each hour of
the day, kernel density estimates [28,29] were constructed to repre-
sent the probability density function of the percentage of EVs avail-
able at each hour. The motivation for using kernel density estimates
is that they allow for the creation of probability density functions
which closely mirror variations in the actual data. The approach is
similar to that of creating a probability density function using
histogram data, except that every observation in the data is repre-
sented as a normal distribution, and all of these normal distributions
are then summed to arrive at the final probability density function.
With these probability density functions, we can then create syn-
thetic data that has characteristics similar to that of the real data.
1 http://www.scp.nl/Onderzoek/Bronnen/Beknopte_onderzoeksbeschrijvingen/
Mobiliteitsonderzoek_Nederland_MON.
This paper creates kernel density estimates per hour and type of
day (weekday or weekend), as shown in Fig. 2. What we can see
with this is that our data is able to capture patterns in the survey
data that cannot be represented with a normal distribution. In
several of the figures, the distributions are seen to be skewed to
one side or bimodal (e.g. 9 pm on weekends, 3 pm on weekdays).

For illustrative purposes, Fig. 3 shows the estimated temporal
availability of EVs in connecting to the grid on an hourly basis
for two days. Generally, we can observe that about 80–90% of the
entire fleet are available to connect with the grid, which is
validated by the observations from the National Household Travel
Survey of the U.S in 2009.2 In addition, on weekdays, the variability
of EV availability tends to be much lower, especially during rush
hours in morning and evening. On weekends, people are less
constrained to a particular schedule and the range of temporal
availabilities is much greater.

2.3. Power system model: multi-region power dispatch

Many unit commitment (UC)-based power dispatch models
incorporating EVs have been developed in the literature, such as
[11,14,26]. Most studies express the model as a mixed-integer
linear programing (MILP) problem, in which binary variables,
[0, 1], are used to indicate the commitment state and the start-up
actions of generation units. However, applying the MILP approach
for the large Chinese power system is computationally constrained
as the combinatorial commitment states explode quickly with the
number of generation units. To find a balance between computa-
tional ease and accuracy in practice, the work adopts the clustered
integer approach developed in [27,30] to reduce the amount of vari-
ables in the UCmodel. The key idea of the clustered integer approach
here is to group generation units by technology, so that the commit-
ment state for technology g with Ng units can be expressed as an
integer varying from 0 to Ng , representing how many units of this
group are turned on. The dimension of combinatorial commitment
states with the clustered method is Ng þ 1, which is much lower
than that resulting from the mixed-integer method.3

A detailed mathematical formulation of the clustered-integer
unit commitment (CIUC) model is presented in Appendix C, mainly
based on the work in [11,17,31–35]. In particular, [33] develops a
UC model incorporating energy storage system and transmission
capacity constraints, which provides the basic framework of the
UC model in this work. The research in [27,30,31] provides insights
into the applications of the clustered integer approach to UC
models, and the work in [11,17,34,35] presents more details about
integrating EVs into UC models.
2 http://nhts.ornl.gov/download.shtml.
3 The dimension of combinatorial commitment states with the mixed-integer

method is 2Ng .
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Fig. 2. Kernel density estimates of EVs’ temporal availability per hour on weekdays and weekends.

Fig. 3. Illustrative time series data showing EVs’ temporal availability in connecting to the grid, calculated by sampling kernel density estimates. Note that the periods during
the weekend are highlighted in gray boxes and other periods are weekdays.
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3. Scenario definitions and data collection

3.1. Scenario definitions

This work chooses the year of 2030 as the baseline scenario to
depict the expected future power system in China. The 2030
scenario is chosen mainly because it has the most accessible data
about the planning for the regional generation portfolios and the
inter-regional transmission grid development in China. More
detailed explanations about the data of this baseline scenario are
shown in Section 3.2. This work focuses on studying the influences
of the power system and charging strategies on the value of EVs.
The diversity of these six regional power systems in generation
portfolios and grid interconnections enables us to compare the
influences of different regional power system contexts on the value
of EVs. In this way, only one scenario variable is used in this work,
namely the charging strategy. Depending on the role and the
controllability of EVs from the power operators’ perspective, four
types of charging strategies are defined in the scenarios, as shown
in Table 1.

Specifically, the home charging and random charging are
defined to indicate the cases when no artificial control is imposed



Table 1
The settings of charging strategies for different scenarios.

Scenario Charging strategy EVs Explanations

Role Controllability

1 Home charging Load Uncontrolled EVs are charged after returning home without delay, the time
of staying home is from 6 pm to 8 am the next day

2 Random charging Load Uncontrolled EVs are free to be charged whenever parked, until their batteries are full
3 Controlled charging Load Controlled EVs’ charging is optimally dispatched by the power system operator
4 Vehicle to grid (V2G) ESS Controlled Both EVs’ charging and discharging are optimally dispatched by the power system operator
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Fig. 4. The planning of inter-regional transmission grid by 2030. Note that the numbers close to the links indicate transmission capacity (in GW), and the arrows reflect main
directions of power flows.

4 The following changes have been made when adapting the data from [25]. First,
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to EV charging, so that EV users are free to charge whenever they
have access to charging facilities. For the home charging strategy,
the access to charging facilities is constrained at home. However,
the random charging represents a situation where charging
facilities are widely spread so that EVs can be charged whenever
parked without any delay.

For illustrative purposes, the energy and charging power of EVs
with home charging and random charging under different charging
power rates are illustrated in Appendix D.1. For the home charging,
the energy stored in EVs steadily decreases during the day as EVs
are only able to charge after returning home at 6 pm. Home
charging generates a large peak early in the evening, and the peak
reaches a plateau based on the maximum rate imposed by the
charging infrastructure. For random charging, the flexibility of
vehicles to charge when parked is enough to ensure that the entire
EV fleet remains at a high state of charge (SOC). The charging
profiles for the home charging and random charging are exogenous
parameters for the model, while the profiles of controlled charging
and V2G are optimized with the model.
this work integrates Tibet into the Northwest power system to fit the six region-based
power system structure in China. Second, the planned cross-border transmission
capacity is assumed as a negative demand for the importing regions. For instance,
with regard to the cross-border transmission grid between Myanmar and the South, a
negative power demand which equals the amount of this cross-border transmission
capacity is imposed to the South power system. This assumption does not affect the
meaning of the results, as the cross-border imported capacity is quite negligible
compared with the regional electricity demand in China.
3.2. Key data of the baseline scenario

