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Abstract

We study generalized filters that are associated to multiplicity functions and homomorphisms of the
dual of an abelian group. These notions are based on the structure of generalized multiresolution analyses.
We investigate when the Ruelle operator corresponding to such a filter is a pure isometry, and then use
that characterization to study the problem of when a collection of closed subspaces, which satisfies all the
conditions of a GMRA except the trivial intersection condition, must in fact have a trivial intersection. In
this context, we obtain a generalization of a theorem of Bownik and Rzeszotnik.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Filters have historically been an essential tool used in both building and analyzing wavelets
and multiresolution structures. In particular, filters traditionally called “low-pass” arise naturally
from refinement equations for multiresolution analyses (MRAs) and generalized multiresolu-
tion analyses (GMRAs). Beginning with work of Mallat [14] and Meyer [15], the process of
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defining filters from a multiresolution structure was also reversed; that is, functions that be-
have like low-pass filters have been used to build the structures. This construction technique
has been remarkably fruitful, producing, for example, the smooth and well-localized wavelets of
Daubechies [11]. In generalizing this procedure to allow less restrictive conditions on the filters
as well as on the setting, for example in [2,4,10], properties of an operator associated with the
filter, called a Ruelle operator, are used to justify this construction. The essential ingredient is
that the Ruelle operator be a pure isometry. A theorem giving general conditions under which the
Ruelle operator is a pure isometry in the case of an integer dilation in L2(T) appeared in [10].

In this paper we derive a similar theorem (Theorem 4 in Section 2) in a quite general context.
We then exploit this theorem both in analyzing multiresolution structures and in building them.
Our central result of the first type addresses the question of when a structure that satisfies all the
properties of a GMRA except possibly the trivial intersection property, must satisfy that as well.
This generalizes work of Bownik and collaborators [7,9]. Our main result of the second type is
to show that very little in the way of a low-pass condition is needed when building GMRAs from
filters using direct limits as in [4] and [5].

Our general context is as follows: Let Γ be a countable abelian group (written additively)
with dual group Γ̂ (written multiplicatively), equipped with Haar measure μ (of total mass 1).
Let α be an isomorphism of Γ into itself, and suppose that the index of α(Γ ) in Γ equals N > 1.

Assume further that
⋂

n�0 αn(Γ ) = {0}. Write α∗ for the dual endomorphism of Γ̂ onto itself
defined by [α∗(ω)](γ ) = ω(α(γ )), and note that the kernel of α∗ contains exactly N elements
and that α∗ is ergodic with respect to the Haar measure on Γ̂ . Write K =⋃n>0 ker(α∗n), and
note that, because

⋂
n�0 αn(Γ ) = {0}, K is dense in Γ̂ .

Of course the standard example (e.g., from wavelet theory) of these ingredients is where
Γ = Z, Γ̂ = T, and α(k) = 2k. Or, more generally, Γ = Z

d, and α(�x) = A�x, where A is a
d × d integer dilation matrix of determinant N.

Let m : Γ̂ → {0,1,2, . . . ,∞} be a Borel map into the set of nonnegative integers union ∞,

and for each i ∈ N, write σi for {ω ∈ Γ̂ : m(ω) � i}. Note that

m(ω) =
∑

i

χσi
(ω).

We remark that such functions m arise, via Stone’s Theorem on unitary representations of abelian
groups, as multiplicity functions associated to such representations of Γ. In that context, we will
make use of a unitary representation π of Γ , acting in a Hilbert space H, and a unitary operator
δ on H for which

δ−1πγ δ = πα(γ )

for all γ ∈ Γ.

In this general setting, we define a filter as follows:

Definition 1. Let H = [hi,j ]i,j∈N be a matrix of Borel, complex-valued functions on Γ̂ , with
hi,j supported in σj , and such that for every i and almost all ω,

∑∞
j=1 |hi,j (ω)|2 < ∞. Then H

is called a filter relative to m and α∗ if the “filter equation”∑
α∗(ζ )=1

∑
j

hi,j (ωζ )hi′,j (ωζ ) = Nδi,i′χσi

(
α∗(ω)

)
(1)

is satisfied for almost all ω ∈ Γ̂ .
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Remark 2. When the multiplicity function m is bounded, so that the rows and columns of the
filter are all eventually identically 0, we can treat the infinite matrix H as a finite-dimensional
matrix. Even when the multiplicity function takes on the value ∞, an elementary functional
analysis argument shows that a filter H is a bounded operator on l2, so that products of filter
matrices are well defined. In the following sections, we will often need a uniformity of this
bound that will require additional hypotheses.

In the standard situation described above, i.e., where Γ = Z, α(k) = 2k, and where m is the
identically 1 function, a filter relative to m and α∗ is just a 1 × 1 matrix (function) h, and the
filter equation becomes ∣∣h(z)

∣∣2 + ∣∣h(−z)
∣∣2 = 2,

for almost all z ∈ T, which is the classical equation satisfied by a quadrature mirror filter. These
are the filters that played a central role in the early theory of multiresolution analyses and
wavelets in L2(R). Indeed, in the classical case, where φ is a scaling function for an MRA
in L2(R), we know that the integral translates Tn(φ) = φ(· − n) form an orthonormal basis for
the core subspace V0, and we may define a unitary operator J from V0 onto L2(T) by sending
the basis vector Tn(φ) to the function zn. This correspondence between an orthonormal basis of
V0 with the canonical Fourier basis for L2(T) is clearly a unitary operator. Furthermore, J sends
the element φ(x/2)/

√
2 =∑ cnTn(φ) to the function

∑
n cnz

n = h(z), where h is the associated
quadrature mirror filter. We notice that, in addition to the fact that h satisfies the quadrature mir-
ror equation, it satisfies another condition. Namely, if δ denotes the dilation operator on L2(R)

given by [δ(f )](x) = √
2f (2x), then one can verify that the operator J ◦ δ−1 ◦ J−1 on L2(T) is

given by [[
J ◦ δ−1 ◦ J−1](f )

]
(z) = h(z)f

(
z2)= [Sh(f )

]
(z)

for every f ∈ L2(T). We will call such an operator Sh a Ruelle operator. Because δ−1 is an
isometry on V0, and

⋂
Range(δ−n) =⋂Vn = {0}, it follows that the operator Sh has these same

properties. That is, Sh is a “pure isometry.”
In the next section we define a Ruelle operator SH similarly associated with an abstract filter

H as in Definition 1, and present our first main result, a characterization of when this Ruelle
operator is a pure isometry. The final two sections contain the applications of this result.