3.2.1. The power system
3.2.1.1. Inter-regional transmission grid. The Chinese power system
is comprised of six inter-connected regional power systems, and
the geographical distribution of these six regions is shown in
Fig. 5. To meet the fast growing electricity demand along the east
coast of China and to facilitate the renewable energy development
in the North, Northwest and Northeast (three North) regions,
China planned an ambitious expansion of the inter-regional
transmission grid capacity. As shown in Fig. 4, the total inter-
regional transmission capacity will be expanded from 47.40 GW
in 2012 to 308.40 GW in 2030. Moreover, the expansion is mainly
for the transmission lines starting from the Northwest, North and
Central, ending with the East and South. The data in this figure
are adapted4 from [25]. The rate of transmission loss and cost
slightly differ between transmission lines depending on the type of
lines (e.g. AC or DC), voltage level and line length etc. This work
adopts average values of energy loss and transmission cost based
on the data in [36] mainly to reflect the length of transmission lines
(see Appendix D.2).
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3.2.1.2. Regional generation portfolio. China’s energy policies have
been based on central planning which is regularly issued on a
five-year basis, so that an official planning for the mid-term
generation portfolio by 2030 is not available. Hence, this work
reviews the projections in the literature to gain an overall picture
of the possible generation capacity expansion in China. The review
scope covers projections by key organizations in China (e.g. China
Electricity Council [37], National Energy Administration [38]),
literature [25,36] and international associations (e.g. International
Renewable Energy Agency [39]) etc. With all the resources, the
authors summarize the evolution of generation portfolio during
2012–2030 as follows. In terms of the absolute amount of
generation capacity, coal power will still be the largest till 2030,
followed by hydro, wind and nuclear. In terms of the installed
capacity growth during 2012–2030, solar power will be the largest,
followed by nuclear power, wind power and pumped hydro
storage. The derived 2030 regional generation portfolios are
illustrated in Fig. 5, in which the generation portfolio of year
2012 is also depicted to show the evolution of the regional
generation portfolios from 2012 to 2030. More details about the
data regarding the economic and technical performance of regional
power technologies, regional fuel prices and RES meteorological
data are shown in Appendix D.3.
3.2.1.3. Electricity demand. Fig. 6 shows the projections for the
national and regional electricity demand growth by 2030. In
general, the demand growth rate decreases over time considering
the slowdown of economy development, from 5.80% during
2012–2020, to 3.08% during 2020–2030. The regional growth rate
differs by region. In general, the most developed regions (e.g. the
North, East, South and Central) are in line with the national trend.
However, for the Northwest, a big drop in demand growth is
expected during 2012–2020, and then the growth becomes more
stable during 2020–2030. In contrast, the demand in the Northeast
is more likely to have a slight increase during 2012–2020. The
demand profiles of the regional power systems are mainly referred
to those of the European countries, more details are shown in
Appendix D.4.
3.2.2. Transportation system
3.2.2.1. EV penetration level. The number of EVs5 deployed in China
by 2014 was about 1.19 million, which is less than 1% of the
conventional vehicles [45]. However, given the strong incentives
from governments to promote EV deployment [46], the number of
EVs is expected to increase fast in the coming years. According to
the National Development and Reform Commission, the number of
EVs by 2030 is expected to account for about 28% of the vehicles
in China [47]. With this penetration level, the expected amount of
regional EV deployment in 2030 is shown in Table 2, which is



Table 2
The expected amount of EVs for different regions in 2030.

Regions North East Central Northeast Northwest South National

Amount [million] 8.21 6.65 5.71 2.85 2.12 5.08 30.61

Table 3
EV-related parameters for in this work.

Parameters SOCmin;max Battery energy Driving power Energy efficiency Power conversion efficiency Charging power rate

Data 20%, 90% 25 kW h 10 kW/h 0.25 kW h/km 90% 3 kW
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estimated based on the provincial vehicle ownership of vehicles in
China at the end of 2012.

3.2.2.2. Transportation data and EV-related parameters. The
temporal transportation data regarding to what percentage EVs
are driving on the road or parked are calculated with the kernel
density estimation method, as we explained in Section 2.2.
The time series data regarding EVs’ availability in connecting to
the grid based on the kernel density estimates are shown in
Fig. B.18, which are validated by the actual survey data in
Fig. A.17. More EV-related parameters are shown in Table 3.

4. Result analysis

4.1. Energy portfolio

The energy portfolio is analyzed with respect to three aspects:
fossil fuel consumption, RES generation, and the non-served load
which to some extent reflects power supply security. The results
of the national generation mix generally show that deploying EVs
mainly affects the non-RES generation yet has very limited impact
on RES generation, as will be discussed below.

4.1.1. Non-RES generation mix and fossil fuel consumption
Fig. 7 shows to what degree the non-RES generation (including

fossil fuel-based generation and nuclear generation) changes with
the EV charging strategy. Compared with the ‘‘NoEV” case, deploy-
ing the planned amount of EVs increases the national non-RES
generation by 2.08%-3.10%. This additional coal consumption is
quite low relative to the huge amount of electricity demand in
China. Moreover, controlled charging strategies result in more
non-RES generation than uncontrolled charging strategies. Specifi-
cally, the V2G charging leads to the highest increase in non-RES
generation and the home charging results in the least increase
(see Fig. 7a).

Without controlled EV charging, deploying the planned amount
of EVs increases coal consumption of the power supply by around
3%, and controlled charging strategies increase coal consumption
further by around 1% (see Fig. 9). Fig. 7b shows where the
additional non-RES generation under the controlled charging
strategies comes from. There are two economic mechanisms which
lead to increased amounts of electricity generation from coal
plants. Although seemingly paradoxically, they favor both high
and low-efficiency coal-fired power plants yet in different regions.

First, in comparison with uncontrolled charging, in many
parts of the country, controlled charging leads to more generation
from high-efficiency coal-fired power technologies (e.g. ultra-
supercritical and integrated gasification combined cycle), which
in turn reduces the use of low-efficiency coal power technologies
and the use of quick-reacting yet expensive gas power which has
higher fuel costs.

However, we find that controlled charging also facilitates
the sub-critical (low-efficiency) coal generation, which seems
contradictory. Fig. 8 shows that the additional sub-critical coal
generation with controlled charging strategies is from the North
and Northwest. What is happening here is that the low coal prices
make the marginal costs of sub-critical power even lower than
that of high-efficiency coal-fired power plants in other regions.
The same reasoning explains the increase in the super-critical coal
generation in the North and Northwest.



Fig. 8. The capacity factor duration curve for each fossil fuel-based technology and for each region with different charging strategies. Note that the generation efficiency of the
four technologies in this figure descends from left to right.

6 Nos load cost represents the economic penalty for non-served load, which is
assumed to be 1 million $/GW in this work.
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These changes in inter-regional power exchange with charging
strategies are further validated in Fig. 10, which shows that: (1)
with uncontrolled charging, the amount of power exported from
the North and from the Northwest is much lower than that in
the ‘‘NoEV” case; while (2) the power exported from the North
and from the Northwest largely increases if uncontrolled charging
is used.

4.1.2. RES generation
Table 4 shows to what degree the use of RES (both wind and

solar) generation changes with the EV charging strategies. In
general, EV charging has a negligible impact on the use of RES
generation. Still, comparing amongst the charging strategies, we
find that controlled charging facilitates more RES generation than
uncontrolled charging. Specifically, V2G performs a bit better than
the controlled charging in terms of mitigating the curtailment of
RES generation. Furthermore, home charging also performs better
than random charging, given the fact that wind power generation
(especially for the three North regions) is higher in the night than
in the daytime.

4.1.3. Non-served load
Fig. 11 shows to what degree the amount of non-served load

changes with different charging strategies. Clearly, uncontrolled
charging strategies largely increase the amount of non-served load,
which is mainly due to the EV charging load overlapping with the
peak load of the reference power system (‘‘NoEV”). Amongst two
uncontrolled strategies, the random charging is slightly better than
the home charging. In contrast, controlled charging strategies can
largely mitigate the non-served load arising from EV charging. In
particular, the V2G strategy can even reduce the non-served load
of the reference power system (‘‘NoEV”).
4.2. Economic implications

Table 5 shows to what degree the generation costs of the
national power supply change with the charging strategies. First,
deploying the planned amount of EVs increases the variable
generation costs of the national power system by 3.36–5.46%.
Specifically, the home charging leads to the highest increase in
the costs, and the V2G results in the lowest increase. Additionally,
compared with home charging, the random charging reduces the
additional costs of the power system arising from EV charging by
23.08%. This implies that without controlling EV charging, develop-
ing more accessible and widely distributed charging facilities can
help mitigate the additional costs for EV charging more than
charging facilities clustered at home. Furthermore, relative to the
home charging, both the controlled charging and V2G can reduce
the additional costs for EV charging by more than 30%.

Fig. 12 explains what contributes to the changes in generation
costs, by decomposing the total costs into different types including
fuel costs, non-served (Nos) load costs,6 operation and maintenance
(OM) costs, start up costs and transmission costs. It shows that the
controlled charging strategies can largely reduce the fuel costs,
non-served load costs and the start up costs of the power system
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Fig. 9. The coal and gas consumption for the power supply with different charging strategies.
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for EV charging, while they increase the OM costs and transmission
costs. This is in line with what we analyzed in Section 4.1: relative
to the uncontrolled charging strategies, the controlled charging
strategies facilitate the utilization of high-efficiency coal generation,
increase inter-regional load exchange and mitigate the non-served
load around the peak load periods.



Table 4
The curtailment rate of RES generation of the national power system. Note that wind
and solar means the summation of wind and solar generation.

Curtailment rate of RES generation (%)

Solar Wind Wind and solar

NoEV 0.0007 0.0493 0.0400

Home charging 0.0008 0.0459 0.0373
Random charging 0.0007 0.0504 0.0409

Controlled charging 0.0000 0.0020 0.0016
V2G 0.0000 0.0090 0.0007
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Fig. 11. The national non-served load with different charging strategies.
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More importantly, home charging leads to the highest increase
in fuel costs of the power system, as it clusters EV charging during
peak load hours when costly yet quick-reacting gas power plants
have to be dispatched. In addition, home charging results in the
highest increase in the non-served load costs of the power system
given the fact that the maximum generation capability of the
system is insufficient to accommodate the clustered peak demand
from EV charging. Compared with home charging, random charg-
ing can slightly reduce the additional fuel costs, and largely
reduces the non-served load cost associated with EV charging. This
is mainly due to random charging spreading the clustered load
from EV charging over a longer time period. More specifically,
the controlled charging can constrain the additional non-served
load costs for EV charging to zero. The V2G charging can even
reduce the non-served load costs for the reference power system
(without EVs), which implies it increases the flexibility of the
power system by allowing EVs to feed power back to the grid,
and thus can mitigate the non-served load of the reference power
system.

Given the inter-regional power exchange, it is hard for us to
figure out the real generation costs associated with EVs for each
Table 5
The total variable generation costs of the national power supply with different charging s

Charging strategy Total operating cost (billion $)

NoEV No charging 238

No control Home charging 251
Random charging 248

Imposing control Controlled charging 247
V2G 246
region. Instead, we use the average generation costs at the national
level in comparison with the costs of gasoline-driven vehicles,
as shown in Fig. 13. In general, the average generation cost of
EVs ranges from 0.013 to 0.022 $/km, which is much lower than
that of gasoline-driven vehicles. Taking the home charging as the
trategies.

Cost difference relative to NoEV Cost difference relative to home charging

Reference –

+5.46% Reference
+4.20% �23.08%

+3.78% �30.77%
+3.36% �38.46%



Table 6
The total CO2 emissions of the national power system with different charging strategies.

Charging strategy Total CO2 emissions (Gt) Additional emissions caused by EV charging Difference of the additional emissions

NoEV No charging 3.651 Reference –

No control Home charging 3.755 +2.77% Reference
Random charging 3.754 +2.74% �1.09 %

Imposing control Controlled charging 3.789 +3.63% +31.05%
V2G 3.793 +3.74% +35.02%
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Fig. 14. The average CO2 emissions of the power system associated with EVs in
different regions. The horizontal line represents the average CO2 emissions of
gasoline-driven vehicles, which is assumed to be 220 g/km based on [15]. Note that
the value of y axis does not represent the absolute amount of CO2 emissions for
regional EV charging, given the fact that the changes of CO2 emissions for a given
region can be caused by the EV charging in this region or the EV charging in
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reference, the controlled charging strategies can reduce the
average generation costs of EVs per km by around 41% maximum.