2. Filters and pure isometries

Let H be a filter relative to m and α∗. Whenever the formula

[
SH (f )

]
(ω) = Ht(ω)f

(
α∗(ω)

)
=
⊕

j

∑
i

Hi,j (ω)fi

(
α∗(ω)

)
defines a bounded operator from

⊕
i L

2(σi,μ) into itself, we will call SH the Ruelle operator
associated to H . In the contexts we study in this paper, this will always be the case.
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We now prove a generalization of the filter equation of Definition 1 that will provide a crucial
step in determining when the Ruelle operator SH is an isometry. If the function m associated to H

is finite a.e., this proposition follows from the standard filter equation by induction (see Lemma 9
in [4]). However, without this restriction, it requires a more careful argument exploiting the fact
that, in the situations we study, SH is an isometry.

Proposition 3. Let H be a filter relative to m and α∗, and assume that the associated Ruelle
operator SH is an isometry. Then:

1

Nn

∑
α∗n(ζ )=1

∑
i

[
n−1∏
k=0

Ht
(
α∗k

(ωζ )
)]

i,j

[
n−1∏
k′=0

Ht
(
α∗k′

(ωζ )
)]

i,j ′
= δj,j ′χσj

(
α∗n(ω)

)
.

Proof. Let f , g be elements of
⊕

j L2(σj ,μ). Relying on the fact that Sn
H (f ) ∈⊕j L2(σj ,μ)

whenever f ∈⊕j L2(σj ,μ), we may, by Fubini’s Theorem, exchange the sum and integral in
the following calculation:

∫
Γ̂

∑
i

∑
j

[
n−1∏
k=0

Ht
(
α∗k

(ω)
)]

i,j

fj

(
α∗n(ω)

)∑
j ′

[
n−1∏
k′=0

Ht
(
α∗k′

(ω)
)]

i,j ′
gj ′
(
α∗n(ω)

)
dω

=
∑

i

∫
Γ̂

[
Sn

H (f )
]
i
(ω)
[
Sn

H (g)
]
i
(ω)dω

= 〈Sn
H (f )

∣∣ Sn
H (g)

〉
= 〈f | g〉.

Therefore,

∫
Γ̂

1

Nn

∑
α∗n(ζ )=1

∑
i

(∑
j

[
n−1∏
k=0

Ht
(
α∗k(ωζ )

)]
i,j

fj

(
α∗n(ω)

))

·
(∑

j ′

[
n−1∏
k′=0

Ht
(
α∗k′

(ωζ )
)]

i,j ′
gj ′
(
α∗n(ω)

))
dω

= 〈f | g〉.

Write Cj for the element of the direct sum space
⊕

j L2(σj ,μ) whose j th coordinate is χσj
and

whose other coordinates are 0. Set f = χECj , for E ⊆ σj , and g = χE′Cj ′ , for E′ ⊆ σj ′ . We
then have

∫
∗−n ′

1

Nn

∑
ζ

∑
i

[
n−1∏
k=0

Ht
(
α∗k(ωζ )

)]
i,j

[
n−1∏
k′=0

Ht
(
α∗k′

(ωζ )
)]

i,j ′
dω
α (E∩E )
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=
∫
Γ̂

1

Nn

∑
ζ

∑
i

[
n−1∏
k=0

Ht
(
α∗k(ωζ )

)]
i,j

χE

(
α∗n(ω)

)
Cj

(
α∗n(ω)

)

·
[

n−1∏
k′=0

Ht
(
α∗k′

(ωζ )
)]

i,j ′
χE′
(
α∗n(ω)

)
Cj ′
(
α∗n(ω)

)
dω

= 〈χECj | χE′Cj ′ 〉
= δj,j ′

∫
Γ̂

χE∩E′
(
α∗n(ω)

)
dω

= δj,j ′
∫

α∗−n(E∩E′)

1dω.

Since this is true for any Borel sets E and E′, the proposition follows. �
We now prove our first main result, establishing conditions under which a Ruelle operator SH

that is an isometry must in fact be a pure isometry. This theorem generalizes Theorem 3.1 in [10],
which finds a similar conclusion in the setting of integer dilations in L2(T).

Theorem 4. Assume that m is finite on a set of positive measure. If SH is an isometry on⊕
j L2(σj ,μ), then SH fails to be a pure isometry if and only if it has an eigenvector. Specifically,

SH fails to be a pure isometry if and only if there exists a nonzero element f ∈⊕j L2(σj ,μ),

and a scalar λ of absolute value 1, such that SH (f ) = λf. Moreover, if f is a unit eigenvector
for SH , then ‖f (ω)‖ = 1 a.e.

Proof. Write Rn for the range of the isometry Sn
H , and write R∞ for the intersection

⋂
Rn of

the Rn’s. By definition, SH is a pure isometry if and only if R∞ = {0}.
If SH has an eigenfunction f, say SH (f ) = λf, with λ �= 0, then clearly f belongs to the

range of each operator Sn
H , and hence f ∈ R∞. Therefore, R∞ �= {0}, and SH is not a pure

isometry.
Conversely, suppose SH is not a pure isometry. We now adapt an argument in [4] that was

based on the reverse martingale convergence theorem. (See Theorem 10.6.1 in [12].) For each
n � 1, let Mn be the σ -algebra of Borel subsets of Γ̂ that are invariant under multiplication by
elements in the kernel of α∗n. Let f and g be two nonzero vectors in R∞, and define a sequence
of random variables {Xn} ≡ {Xf,g

n } on Γ̂ by

Xn(ω) = 1

Nn

∑
α∗n(ζ )=1

〈
f (ωζ )

∣∣ g(ωζ )
〉
.

Then it follows directly that Xn is Mn-measurable, and the conditional expectation of Xn,

given Mn+1, equals Xn+1. Therefore, the sequence {Xn, Mn} is an integrable, reverse mar-
tingale. Hence, using the reverse martingale convergence theorem, we have that the sequence
{Xn(ω)} converges almost everywhere and in L1 norm to an integrable function L on Γ̂ .

Clearly, L(ωζ) = L(ω) for almost every ω and every ζ ∈ K =⋃n>0 ker(α∗n). Hence, the
Fourier coefficient cγ (L) satisfies cγ (L) = γ (ζ )cγ (L) for every ζ ∈ K, implying that cγ (L) = 0
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unless γ (ζ ) = 1 for all ζ ∈ K. Since K is dense in Γ̂ , it then follows that cγ (L) = 0 for all γ

except γ = 0. Consequently, L(η) is a constant function, and we have, from the L1 convergence
of the sequence {Xn},

L(η) =
∫
Γ̂

L(ω)dω

= lim
n�1

∫
Γ̂

Xn(ω)dω

= lim
n�1

1

Nn

∑
α∗n(ζ )=1

∫
Γ̂

〈
f (ωζ )

∣∣ g(ωζ )
〉
dω

=
∫
Γ̂

〈
f (ω)

∣∣ g(ω)
〉
dω

= 〈f | g〉.
Therefore, the reverse martingale Xn converges almost everywhere to the constant 〈f | g〉.

For each ω, write Nω for the set of all natural numbers n for which m(α∗n(ω)) < ∞. Since
m is finite on a set of positive measure, the ergodicity of α∗ implies that Nω is infinite for almost
all ω. We show next that, for each n ∈ Nω, there is a different expression for Xn(ω). To wit, for
each n ∈ Nω, define fn = S∗

H
n(f ) and gn = S∗

H
n(g). Since SH is a unitary operator on R∞, we

have

Xn(ω) = 1

Nn

∑
α∗n(ζ )=1

〈
f (ωζ )

∣∣ g(ωζ )
〉

= 1

Nn

∑
ζ

〈
n−1∏
k=0

Ht
(
α∗k(ωζ )

)
fn

(
α∗n(ω)

) ∣∣∣∣∣
n−1∏
k′=0

Ht
(
α∗k′

(ωζ )
)
gn

(
α∗n(ω)

)〉

= 1

Nn

∑
ζ

∑
j

∑
i

[
n−1∏
k=0

Ht
(
α∗k(ωζ )

)]
j,i

∑
i′

[
n−1∏
k′=0

Ht
(
α∗k′

(ωζ )
)]

j,i′

· fni

(
α∗n(ω)

)
gni′
(
α∗n(ω)

)
.

When interchanging the sums in the previous expression is justified, we may continue this com-
putation; then, using Proposition 3, we would obtain

1

Nn

∑
i

∑
i′

fni

(
α∗n(ω)

)
gni′
(
α∗n(ω)

)∑
ζ

∑
j

[
n−1∏
k=0

Ht
(
α∗k(ωζ )

)]
j,i

[
n−1∏
k′=0

Ht
(
α∗k′

(ωζ )
)]

j,i′

=
∑

i

fni

(
α∗n(ω)

)
gni

(
α∗n(ω)

)
= 〈fn

(
α∗n(ω)

) ∣∣ gn

(
α∗n(ω)

)〉
.
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This gives the different expression for Xn(ω) that we want, whenever we can justify the inter-
changes of sums in the previous computations:

Xn(ω) = 〈fn

(
α∗n(ω)

) ∣∣ gn

(
α∗n(ω)

)〉
. (2)

The following calculation, which again uses Proposition 3 and the Cauchy–Schwarz inequal-
ity, shows that the interchange of sums above is justified whenever the sums on i and i′ are finite
sums. Because of Proposition 3, the sums on i and i′ will be finite if m(α∗n(ω)) < ∞, and this
is the case when n ∈ Nω. Hence, the computation below will complete the derivation of Eq. (2).
Note also that the sums on i and i′ will be finite sums if the vectors fn(α

∗n(ω)) and gn(α
∗n(ω))

only have a finite number of nonzero coordinates. We will use this later on.

1

Nn

c∑
i=1

c′∑
i′=1

∑
ζ

∑
j

∣∣∣∣∣
[

n−1∏
k=0

Ht
(
α∗k(ωζ )

)]
j,i

[
n−1∏
k′=0

Ht
(
α∗k′

(ωζ )
)]

j,i′
fni

(
α∗n(ω)

)
gni′
(
α∗n(ω)

)∣∣∣∣∣
� 1

Nn

c∑
i=1

c′∑
i′=1

∣∣fni

(
α∗n(ω)

)
gni′
(
α∗n(ω)

)∣∣
·
(∑

ζ,j

∣∣∣∣∣
[

n−1∏
k=0

Ht
(
α∗k(ωζ )

)]
j,i

∣∣∣∣∣
2∑

ζ̃ ,j̃

∣∣∣∣∣
[

n−1∏
k′=0

Ht
(
α∗k′

(ωζ̃ )
)]

j̃ ,i′

∣∣∣∣∣
2)1/2

=
c∑

i=1

∣∣fni

(
α∗n(ω)

)
χσi

(
α∗n(ω)

)∣∣ c′∑
i′=1

∣∣gni′
(
α∗n(ω)

)
χσi′
(
α∗n(ω)

)∣∣
�
(

c∑
i=1

∣∣fni

(
α∗n(ω)

)∣∣2 c∑
ĩ=1

∣∣χσ
ĩ

(
α∗n(ω)

)∣∣2)1/2( c′∑
i′=1

∣∣gni′
(
α∗n(ω)

)∣∣2 c′∑
ĩ′=1

∣∣χσ
ĩ′
(
α∗n(ω)

)∣∣2)1/2

�
√

cc′∥∥fn

(
α∗n(ω)

)∥∥∥∥gn

(
α∗n(ω)

)∥∥
< ∞,

for almost every ω.

The first conclusion we can draw from Eq. (2) is that for almost all ω,

lim
n∈Nω

〈
fn

(
α∗n(ω)

) ∣∣ gn

(
α∗n(ω)

)〉= lim
n→∞Xn(ω)

= 〈f | g〉,

or, setting g = f, for f a unit vector in R∞,

lim
n∈Nω

∥∥fn

(
α∗n(ω)

)∥∥= ‖f ‖ = 1.

A second conclusion we may draw is that we must have σ1 = Γ̂ , i.e., m(ω) � 1 a.e. Indeed, if
m(ω) = 0 for all ω in a set F of positive Haar measure, then from the ergodicity of α∗, we must
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have α∗n(ω) ∈ F infinitely often for almost all ω, so that ‖fn(α
∗n(ω))‖ = 0 infinitely often. But,

since each such integer n belongs to Nω, this contradicts the first claim above.
Now let i0 satisfy σi0 = Γ̂ and σi0+1 be a proper subset of Γ̂ of measure strictly less than 1.