4.3. Environmental implications

Table 6 shows that deploying the planned amount of EVs results
in increased CO2 emissions of the national power system from
2.74% to 3.74%, which equals about 0.103–0.142 Gt. In particular,
imposing controls on EV charging brings more CO2 emissions than
uncontrolled charging. For instance, taking home charging as the
reference case, controlled charging and V2G charging increase the
additional CO2 emissions of the power system arising from EV charg-
ing by around 31% and 35%, respectively. With regard to uncontrolled
charging strategies, random charging slightly lowers the CO2 emis-
sions associated with EV charging compared to home charging.

Fig. 14 shows to what degree the average CO2 emissions of the
power system in different regions change with the various EV
charging strategies. First, at the national level, the average CO2

emissions associated with one EV without controlled charging
are about 172–174 gram/km,7 which is around 20% less than
gasoline-driven vehicles; and the random charging results in less
CO2 emissions than home charging although to a negligible degree.
Compared with the uncontrolled charging strategies, imposing con-
trol on EV charging increases the average CO2 emissions associated
with EVs beyond the level of gasoline-driven vehicles. For instance,
with the controlled charging, the CO2 emissions associated with
7 The yearly driving distance in this car is 19520.02 km, and the yearly CO2

emissions associated with one car are about 3.35–4.64 ton.
one EV are about 230 g/km, around 4.5% higher than gasoline-
driven vehicles. Further, the V2G strategy results in more CO2

emissions than the controlled charging.
However, the environmental implications of EVs largely vary

between regional power systems. First, Fig. 15 shows the CO2

intensity of regional power supply when EV is charging and
discharging. Generally, it shows that regardless of the charging
strategy, the North and Northwest have the highest CO2 emission
intensity for EV charging, while the South has the lowest. This
reflects that the CO2 emissions associated with EVs highly depend
on the regional generation portfolio.

Interestingly, in the context of inter-regional grid connections,
there is a shift of CO2 emissions between regions especially for
the controlled charging scenarios, as shown in Fig. 14. For instance,
for the East, Northeast, Central and the South regions, imposing
controlled charging strategies can largely reduce the CO2 emissions
associated with EVs below the level of gasoline-driven vehicles.
However, the impact of controlled charging has the opposite effect
for the North and Northwest regions. Particularly, in the South, EVs
always have lower CO2 emissions than gasoline-driven vehicles
and imposing controlled charging strategies reduces the average
CO2 emissions associated with EVs to around 124–133 gCO2/km,
which is 40–44% lower than gasoline-driven vehicles. Clearly, the
CO2 emissions associated with EV charging are shifted from
the regions where coal prices are high to those where coal prices
are low, facilitated by the inter-regional transmission networks.
This is in line with the shift of the power supply for EV charging
as shown in Fig. 10. As analyzed above, the additional CO2

emissions in the regions with cheap coal are mainly from low-
efficiency technologies. This reflects a defect in the power system
design regarding pursuing economic benefits yet neglecting concerns
about the CO2 emissions of various coal technologies across regions.
5. Discussion of the results and policy implications

To better understand the results of this paper for real applica-
tions, this section first summarizes the value of EVs regarding
the energy portfolio (security of supply), economics and the
environment for the Chinese power system, and elucidates the
general comparisons between EVs and gasoline-powered vehicles
in Section 5.1. Furthermore, in Section 5.2, this paper provides a
general rule of thumb for policy makers regarding the performance
of the four charging strategies, and discusses what policy efforts
are needed to better deliver the promises of EVs. In Section 5.3, this
paper shows what optimal charging profiles from the power
system perspective look like, with the purpose of guiding policy
designs for the implementations of demand response programs
in reality.
5.1. The value of EVs regarding energy portfolio, economics and the
environment

From an energy perspective, deploying EVs basically shifts gaso-
line consumption to coal-based electricity generation. Specifically,



Fig. 15. The average CO2 emission intensity of regional generation when EV is charging or discharging on an hourly basis.

Table 7
The ratings for charging strategies based on the implications of EVs in comparison with gasoline-fueled vehicles under a given charging strategy. The ‘‘+” represents that EVs
outperform gasoline-powered vehicles, while the ‘‘�” represents the opposite, and the amount of ‘‘+”/‘‘�” are relative between charging strategies.

Aspect Indicator Uncontrolled charging Controlled charging

Home Charging Random charging Controlled charging V2G

Energy (1) Coal consumption � �� ��� ����
(2) RES generation ++ � +++ ++++
(3) Non-served load �� � + ++

Economic (1) Generation costs/EV fueling costs + ++ +++ ++++
Environment (1) CO2 emissions + ++ � ��
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deploying the planned amount of EVs increases coal consumption
of the national power system by around 3–4% which is about
0.06–0.08 Gt. This additional coal consumption can save China
about 48 GL gasoline consumption in the transportation sector.
Furthermore, deploying the planned amount of EVs has a very
limited impact on promoting the integration of RES energy with
the given power system. Additionally, deploying EVs can benefit
or threaten power supply security in terms of the amount of
non-served load, depending on the charging strategy. Specifically,
uncontrolled charging increases the amount of non-served load
as it tends to cluster the EV charging load with the peak load in
the reference power system. However, to what degree that uncon-
trolled EV charging increases the non-served load depends on a
combination of EV penetration levels, charging power rates and
inter-regional grid connections. On the other hand, controlled
charging strategies can constrain the additional peak load arising
from EVs, and the V2G strategy can even reduce the peak load of
the reference power system.

From an economic perspective, deploying the planned amount
of EVs increases the variable generation costs of the power system
by around 3.36–5.46%. Controlled charging strategies outperform
uncontrolled charging strategies in terms of the generation costs,
as they can shift EV charging from peak load hours to off-peak load
hours. With the shift, EV charging can be fueled by cheap coal
generation, and the clustering of the EV charging load with the
peak load of the power system is avoided. On average, the genera-
tion/fueling cost of EVs is 0.013–0.022 $/km, which is around 75%
lower than with gasoline-driven vehicles. Although the average
fueling costs of EVs might slightly vary depending on the differ-
ences between the coal price and gasoline price, it indeed sends
a clear incentive for consumers as they can save substantially on
fuel costs when using EVs instead of gasoline-powered vehicles.