(Of course σi0+1 could be the empty set, if m(ω) ≡ i0.) Then, by a similar kind of ergod-
icity argument as was used above, we know that for almost all ω, and for infinitely many
values of n, [f (α∗n(ω))]i = 0 for all i > i0 and all f ∈ R∞. Indeed, this is true whenever
α∗n(ω) /∈ σi0+1, and this occurs infinitely often for almost all ω. Moreover, each such n belongs
to Nω.

Let f 1, . . . , f k be orthonormal vectors in R∞. Then, for infinitely many sufficiently large n,

we must have that the k i0-dimensional vectors{[
f

p
n

(
α∗n

(ω)
)]

1, . . . ,
[
f

p
n

(
α∗n

(ω)
)]

i0

}
are nearly orthogonal and nearly of unit length. Consequently, k must be � i0. Hence R∞ is
finite-dimensional, and therefore SH (a unitary operator on R∞) must have an eigenvector.

To prove the final part of the proposition, let f be a unit vector in R∞. From the second claim
above, we know that the coordinates fi of f are all 0 for i > i0. Therefore, the interchanges of
summations in the calculations above are justified, and we obtain

X
f,f
n (ω) = ∥∥fn

(
α∗n(ω)

)∥∥2
,

so that

lim
n→∞

∥∥fn

(
α∗n(ω)

)∥∥2 = ‖f ‖2 = 1

for almost all ω.

Finally, let f be a unit eigenvector for SH . We have then that

lim
n→∞

∥∥f (α∗n(ω)
)∥∥2 = lim

n→∞
∥∥[Sn

H (fn)
](

α∗n(ω)
)∥∥2

= lim
n→∞

∥∥fn

(
α∗n(ω)

)∥∥2

= 1.

By the ergodicity of α∗, it follows that ‖f (ω)‖ = 1 almost everywhere. �
3. Pure isometries and the low pass condition

In this section, we use Theorem 4 to eliminate the need for a restrictive low-pass condition
when building GMRAs from filters via the direct limit construction of [4] and [5]. First we recall
the definition:

Definition 5. A collection {Vj }∞−∞ of closed subspaces of H is called a generalized multiresolu-
tion analysis (GMRA) relative to π and δ if:

(1) Vj ⊆ Vj+1 for all j.

(2) Vj+1 = δ(Vj ) for all j.
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(3)
⋂

Vj = {0}, and
⋃

Vj is dense in H.

(4) V0 is invariant under the representation π.

The subspace V0 is called the core subspace of the GMRA {Vj }.
In order to use the theorems from the previous section to build GMRAs from filters, we

need to know that associated Ruelle operators are isometries. The proof requires the additional
assumption that the multiplicity function m is finite a.e. This hypothesis is standard in much of
the literature.

Proposition 6. Assume m(ω) < ∞ for almost all ω, and let H be a filter relative to m and α∗.
Then the Ruelle operator SH is an isometry of

⊕
i L

2(σi,μ) into itself.

Proof. Note that, because m(ω) < ∞ almost everywhere, the filter equation, together with the
very definition of hi,j , implies that hi,j (ω) = 0 if j > m(ω) or i > m(α∗(ω)). Therefore, all the
sums in the following calculation, that are inside integrals, are finite, so that interchanges of these
sums is allowed.∥∥SH (f )

∥∥2 =
∑
j

∫
σj

∣∣[SH (f )
]
j
(ω)
∣∣2 dω

=
∑
j

∫
σj

∣∣[Ht(ω)f
(
α∗(ω)

)]
j

∣∣2 dω

=
∑
j

∫
σj

∣∣∣∣∑
i

Hi,j (ω)fi

(
α∗(ω)

)∣∣∣∣2 dω

=
∑
j

∫
Γ̂

∣∣∣∣∑
i

hi,j (ω)fi

(
α∗(ω)

)∣∣∣∣2 dω

=
∫
Γ̂

∑
j

[∑
i

hi,j (ω)fi

(
α∗(ω)

)][∑
i′

hi′,j (ω)fi′
(
α∗(ω)

)]
dω

= 1

N

∑
α∗(ζ )=1

∫
Γ̂

∑
j

[∑
i

hi,j (ωζ )fi

(
α∗(ω)

)][∑
i′

hi′,j (ωζ )fi′
(
α∗(ω)

)]
dω

= 1

N

∫
Γ̂

∑
i

∑
i′

∑
ζ

∑
j

hi,j (ωζ )hi′,j (ωζ )fi

(
α∗(ω)

)
fi′
(
α∗(ω)

)
dω

=
∫
Γ̂

∑
i

χσi

(
α∗(ω)

)∣∣fi

(
α∗(ω)

)∣∣2 dω

=
∑

i

∫
σi

∣∣fi(ω)
∣∣2

= ‖f ‖2,

as claimed. �
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In earlier works (e.g., [2] and [4]), a so-called “low-pass condition” on the filter H was used
to guarantee that SH was a pure isometry. This condition had various forms, but they all required
something like H being continuous at the identity 1 in Γ̂ and the matrix H(1) being diagonal
with

√
N ’s at the top of the diagonal and 0’s at the bottom. Results from [16] and more re-

cently [9] loosened these assumptions somewhat by separating out a phase factor. We will show
below that such assumptions on H imply that SH can have no eigenvector, and so by Theorem 4,
SH must be a pure isometry. The following theorem gives quite general conditions on H under
which SH is a pure isometry, subsuming the conditions on H(1) mentioned above as well as the
results for a 1 × 1 filter H given in [5]. In particular, note that this theorem blurs the distinction
between classical low-pass and high-pass filters by not requiring H to take on specific values
near the identity.

Theorem 7. Let H be a filter relative to m and α∗. Suppose there exists a positive number δ and
a set F ⊆ Γ̂ of positive measure, such that for all ω ∈ F the matrix H(ω) is in block form

H(ω) =
(

A(ω) B(ω)

C(ω) D(ω)

)
,

where the four blocks satisfy the following:

(1) A(ω) is an a × a expansive matrix with the property that ‖A(ω)−1‖ � 1
1+δ

.

(2) max(‖B(ω)‖,‖C(ω)‖,‖D(ω)‖) < ε = min( 1
8 , δ

8 ). (The norm here can either be the opera-
tor norm of a matrix or the Euclidean norm.)

Finally, assume that F ∩ α∗(F ) also has positive measure. Then SH is a pure isometry, i.e.,
SH has no eigenvector.

Remark 8. The hypothesis of this theorem clearly covers the previously cited cases where H(ω)

is continuous and has the relevant diagonal at ω = 1.

Proof. Suppose, by way of contradiction, that f is a unit eigenvector for SH with eigenvalue λ,
|λ| = 1. For each ω, write the vector f (ω) in the form f (ω) = (f 1(ω), f 2(ω)), where f 1(ω) is
a-dimensional. Because f is an eigenvector for SH , we have

λf (ω) = [SH (f )
]
(ω) = Ht(ω)f

(
α∗(ω)

)
.

It follows from this, and the fact that ‖f (ω)‖ = 1 by the final conclusion of Theorem 4, that for
ω ∈ F we must have∥∥f 2(ω)

∥∥= ∥∥Bt(ω)f 1(α∗(ω)
)+ Dt(ω)f 2(α∗(ω)

)∥∥< 2ε.

Hence, again because ‖f (ω)‖ = 1 for ω ∈ F , we must have ‖f 1(ω)‖ > 1 − 2ε. Since condition
(1) on the matrix A(ω) implies that ‖A(ω)v‖ � (1 + δ)‖v‖ for every a-dimensional vector v, we
must have, for ω and α∗(ω) both in F,

1 �
∥∥f 1(ω)

∥∥
= ∥∥At(ω)f 1(α∗(ω)

)+ Ct(ω)f 2(α∗(ω)
)∥∥
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> (1 + δ)
∥∥f 1(α∗(ω)

)∥∥− 2ε2

> (1 + δ)(1 − 2ε) − 2ε

� 1 + δ − δ

4
− δ

4
− δ

4

= 1 + δ

4
.

We have arrived at a contradiction, and the theorem is proved. �
Theorem 7 can be used to build generalized multiresolution analyses with more general filters,

using approaches that do not require an infinite product construction, such as the direct limit
construction in [4] and [5].

Example 9. For another application of Theorem 7, consider the Journé filter system given by

H(ω) =
(

h1,1 h1,2
h2,1 h2,2

)
.

In the classical Journé example described by Baggett, Courter, and Merrill in [1],

h1,1
(
e2πix

)= √
2χE1(x), h1,2 = 0,

h2,1
(
e2πix

)= √
2χE2(x), h2,2 = 0,

where E1 and E2 are the periodizations of the sets [− 2
7 ,− 1

4 )∪ [− 1
7 , 1

7 )∪ [ 1
4 , 2

7 ) and [− 1
2 ,− 3

7 )∪
[ 3

7 , 1
2 ), respectively.

These are the classical filters in L2(R) for dilation by 2 that can be associated to the GMRA
in L2(R) coming from the Journé wavelet.

We now apply a device very similar to that first used on pp. 259–260 of [3]. Choose a very
small δ > 0, and an even smaller ε > 0. Define q : T → R by

q
(
e2πix

)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2
√

1 − r2, if x = 0,

0, if 1
7 − ε < x < 3

14 + ε,

C∞ monotone decreasing, if 0 < x < 1
7 − ε,√

2, if 2
7 − ε < x < 5

14 + ε,

C∞ monotone increasing, if 3
14 + ε < x < 2

7 − ε,

0, if 3
7 − ε < x < 3

7 + ε,√
2 · r, if x = 1

2 ,

C∞ monotone increasing, if 3
7 + ε < x < 1

2 ,√
2 − [q(e2πi(x+ 1

2 ))]2, if − 1
2 < x < 0.

Here r ∈ (0,1) is a number yet to be determined. We now define generalized filters {hq } by:
i,j
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h
q

1,1

(
e2πix

)= q
(
e2πix

)
χ[− 2

7 , 2
7 )

(x),

h
q

2,1

(
e2πix

)= √
2χ[− 1

2 ,− 3
7 )∪[ 3

7 , 1
2 )

(x),

h
q

1,2

(
e2πix

)= q
(
e2πi(x+ 1

2 )
)
χ[− 1

7 , 1
7 )

(x),

h
q

2,2

(
e2πix

)= 0.

Denote the matrix [hq
i,j (z)] by Hq. A routine calculation shows that the filter equations of

Baggett, Courter and Merrill are satisfied, i.e.

2∑
j=1

1∑
k=0

hi,j

(
e2πi x+k

2
)
hi′,j

(
e2πi x+k

2
)= δi,i′2χσi

(x), i = 1,2,

where σ1 = [− 1
2 ,− 3

7 ) ∪ [− 2
7 , 2

7 ) ∪ [− 3
7 , 1

2 ), and σ2 = [− 1
7 , 1

7 ).

We now take A(z) = h
q

1,1(z), B(z) = h
q

1,2(z), C(z) = h
q

2,1(z), and D(z) = h
q

2,2(z) in the

matrix H = Hq. We want to determine a specific value r ∈ (0,1) and a set F = {e2πix : x ∈ F },
where F ⊂ [− 1

2 , 1
2 ) such that the hypotheses of Theorem 7 are satisfied. We let F = [− 1

n
, 1

n
],

where n ∈ N is chosen so that n � 7 and q(e2πix) >
√

2
√

1 − 2r2, for all x ∈ F . This can be
done by applications of the Intermediate Value Theorem, since q is continuous. It’s clear that
F ∩ α∗(F ) = F has positive measure. Also we want to find δ > 0 such that |hq

1,1(e
2πix)| �

1 + δ and max(|hq

1,2(e
2πix)|, |hq

2,1(e
2πix)|, |hq

2,2(e
2πix)|) < ε = min( 1

8 , δ
8 ), ∀x ∈ F . Note that

h
q

2,1(e
2πix) and h

q

2,2(e
2πix) are identically 0 on F , so we need only show that |hq

1,2(e
2πix)| < ε

on F . Since h
q

1,2(e
2πix) is continuous at x = 0, where its value is equal to

√
2 · r, we choose

F = [− 1
n
, 1

n
] so that

√
2 · r � h

q

1,2(e
2πix) < 2 · r, ∀x ∈ F .

Having chosen δ > 0, we thus must choose r so that 1√
2
√

1−2r2
� 1

1+δ
and 2r < ε =

min( 1
8 , δ

8 ). So we first choose r1 < min( 1
16 , δ

16 ).

For r2, as long as δ <
√

2 − 1, if we choose r2 �
√√

2−(1+δ)
1+δ

, one can verify that

1
√

2
√

1 − 2r2
2

� 1

1 + δ
.