From an environmental perspective, deploying EVs increases
the CO2 emissions of the power system by around 2.74–3.74%.
Specifically, with uncontrolled charging strategies, the CO2

emission associated with EVs is around 172–174 g/km, which is
20% less than gasoline-driven vehicles. Imposing controlled
charging strategies increases the CO2 emissions associated with
EVs by around 31–35% than uncontrolled charging, which makes
gasoline-powered vehicles outperform EVs in such cases.



Fig. 16. The optimal daily EV charging profiles for each regional power system with different charging strategies in the whole year.
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Aside from the national power system, this paper finds that the
implications of EVs largely vary between regional power systems.
This paper highlights that given the inter-regional power
exchanges, how good deploying EVs is in an environmental sense
not only depends on where EVs charge, but also depends on the
interconnected regions. In the context of inter-regional transmis-
sion connections, there is a clear shift of coal generation and CO2

emissions associated with EVs to the regions where fuel prices
are cheap (e.g. the North and Northwest). In the North and
Northwest, we see a situation where the high-efficiency coal-fired
power plants are already operating at full capacity, and due to the
low fuel prices, the low-efficiency coal-fired power plants are actually
favored in the merit order over higher-efficiency coal plants in other
regions. Meanwhile, this shift reduces the energy consumption and
CO2 emissions for the regions (e.g. the Central and East) whichmainly
import power for EV charging. This also reminds us that it would be
one-sided to rate regions for EV deployment based on their regional
generation portfolios. Still, when inter-regional power exchange for
EV charging is negligible compared with regional power supply, the
implications of EVs mainly depend on the regional generation
portfolio. This has been exemplified by the South power system
which shows the largest potential of using EVs in mitigating CO2

emissions for all charging strategies, due to it has the cleanest
generation mix amongst all regions.
5.2. Policy implications for EV charging strategies

To provide a general rule of thumb for policy makers to evaluate
the performance of the four charging strategies, we rate the charg-
ing strategies based on the energy, economic and environmental
implications of EVs under a given charging strategy in comparison
with gasoline-fueled vehicles, as described in Table 7.

In general, controlled charging strategies outperform un-
controlled charging ones in terms of: (1) improving power supply
security (indicated by mitigating non-served load); (2) facilitating
RES generation; and (3) reducing generation costs and EV fueling
costs. Amongst the two controlled charging strategies, V2G slightly
performs better in both mitigating non-served load and facilitating
RES generation yet to a limited degree. Although seeking the best
charging strategy with a full cost-benefit analysis is out of the
scope of this paper, we argue that controlled charging itself
might be sufficient for most regional power systems in bulk energy
management unless RES generation is excessive. Uncontrolled
charging strategies especially the home charging pose a threat to
power supply security, which should be avoided in reality. The
random charging is slightly better than the home charging in
mitigating the clustering of EV load with the peak load of the
reference power system, while it is not an attractive option
considering the fact that huge capital costs are needed for develop-
ing charging infrastructure in this case.

In short, Table 7 shows a trade-off of using controlled charging
strategies in the Chinese power system, between the benefits
above and the cost of more coal consumption and more CO2

emissions. We summarize the following two main aspects regarding
the power system designs that lead to this trade-off. Accordingly,
policy attentions are needed for these aspects to improve the perfor-
mance of controlled charging strategies in delivering the potential of
EVs especially with regard to environmental benefits.

First, the dominance of coal power and its absolute economic
competitiveness relative to gas power prohibits controlled charg-
ing strategies from delivering the potential of EVs. Specifically,



Fig. A.17. Calculations of EV availability per hour on weekdays and weekends, based on actual survey data.

Fig. B.18. Kernel density estimates of EV availability per hour on weekdays and weekends.
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with the given 2030 power system, once least-cost oriented
controlled charging is imposed, coal-fired electricity generators
would be the cheapest marginal units to react to EV load. Possible
solutions for changing this are making improvements to designs of
the power system by increasing the use of RES energy or other less
CO2 intensive generation especially including gas power. With
regard to RES power, China has so far made substantial progress
in promoting wind and solar power capacity. However, the use of
gas in the power system is still quite limited. Given the huge gap
between the coal price and gas price in China, reforms on the gas
market will be critical to lower the gap and thus improve the cost
competitiveness of gas-fired generation [48]. Otherwise, controlled
charging strategies entail more coal consumption and more CO2

emissions, especially for the regions where coal prices are low.
Second, in the context of the inter-regional transmission network,

the large variations of regional fuel prices facilitate controlled charg-
ing strategies to use more cheap yet low-efficiency coal generation in
the regions where fuel prices are low (e.g. the North and Northwest),
especially when energy efficiency and CO2 emission-related regula-
tions are absent. This further undermines the attractiveness of con-
trolled charging strategies in saving the environment. Hence,
regulations that discriminate against low-efficiency and dirty coal
generation technologies across regions are required to complement
economic-based electricity dispatch principles. Possible solutions
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for this include CO2 pricing, energy efficiency-incorporated electricity
dispatch mechanisms (e.g. the pilot energy-saving dispatch mecha-
nism in China [49]), etc.

5.3. Moves towards demand response programs

In short, better fulfilling the benefits of EVs requires a cleaner
power supply, and a healthy electricity dispatch which concerns
economic, energy and emission issues. In addition to improving
designs of the power system, the question of how to guide the
charging behaviors of EV consumers as optimized/controlled is also
of high interest for policy makers. Fig. 16 shows the differences in
EVs’ daily charging profiles between uncontrolled charging and
controlled charging strategies. For instance, the home charging
peaks between 6 pm and 11 pm, while the random charging often
peaks right after morning and noon traffic-rush hours. However,
with controlled strategies, charging at 11:00 pm–7:00 am and at
2:00–4:00 pm is expected from the power system perspective;
moreover, the V2G distinguishes itself by discharging to the grid
at the noon and evening peak load times. To shift the EV charging
profile from uncontrolled ones to the optimized ones, incentives
for EV consumers are needed. The incentives can be delivered
by various demand response programs, such as designing EV-
specific electricity rates (e.g. time of use (TOU) electricity tariff),
and developing new business models between utilities, EV
aggregators and EV consumers to facilitate centralized EV charging
management. Accordingly, given the fixed categorized electricity
price between utilities and consumers in China today, institutional
changes regarding electricity tariffs/contracts between the
involved actors are required.

Another interesting point in Fig. 16 is that with a given con-
trolled charging strategy, the patterns of daily charging profiles
are quite similar between regions although the amount of charg-
ing/discharging power are region-specific depending on the EV
penetration levels. This implies that the EV demand response pro-
grams among the regions can be functionally similar to each other.