Finally, we choose r = min(r1, r2). Then,

2r < min

(
1

8
,
δ

8

)
,

and

1√ √
2

� 1
,

2 1 − 2r 1 + δ
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so that the conditions of Theorem 7 are satisfied, and SH is a pure isometry acting on L2(σ1) ⊕
L2(σ2). In fact, letting r → 0+, we can construct a one-parameter family of filter systems giving
rise to pure isometries; when r = 0, we obtain exactly the filter system constructed in [3].

In Theorem 5 of [4], it is shown that given a pure isometry S on a Hilbert space K together
with a representation ρ of a countable abelian group Γ, such that δ−1ργ δ = ρα(γ ) for all γ ∈ Γ,

then it was possible to construct a generalized multiresolution analysis via a direct limit process.
Taking S = SH , K = L2(σ1) ⊕ L2(σ2), and Γ = Z, the desired hypotheses will be satisfied, and
it follows that a GMRA can be constructed from the above filter system in the direct limit Hilbert
space. In a paper in preparation, the authors will present a more constructive approach to making
the GMRA under the same hypotheses as in Theorem 5 of [4].

4. Pure isometries and the trivial intersection property

The following “problem” was first noticed by Baggett, Bownik and Rzeszotnik. Suppose {ψk}
is a Parseval multiwavelet in L2(Rd); i.e., the functions {ψj,n,k(x)} ≡ {2 jd

2 ψk(2j x + n)} form
a Parseval frame for all of L2(Rd). If Vj is defined to be the closed linear span of the functions
{ψl,n,k} for l < j, then these subspaces can be shown to satisfy all of the properties of a GMRA
except for the condition

⋂
Vj = {0}. Bownik and Rzeszotnik demonstrated the delicacy of this

condition in [8] by constructing, for any δ > 0, a frame wavelet in L2(R), with frame bounds of 1
and 1 + δ, that has a negative dilate space V0 equal to all of L2(R). They showed in [9], however,
that a Parseval multiwavelet in L2(Rd) generates a GMRA (that is, the trivial intersection prop-
erty does hold) whenever the multiplicity function of the negative dilate space V0 is finite on a
set of positive measure. In fact, Bownik proved in [7] that the condition that m is not identically
∞ a.e. implies

⋂∞
j=1 Dj(V0) = {0} in the more general setting where Djf (x) = f (Ajx) for a

sequence {Aj } of invertible n × n real matrices that satisfy ‖Aj‖ → 0 as j → ∞. For a history
of the intersection problem in L2(Rd), see [6].

This question about subspaces of L2(Rd) obviously generalizes to a collection {Vj } of sub-
spaces of a Hilbert space that satisfy all the conditions for a GMRA except the trivial intersection
condition. Below, we apply the results from Section 2 to show that this intersection is {0} if cer-
tain extra assumptions hold. In doing so, we extend some of the results mentioned in the previous
paragraph.

Let Γ , α, π , and δ be as in the previous sections. We recall some implications of Stone’s The-
orem, whereby certain GMRAs give rise to an associated filter. Let {Vj } be a GMRA in a Hilbert
space H, relative to the representation π and the operator δ. Then, according to Stone’s Theorem
on unitary representations of abelian groups, there exists a finite, Borel measure μ (unique up to
equivalence of measures) on Γ̂ , unique (up to sets of μ measure 0) Borel subsets σ1 ⊇ σ2 ⊇ · · ·
of Γ̂ , and a (not necessarily unique) unitary operator J :V0 →⊕

i L
2(σi,μ) satisfying[

J
(
πγ (f )

)]
(ω) = ω(γ )

[
J (f )

]
(ω)

for all γ ∈ Γ, all f ∈ V0, and μ almost all ω ∈ Γ̂ . In this paper, we assume the measure μ is
absolutely continuous with respect to Haar measure, in which case we may assume that μ is the
restriction of Haar measure to the subset σ1.

Write Ci for the element of the direct sum space
⊕

j L2(σj ,μ) whose ith coordinate is χσi

and whose other coordinates are 0. Write
⊕

j hi,j for the element J (δ−1(J−1(Ci))). The fol-
lowing theorem displays a connection between GMRA structures and filters and will allow us to
apply Proposition 3 and Theorem 4.
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Theorem 10. Let the functions {hi,j } be as in the preceding paragraph. Then the matrix H =
[hi,j ] is a filter relative to m and α∗. Moreover, the operator J ◦ δ−1 ◦ J−1 on

⊕
i L

2(σi,μ) is
the corresponding Ruelle operator SH :[

J ◦ δ−1 ◦ J−1(f )
]
(ω) = Ht(ω)f

(
α∗(ω)

)
.

Proof. By definition we have

μ(σi) = ‖Ci‖2

= ∥∥J (δ−1(J−1(Ci)
))∥∥2

=
∑
j

∫
Γ̂

∣∣hi,j (ω)
∣∣2 dω,

which implies that
∑

j |hi,j (ω)|2 is finite for almost all ω. Write

Fi,i′(ω) =
∑

α∗(ζ )=1

∑
j

hi,j (ωζ )hi′,j (ωζ ),

and note, by the Cauchy–Schwarz inequality, that Fi,i′ ∈ L1(μ), and that the Fourier coefficient
cγ (Fi,i′) = 0 unless γ belongs to the range of α. We have that

cα(γ )(Fi,i′) =
∫
Γ̂

Fi,i′(ω)ω
(−α(γ )

)
dμ(ω)

=
∑
ζ

∫
Γ̂

∑
j

hi,j (ωζ )hi′,j (ωζ )ω
(−α(γ )

)
dω

= N
∑
j

∫
Γ̂

hi,j (ω)hi′,j (ω)ω
(−α(γ )

)
dω

= N
〈
J
(
δ−1(J−1(Ci)

)) ∣∣ J (πα(γ )

(
δ−1(J−1(Ci′)

)))〉
= N

〈
J−1(Ci)

∣∣ πγ

(
J−1(Ci′)

)〉
= N〈Ci | γCi′ 〉
= Nδi,i′ 〈Ci | γCi′ 〉
= Nδi,i′

∫
Γ̂

χσi
(ω)ω(−γ )dω

= Nδi,i′
∫
Γ̂

χσi

(
α∗(ω)

)
α∗(ω)(−γ )dω,

showing that the two L1 functions Fi,i′(ω) and Nδi,i′χσi
(α∗(ω)) have the same Fourier co-

efficients, and hence are equal almost everywhere. This verifies Eq. (1). It follows from the
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filter equation that hi,j is supported on α∗−1(σi). That is, hi,j (ω) = 0 unless both ω ∈ σj and
α∗(ω) ∈ σi.

Next, for any γ, we have[
J
(
δ−1(J−1(γCi)

))]
(ω) = [J (δ−1(πγ

(
J−1(Ci)

)))]
(ω)

= [J (πα(γ )

(
δ−1(J−1(Ci)

)))]
(ω)

= ω
(
α(γ )

)⊕
j

hi,j (ω)

= ω
(
α(γ )

)
χσi

(
α∗(ω)

)⊕
j

hi,j (ω)

= Ht(ω)[γCi]
(
α∗(ω)

)
.

Then, by the Stone–Weierstrass Theorem, we must have[
J
(
δ−1(J−1(f Ci)

))]
(ω) = Ht(ω)[f Ci]

(
α∗(ω)

)
for every continuous function f on Γ̂ . Then, by standard integration methods, this equality holds
for all L2 functions f. Finally, if F =⊕i fi, then

[
J
(
δ−1(J−1(F )

))]
(ω) =

[
J

(
δ−1
(

J−1
(∑

i

fiCi

)))]
(ω)

=
∑

i

[
J
(
δ−1(J−1(fiCi)

))]
(ω)

=
∑

i

H t (ω)fi

(
α∗(ω)

)
Ci

(
α∗(ω)

)
= Ht(ω)F

(
α∗(ω)

)
= [SH (F )

]
(ω),

proving the second assertion. �
Remark 11. The preceding proof works in a more general setting. That is, we do not use all of
the GMRA structure, particularly the property that

⋂
Vj = {0}. In particular,

⋂
Vj = {0} if and

only if SH = J ◦ δ−1 ◦ J−1 is a pure isometry.

We introduce two more groups. Let D be the direct limit group determined by Γ and the
monomorphism α of Γ into itself. (See for example [13].) For clarity, we make this construction
explicit as follows.

Let Γ̃ be the set of all pairs (γ, j) for γ ∈ Γ and j a nonnegative integer. Define an equiva-
lence relation on Γ̃ by (γ, k) ≡ (γ ′, k′) if and only if αk′

(γ ) = αk(γ ′), and let D be the set of
equivalence classes [γ, k] of this relation. Define addition on D by

[γ1, k1] + [γ2, k2] = [αk2(γ1) + αk1(γ2), k1 + k2
]
.

One verifies directly that this addition is well defined, and that D is an abelian group.
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Next, define a map α̃ on D by α̃([γ, k]) = [α(γ ), k]. Again, one verifies directly that α̃ is
well defined and that it is an isomorphism of D onto itself. Indeed, the inverse α̃−1 is given by
α̃−1([γ, k]) = [γ, k + 1].

Define G to be the semidirect product D � Z, where the integer j acts on the element d by
j · d = α̃j (d). Explicitly, the multiplication in G is given by

(d1, j1) × (d2, j2) = (d1 + α̃j1(d2), j1 + j2
)
.

As before, π is a unitary representation of Γ, acting in a Hilbert space H, and δ a unitary
operator on H for which

δ−1πγ δ = πα(γ )

for all γ ∈ Γ. Define a representation π̃ on G by

π̃(d,j) = π̃([γ,k],j) = δkπγ δ−k−j .

One verifies directly that this is a representation of G. Note also that π̃α̃(d) = δ−1π̃dδ and π̃(d,j) =
π̃dδ−j .

Finally, for |λ| = 1, define the (irreducible) unitary representation P λ of G acting in the
Hilbert space l2(D) by [

P λ
(d,j)(f )

]
(d ′) = λjf

(̃
α−j (d ′ − d)

)
.

Remark 12. The representation P λ is equivalent to the induced representation IndG
Z
χλ, where

χλ is the character of the subgroup Z determined by λ.

Theorem 13. Suppose {Vj } is a collection of closed subspaces of H that satisfy all the conditions
for a GMRA, relative to π and δ, except possibly the condition that

⋂
Vj = {0}. Assume that the

measure μ associated to the representation π restricted to V0 is Haar measure, and that the
multiplicity function m is finite on a set of positive measure. Then the following conditions are
equivalent:

(1)
⋂

Vj �= {0}.
(2) δ has an eigenvector.
(3) The representation π̃ of G contains a subrepresentation equivalent to the representation P λ

for some |λ| = 1.

Proof. We define the functions {hi,j } as in Theorem 10 and reiterate that the matrix-valued func-
tion H is a filter relative to the space V0 and that the operator J ◦δ−1 ◦J−1 is the Ruelle operator.
Then SH is a composition of isometries, and thus clearly an isometry from

⊕
j L2(σj ,μ) into

itself.
Assume (1), and thus that SH is not pure. From Theorem 4, we know that SH has a unit

eigenvector f : SH (f ) = λf, and |λ| = 1. (We are using here the hypothesis that m(ω) < ∞ on
a set of positive measure.) For such an eigenfunction f, v = J−1(f ) is an eigenvector for δ−1.

This proves (1) implies (2).



2776 L.W. Baggett et al. / Journal of Functional Analysis 257 (2009) 2760–2779
Assume (2), and let v be a unit eigenvector for δ with eigenvalue λ. Because π is equivalent
to a subrepresentation of some multiple of the regular representation of Γ, we must have, from
the Riemann–Lebesgue Lemma, that the function 〈πγ (w) | w〉 vanishes at infinity on Γ for every
w ∈ H. But, for each γ, we have

∣∣〈παj (γ )(v)
∣∣ v〉∣∣= ∣∣〈δ−jπγ δj (v)

∣∣ v〉∣∣
= ∣∣〈πγ (v)

∣∣ v〉∣∣,
implying then that 〈πγ (v) | v〉 = 0 for all γ �= 0, or equivalently that 〈πγ (v) | πγ ′(v)〉 = 0 unless
γ = γ ′. But now, for d = [γ, k] ∈ D, we have

〈
π̃d (v)

∣∣ v〉= 〈π̃[γ,k](v)
∣∣ v〉

= 〈δkπγ δ−k(v)
∣∣ v〉

= 〈πγ (v)
∣∣ v〉

= 0

unless γ = 0. It follows then that the vectors {π̃d (v)} form an orthonormal set. The span X of
these vectors is obviously an invariant subspace for the representation π̃ of G. Moreover, we
claim that the restriction of π̃ to X is equivalent to the representation P λ. Thus, let U be the
unitary operator from X onto l2(D) that sends the basis vector π̃d (v) to the point mass basis
vector εd in l2(D). We have

U
(
π̃(d,j)

(
π̃d ′(v)

))= U
(
π̃dδ−j π̃d ′(v)

)
= U

(
π̃d π̃α̃j (d ′)δ

−j (v)
)

= λ−jU
(
π̃d+α̃j (d ′)(v)

)
= λ−j εd+α̃j (d ′)

= P λ
(d,j)(εd ′)

= P λ
(d,j)

(
U
(
π̃d ′(v)

))
,

showing the equivalence of the restriction of π̃ to the subspace X and the representation P λ.