6. Conclusions

This work has investigated the implications of deploying EVs for
China’s power system with regard to energy, economics and the
environment, and explored how to better deliver the value of EVs
by improving the designs in the power system and charging
strategies, given the expected power system and EV penetration
levels in 2030. The results are quantified mainly based on an
integrated transportation-power system dispatch model which
distinguishes itself with two key features. First, the model adopts
the kernel density estimates approach to statistically determine
the temporal availability of EVs connecting to the grid. Second, it
applies the clustered integer approach to reduce the amount of
variables in the unit commitment model. This allows us to capture
more technical details regarding the six regional power systems
and their inter-regional transmission connections, which are used
for modeling EV-incorporated power dispatch in China. Further-
more this approach allows us to work with increased model details
in a computationally efficient manner.

The scenario results show that at the national level, deploying
EVs basically shifts gasoline consumption to coal-based electricity
generation. Although this can save the transportation sector in
terms of dependency on oil, it comes with the cost of more coal
consumption and more CO2 emissions of the power system.
Accordingly, EVs outperform gasoline-powered vehicles in terms
of average fueling costs. However, how good EVs are in terms of
CO2 emissions at the national level largely depends on the charging
strategy. Specifically, controlled charging results in more CO2

emissions associated with EVs than uncontrolled charging, as it
tends to feed EVs with cheap yet low-efficiency coal generation
in the regions with low coal prices. This might be counter-
intuitive, but what is happening is that the high-efficiency coal
generation in the North and Northwest is already operating at full
capacity. Due to the inter-regional transmission connections in
China and the differences in coal prices among regions, the low-
efficiency coal generation in the North and Northwest actually is
more economically attractive and thus favoured in the merit order
over high-efficiency coal generation in other regions with higher
fuel prices. Still, compared with uncontrolled charging, controlled
charging shows absolute advantages in: (1) mitigating the peak
load arising from EV charging; (2) facilitating RES generation;
and (3) reducing generation costs and EV charging costs.

Hence, in light of the trade-offs of controlled charging between
energy security, economic efficiency and environmental destruc-
tion, policy efforts that improve designs of the power system are
required to better use controlled charging strategies in delivering
the promises of EVs for China. Accordingly, this paper proposes
that increasing generation with lower or zero CO2 emission rates,
such as RES power and gas power, are fundamental to make
EVs more clean. In addition, establishing energy efficiency and
CO2 emission-concerned regulations for power dispatch is also
helpful to discriminate against cheap yet dirty coal generation
across regions. More importantly, this work illustrates what the
optimized charging profiles from the power system perspective
look like, which provides insights into the directions for designs
of demand response programs for EV users.

The methods we developed for the Chinese case can be used as a
template for similar studies in other countries. Other countries, espe-
cially the ones with coal-intensive generation or with large cross-
border transmission capacity, can learn lessons from the Chinese
case. They should be aware that deploying EVs does not necessarily
bring benefits for the environment or for energy security, even
though it might come with economic savings for the power system.
Accordingly, coordinating the development of clean electricity gener-
ation with EV deployment is needed to make EV more sustainable. In
addition, given the high temporal flexibility of EVs connecting to the
grid, it is crucial that the EV battery recharging system is designed to
deliver the promises of EVs both for power system operations and the
environment in the most affordable way. As power systems world-
wide vary in their technical implementations, the model used in this
work can be easily adapted to cope with the specifics of power sys-
tems in other countries than China.

Still, it should be noted that the results of this paper are based
on the statistical estimation method, the optimization-based
power dispatch model and four predefined charging strategy
scenarios, and thus the designs and assumptions related may affect
the results of this paper. First, the statistically estimated results
regarding the availability of EVs connecting to the grid can only
represent the behaviors of EV users with certain probabilities
rather than the real behaviors. Second, the parameters used in
the model are subject to high uncertainties, which could affect
the results of this work. In particular, simplifications and estima-
tions of the average values for typical types of generation technolo-
gies across regions were made. Moreover, the parameters
regarding the future state of the Chinese power system and the
transportation system are mainly obtained from the literature.
The future, however, is highly uncertain, and better scenarios
which incorporate more of the dynamics of future developments
of the Chinese context should be created. Also, the hourly-based
power dispatch model only considers the value of EVs for the
power system in bulk power management, while neglecting the
roles of EVs in other fields, such as for ancillary services (e.g.
frequency regulation). Third, the scenarios of charging strategies
defined in our work typically represent four possibilities based
on two scenario variables: (1) whether the development of EV



Table C.8
The sets and indexes.

Sets and
indexes

Specifications

R; r The set and index of regions, note that this work only
simulates one region

G; g The set and index of power technologies
S; s The set and index of ESS technologies
T; t The set and index of time

GRes The subset of G, which represents RES power technologies

GFossil The subset of G, which represents fossil fuel-based power
technologies

GNonðfossil&ResÞ The subset of G, which represents non-fossil fuel and non-RES
based power technologies, here it refers to nuclear

Table C.9
The decision variables.

Decision
variables

Specifications [units]

Pr;g;t The power output of technology g in region r at time step t in
region r [MW]

SUr;g;t The amount of generation units of technology g that start up
at time step t in region r, [0,1,. . . ;ng ]

SDr;g;t The amount of generation units of technology g that shut
down at time step t in region r, [0,1,. . . ;ng]

UCr;g;t The amount of generation units of technology g that are
committed/on at time step t in region r, [0,1,. . . ;ng]

PNos
r;t

The demand that are not met by supply at time step t in
region r [MW]

PIm
r;r0 ;t

The power imported from region r0 to region r at time step t
[MW]

PEx
r;r0 ;t

The power exported from region r to region r0 at time step t
[MW]

PGen
r;s;t

The power generated from ESS technology s at time step t in
region r [MW]

PSto
r;s;t

The power stored to ESS technology s at time step t in region r
[MW]

PCur
r;g;t

The curtailed power for RES technology g at time step t in
region r [MW]

PCha
r;t

The charging power of EVs at time step t in region r [MW]

PDis
r;t

The discharging power of EVs at time step t in region r [MW]

Table C.10
The parameters.

Parameters Specifications [units]

cFuelr;f
The price for fuel f in region r [$/Joule]

dg;f The consumption intensity of technology g for fuel f
[Joule/MWh]

cO&M
g The variable operation and maintenance costs per power

unit of technology g [$/MW]

cStartupg
The start up costs of technology g [$ per time]

cNosg The penalty for per unit of unmet power demand g [$/
MW]

nr;g The number of generation units of technology g in region
r

DCon
r;t

The conventional power demand in region r at time t
[MW]

pmin
g ; pmax

g
The minimum and maximum power output of
generation technology g, respectively [MW]

pAvar;g;t The available power output of generation technology g
in region r at time t [MW]

MpUpmax
g ;MpDownmax

g
The maximum ramping up and down power of
generation technology g in one time step [MW]

cTran The transmission cost per unit of power [$/MWh]

eloss The energy loss intensity per transmission distance
[MW/km]

dr;r0 The distance between region r and r0 [km]
pLntcr;r0 The net transfer capacity of line between region r and r0

[MW]
gGen
s ;gSto

s The generation and storage efficiency of storage
technology s [%]

pAvar;s The total installed capacity of ESS technology s in region
r [MW]

EHaddr;s;t
The natural rainfall energy added to the reservoirs of
hydro pump storage [MWh]

pDrir;t
The power output required for driving in region r at time
step t [MW]

gDri;gCha;gDischa The power efficiency for EV driving, charging and
discharging [%]

pEVratedr
The maximum power output of EV at one time step
[MW]
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charging facilities is constrained at home or widely distributed in
public places; and (2) whether EV users can coordinate EV charging
with power system operation. However, there might be more
mixed scenarios relevant for real practice. The above research lim-
itations should be addressed in future work.

Appendix A. Processing of the transportation data

This survey covers over 30,000 people, each of whom had their
travel patterns recorded for a day. The following techniques were
applied to pre-process the MON data. As the survey data only records
the trips rather than the total population of vehicles, an estimation
about the total population of vehicle was made based on the number
of distinct cars observed in the data traveling during a particular day
of the week. In addition, the power dispatch is simulated on an
hourly basis, and the departure and arrival times from the survey
data are also rounded to the nearest hour. Fig. A.17 shows after the
data has been normalized, the estimated availability of EVs per hour
and type of day. Each line represents a single day.

Appendix B. Validation of the transportation data from kernel
density estimates

Fig. B.18 shows the EV availability for each day on an hourly
basis, which is constructed by sampling from the kernel density
estimates (KDE). The data from the KDE are validated as they show
the similar pattern with the real survey data in Fig. A.17.
Appendix C. The description of the clustered integer unit
commitment model

This part first introduces the mathematical formulation of the
power dispatch model, followed by explanations regarding the lists
of sets, decision variables and the parameters of the model.

C.1. Objective function

The objective function is to minimize the total variable genera-
tion costs (CVar) of the system over one year, including fuel cost

(CFuel), operation and maintenance cost (CO&M), start-up cost
(CStartup), non-served energy cost (CNos) and transmission cost
(CTran), as listed in Eq.(C.1). The specifications of the costs are
provided as follows.

minCVar ¼ CFuel þ CO&M þ CStartup þ CNos þ CTran ðC:1Þ

CFuel ¼
X
r2R

X
g2G

X
t2T

X
f2F

Pr;g;t � Dt � dg;f � cFuelr;f ðC:2Þ

CO&M ¼
X
r2R

X
g2G

X
t2T

Pr;g;t � Dt � cO&M
g ðC:3Þ

CStartup ¼
X
r2R

X
g2G

X
t2T

SUr;g;t � cStartupg ðC:4Þ

CNos ¼
X
r2R

X
t2T

PNos
r;t � Dt � cNosr ðC:5Þ

CTran ¼
X
r2R

X
rc2R

X
t2T

PEx
r;rc ;t � Dt � cTran ðC:6Þ
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Fig. D.19. The charging power and energy of EV fleet for the random and home charging strategy with different charging power rates. For illustrative purposes, the fast
charging power rate in the figure is assumed to be 12 kW and the slow rate is 3 kW.

Table D.11
The energy loss and transmission cost of inter-regional transmission lines [25,36].

Transmission line Energy loss Transmission cost

From To (%/GW) ($/GW h)

North East 2.53 2400.00
North Central 3.50 3320.16
Northeast North 2.48 2352.57
Northwest North 2.94 2788.93
Central East 2.61 2475.89
Northwest East 6.28 5957.31
Northwest Central 5.01 4752.57
Central South 3.33 3158.89
Northwest South 7.67 7275.89

Table D.12
The fuel price data used in this work. The data are compiled by the authors with
sources of [36,50–52]. The percentage value within the bracket shows the variation of
coal price and natural gas price relative to the benchmark region, in which the North
and Northwest are the benchmark region for coal and gas price, respectively.

Regions Coal price ($/ton) Gas price($/m3)

2012 2030 2012 2030

North 64.00 (Ref.) 76.55 0.3584 (+40%) 0.4278
East 112.00 (+75%) 133.97 0.3880 (+52%) 0.4641
Central 112.00 (+75%) 133.97 0.3552 (+39%) 0.4249
Northeast 96.00 (+50%) 114.83 0.3232 (+26%) 0.3866
Northwest 51.20 (�25%) 61.24 0.2560 (Ref.) 0.3062
South 128.00 (+100%) 153.11 0.3632 (+42%) 0.4344

Table D.13
The annual average wind capacity factor calculated by the authors.

Region North East Central Northeast Northwest South

Average capacity
factor

0.29 0.29 0.27 0.31 0.25 0.29
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C.2. Constraints

The power dispatch optimization is subject to the following
constraints. Eq. (C.7) shows the power supply should be continu-
ously balanced with the demand at each time period. As the RES
power generation is exogenously determined depending on the
given installed capacity and meteorological data, PCur

r;t is added to
allow for RES generation curtailment. EV works similarly to energy
storage system (ESS), the charging and discharging power of EVs

represented by PCha
r;t and PDis

r;t , respectively, are optimally dispatched.
The power output of different types of generation units are

shown in Eqs. (C.8), (C.10)–(C.12), in which nr;g is the amount of
units in the clustered group of technology g in region r. Eq. (C.9)
represents the dynamics of commitment states for the units which
are of a given technology, g. When considering a group of units, the
power output can change from ramping up/down for some of the
units, and from starting up and shutting down of some other units
in a simultaneous way [32]. Therefore, we formulate the ramping
up and down constraints for a clustered group of fossil fuel-
based generation units as shown in Eqs. (C.13) and (C.14), respec-
tively, in which MpUpmax

r;g ;MpDownmax
r;g represents the maximum up and

down capacity of a unit in one time step. The ramping up and down
constraints for normal power plants (e.g. nuclear) are shown in
Eqs. (C.15) and (C.16), respectively. Eq. (C.18) shows that the
exported power between regions must be lower than the net transfer
capacity, and the relations between exported power and imported
power between two given regions are shown in Eq. (C.17). Eqs.
(C.19)–(C.21) show the inter-temporal dynamics of the energy in
ESS with withdrawing and injecting power over the course. Similar
to the constraints for energy storage system, the energy and power
constraints of EV are formulated in Eqs. (C.22)–(C.24).
X
g2G