This proves (2) implies (3).
Assume (3). Because the operator π̃(0,1) is δ−1, it follows that there is a nonzero vector v ∈ H

for which δ−1(v) = π̃(0,1)(v) = λv. (Just note that P λ
(0,1) has an eigenvector with eigenvalue λ.)

This shows (3) implies (2).
Finally, assume (2), and let v be an eigenvector for δ with eigenvalue λ. Write Wj for the

orthogonal complement of Vj in Vj+1. Then

H =
∞⊕

Wj ⊕ R∞,
j=−∞
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where R∞ =⋂Vj , so we may write

v =
∞∑

j=−∞
vj + v∞,

where vj is the projection of v onto the subspace Wj, and v∞ is the projection of v onto the
subspace R∞. Applying the operator δ gives∑

j

vj + v∞ = v = λ
∑
j

δ(vj ) + λδ(v∞),

implying that vj+1 = λδ(vj ), whence ‖vj+1‖ = ‖vj‖ for all j. Therefore vj = 0 for all j, and
hence v = v∞. So, R∞ �= {0}, and (2) implies (1). (This part of the proof uses neither the hy-
pothesis on m nor the one on π.) This completes the proof of the theorem. �
Remark 14. We note that the proofs of Theorems 4 and 13 imply that δ has an eigenvector when-
ever

⋂
Vj is nontrivial but finite-dimensional. Therefore, if δ is known to have no eigenvectors,⋂

Vj must be infinite-dimensional whenever it is nontrivial.

Example 15. Let H = L2(R), let Γ = Z and π be the representation of Γ determined by trans-
lation. Let α(k) = 2k, and define δ on H by [δ(f )](x) = √

2f (2x). Then δ−1πkδ = π2k. Set Vj

equal to the subspace of H comprising those functions f whose Fourier transform is supported
in the interval (−∞,2j ). Then the Vj ’s satisfy all the conditions for a GMRA relative to π and
δ except the trivial intersection condition. Indeed, the intersection is nontrivial, because

⋂
Vj

is the subspace of functions whose Fourier transform is supported in the interval (−∞,0]. The
subspace V0 comprises the functions whose transform is supported in the interval (−∞,1), and
it follows that the multiplicity function associated to the restriction of π to this subspace is infi-
nite everywhere. Hence, since δ has no eigenvector, we see that we cannot drop the hypothesis
that m < ∞ on a set of positive measure from the theorem above.

Example 16. Now let Γ = Z
2, let α(n, k) = (2n,2k), let H = L2(R2), let π be the rep-

resentation of Γ on H determined by translation, and let [δ(f )](x, y) = 2f (2x,2y). Then,
δ−1πγ δ = πα(γ ). Let Vj be the subspace of H comprising the functions whose Fourier transform
is supported in the rectangle (−∞,2j )× (−2j ,2j ). Then, the multiplicity function associated to
the restriction of π to V0 is infinite everywhere, but this time

⋂
Vj = {0}. Indeed, if f ∈⋂Vj ,

then the support of the Fourier transform of f is supported on the negative x-axis, and such a
function is the 0 vector in L2(R2). Hence, the finiteness assumption of Theorem 13 on m is not
necessary for the intersection to be trivial.

The following example shows that for a Hilbert space H �= L2(Rd), a collection of subspaces
{Vj } can satisfy all of the properties of a GMRA except the trivial intersection property, even
though the multiplicity function is finite almost everywhere. As Theorem 13 shows, this is made
possible by the presence of an eigenvector for the dilation δ. The implication (3) implies (2) in
Theorem 13 suggests a method of construction of such examples.

Example 17. Let H = l2(D), where D is the group of dyadic rationals. The group Γ = Z acts
on this space by πγ (f )(x) = f (x − γ ), and if we define α(γ ) = 2γ and δf (x) = f (2x), we
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see that δ−1πγ δ = πα(γ ). Note that f = χ0 is a fixed vector for this dilation. Now take V0 to
be the subspace l2(Z), and Vj = δjV0. Since π is the regular representation of Γ on V0, the
multiplicity function m is identically 1. We see that the fixed vector χ0 is a nonzero element of
the intersection of the Vj .

Finally, to clarify how Theorem 13 fits in with previous results about the intersection problem,
let H, π, and δ be as in the beginning of this section. If {ψi} is a set of vectors in H for which the
collection {δj (πγ (ψi))} forms a frame for H, then δ can have no eigenvector. Indeed, if v were
an eigenvector for δ, then the numbers |〈v | δj (πγ (ψi))〉| are constant independent of j. Hence,
they must all be 0, contradicting the frame assumption. Therefore, in the original context of the
trivial intersection problem, i.e., where the subspaces Vj = span{δk(πγ (ψi)): k < j, γ, i} are
constructed from a Parseval wavelet {ψi}, there is no eigenvector for δ. Hence, if the intersection
is nontrivial, then it must be infinite-dimensional, and the multiplicity function m is infinite
almost everywhere. Theorem 13 therefore extends Theorem 6.1 of [9] from the classical case of
H = L2(Rd) to an abstract Hilbert space.

In the case when H = L2(Rd), the group Γ = Z
d acts by translation, and δ(f ) = δA(f ) =

|detA|1/2f (A·) for an expansive integer matrix A, we need not require the subspaces {Vj } to be
constructed from a Parseval wavelet, as in the previous paragraph. For any bounded neighbor-
hood E ⊆ R

d of 0, there exists a positive integer n such that E ⊂ AnE. Since∫
E

∣∣f (x)
∣∣2 dx =

∫
AkE

∣∣f (x)
∣∣2 dx

for any f that satisfies λf (x) = |detA|1/2f (Ax), we see that δA can have no eigenvector, and, by
Theorem 13, the assumption that m is not identically ∞ a.e. implies the trivial intersection prop-
erty. Thus, Theorem 13 provides an alternative proof for the classical scenario of Theorem 1.1
of [7].
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