Pr;g;t �
X
g2GRes

PCur
r;g;t þ

X
s2S

PGen
r;s;t �PSto

r;s;t

� �
¼DCon

r;t þ PCha
r;t �PDis

r;t

� �
�PNos

r;t ðC:7Þ

Ur;g;t �pmin
g 6 Pr;g;t 6Ur;g;t �pmax

g ;8g 2GFossil ðC:8Þ

Ur;g;t ¼Ur;g;t�1þSUr;g;t �SDr;g;t ;8Ur;g;t ;SUr;g;t ;SDr;g;t 2 ½0;1;2; ; ;nr;g � ðC:9Þ

Pr;g;t ¼ pAva
r;g;t ;8g 2GRes ðC:10Þ

PCur
r;g;t 6pAva

r;g;t ;8g 2GRes ðC:11Þ

06 Pr;g;t 6pAva
r;g;t ;8g 2GNonðfossil&ResÞ ðC:12Þ
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Table D.15
The match between EU countries and the regions in China for the reference of demand
profile data.

No. Regions in
China

Data source
+ adaptations

Reasons for matching

1 North Germany High peaks both in winter and Summer
2 East Italy Averagely high for the whole year, and

demand is generally higher in summer
than winter

3 Central Italy Averagely high for the whole year, and
demand is generally higher in summer
than winter

4 Northeast Denmark High demand in winter
5 Northwest France + 2 h

delay
Low demand profiles and time lag caused
by long distance from the east

6 South Italy Averagely high for the whole year, and
demand is generally higher in summer
than winter
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Pr;g;t �Pr;g;t�1 6 Ur;g;t �SUr;g;t
� ��MpUpmax

g þSUr;g;t �max MpUpmax
g ;pmin

g

� �

�SDr;g;t �pmin
g ;8g 2GFossil ðC:13Þ

Pr;g;t�1�Pr;g;t 6 Ur;g;t �SUr;g;t
� ��MpDownmax

g þSDr;g;t

�max MpDownmax
g ;pmin

g

� �
�SUr;g;t �pmin

g ;8g 2GFossil ðC:14Þ

Pr;g;t �Pr;g;t�1 6MpUpmax
g ;8g 2GNonðfossil&ResÞ ðC:15Þ

Pr;g;t�1�Pr;g;t 6MpDownmax
g ;8g 2GNonðfossil&ResÞ ðC:16Þ

PIm
r;r0 ;t ¼ PEx

r;r0 ;t 1�eloss �dr;r0
� �

;8r0 2Rr ðC:17Þ

PEx
r;r0 ;t 6pLntc

r;r0 ðC:18Þ

Er;s;t ¼ Er;s;t�1�PGen
r;s;t=g

Gen
s þPSto

r;s;tg
Sto
s þEHadd

r;s;t ðC:19Þ

Emin
r;s;t 6 Er;s;t 6 Emax

r;s;t ðC:20Þ

06 PGen
r;s;t ;P

Sto
r;s;t 6pAva

r;s ðC:21Þ

SOCr;t ¼ SOCr;t�1�pDri
r;t =g

DriþPCha
r;t g

Cha�PDis
r;t =g

Dis ðC:22Þ

SOCmin
r;t 6 SOCr;t 6 SOCmax

r;t ðC:23Þ

06 PCha
r;t ;P

Dis
r;t 6pEVrated

r ðC:24Þ
C.3. Nomenclatures

See Tables C.8–C.10.

Appendix D. Key explanations and data for this work

D.1. Explanations regarding the home charging and random charging

See Fig. D.19.

D.2. Transmission-related data

See Tables D.11 and D.12.

D.3. Generation-related data

The wind speed data is provided in the form of surface flux data
which is composed of two vector components at a 10 meter height
with a six-hour interval [53]. Further processing for wind speed
data is done, including spline interpolations to adjust to hourly
wind speed data, and converting wind speed to wind power based
on wind turbine model E-33 [54]. The average capacity factor of
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wind power in the six regions is further calibrated with the
historical capacity factors in [55], and is shown in Table D.13.
The calculation of solar PV production is mainly based on the
PVWatts calculator from NREL,8 which can automatically identify
the solar resource data at or near a given location. For each regional
power system, a location is chosen to represent the average solar
resources for the region. The hydro power in this work mainly
represents run of river plants whose generation highly depends on
the amount of natural rainfall inflows and vary largely between
seasons. The average annual utilization of hydro power generation
in China is about 0.4 [50]. Depending on the abundance of hydro
resources, this work categorizes the six regions into two groups,
namely abundant and scarce. Specifically, the North and Northwest
have relatively lower rainfalls so that they are assumed to be in
the group of scarce, other regions are abundant in hydro. The hourly
hydro power availability is assumed to be the same for a given
month. The average hydro power availability for each month is
illustrated, and the variation of monthly hydro generation
availability, which is mainly based on the data of Guangxi province
in the South [48] (see Table D.14).

D.4. Demand-related data

We do not have access to the data of regional demand profiles of
the Chinese power system. Therefore, this paper refers to the data
of four EU member states including Germany, France, Denmark
and Italy to represent the regional demand profiles in China.9 These
four countries are chosen mainly because they show a large diversity
in seasonal electricity demand, which is similar to the regional
power systems in China. This work matches the reference of demand
profile data between EU countries and the regional power systems in
China as shown in Table D.15. It should be stressed that the assump-
tions regarding demand profile data here do not affect the meaning
and validity of the results in this work based on a set of sensitivity
validation we did. In turn, the method here can provide reference
value for the studies that are also confronting with the lack of data
issues.
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