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Abstract

Our setup is a classical stochastic averaging one studied by Has minskii, which is a two-dimensional
SDE (on a cylinder) consisting of a fast angular drift and a slow axial diffusion. We seek to understand the
asymptotics of the flow generated by this SDE. To do so, we fix » initial points on the cylinder and consider
the axial components of the trajectories evolving from these points. We conclude a propagation-of-chaos.
There are two components of the limiting n-point motion: a common Brownian motion, and » independent
Brownian motions, one for each initial point.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of this paper is to understand some of the fine structure of stochastic averaging. We
will focus on a particularly simple situation. Let @ € C°°(R) be such that @ > 0 at all points
of R and such that for some w_ and w4 in (0, 00), w— < w(x) < w4 for all x € R (think of
w(x) = arctan(x) + ). Secondly, fix ¢ in

Cc®SHE g e C¥MR) : p(0) = p(0 + 1) forall € R}
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Suppose that ({2, .%,P) is a probability triple on which a standard Brownian motion W is
defined. Fix 6, and x, in R. For each ¢ € (0, 1), consider the R2-valued SDE

1

d6F = o (X5)dr
&

dX¢ = o (65)dW, M

(987 X(e)) = (0o, Xo)

It is well known that X¢ converges in distribution as & N\ 0. Define

| 172
s / o2@)det
0=0

and for each f € C2(R), define

1.,
$1f=§azf.

Theorem 1.1 (Has minskii [7]). We have that limg\ o X® = X (in law; i.e., in Z(C([0, 00);
R))) where X is Markov with generator £1 and initial distribution 8, (in other words,
X = x, + 0 W, where W is a Brownian motion).

Our goal is to understand this result from a perspective of stochastic flows. Define vector fields
Vo and V; on R? as

0 0
(Vof)(G,x)=w(x)£(9,X) and (Vlf)(G,X)=U(9)£(0,X)

forall f € C'(R?)and (0, x) € R%. Foreach e € (0, 1), let {¢¢; t > 0} be the Diff(R?)-valued!
stochastic process such that

1
d¢f = ;Vo(d)f)df +Vi(@)odW; t>0
¢y =1id

where id is the identity map (we have used Stratonovich integration here out of respect for the
established notation for the theory of stochastic flows on manifolds [5]; it is easy to see that in
this case Stratonovich and Ito integrals coincide since the coefficient in V| depends only on the

angle). Define m,(p) &\ for all p = (0, x) € R2, and define L défng o¢f foralle € (0,1)

and ¢ > 0. Then the averaging result of Theorem 1.1 is that, defining p, d:ef(é?o, X,), the law of
{®F(po); t = 0} converges, as ¢ N\ 0, to an R-valued Markov process with generator .7 and
(naturally) initial distribution 8z, (p,)-

The more general question that we hope to investigate is: what is the limiting distribution, as
&\ 0, of {®; t > 0}? Namely, for each ¢ € (0, 1), {®; ¢ > 0} is a stochastic process in

(S xR E {p € CPR x R) : 90, x) = 96 + 1, x) forall (6, x) € R x R}.

! For any C°° manifold M, Diff(M) is the group of C*° diffeomorphisms of M.
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Fig. 1. Graph of J.

Does it converge as ¢ Y\, 0? Since we can think of &° as a random map from R x R into
C([0, 00); R) (i.e., map an initial point into an axial trajectory), we should naturally look at
the effect of this map on a finite collection of points in R x R (i.e., a finite-dimensional
approximation). Our main result is the following. For p and p’ in R?, we say that p ~ p’ if
p — p' € Z x {0}. Define also

Edzef/l o (0)d6.
6=0
We now need a escape from resonance condition. For A € R, define
T e /A eSde = 1 /Oo Ldg. )
c=—00 3 ¢=0 a3 - 5)2/3

From (16) below, we have that 7, € L' (R). Next define

. 172

1 d:‘*{f (d(l?))zdz‘}} 3)

=0
and
2 1/3
K2(x) d:ef( w();)) x €R. 4)
3’/{1

Also, define

def 3%k % — A2
T00e /A GRL{ e AZ)Z}JO(A)dA

for all > 0. See also [4]. It is easy to see that lim,\ o J (%) < 0. Numerical integration shows
that lim,, 7o J () > 0 and a plot of 7 is given in Fig. 1. Numerical integration also shows that
J(G¢) > 0if »x > %, ~ 0.13064. Our main result is then the following. Fix K CC R such that
infrex J (k3(x)) > 0.
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Theorem 1.2. Fix {p1, p2... pp} C R X R such that p; % p; if i # j and define

g def

g =inf{t > 0: &7 (p;) € K for somei € {1,2...n}}

(in other words, Ty, is the first time that one of the 9°(p;)’s leaves K ). Then
{(Qme (p1), 55,“8 (p2) .. zme (pn)); t = 0}

converges in law (i.e., in the topology of Z(C([0, 00]); R")) as e \y O to {(X}MK X?MK ..
X?Afl(); t > 0}, where

X =m(p) +TV, + V62 —GW! Q)
with V and the W'’s being independent standard Wiener processes and where
tx Linf(t > 0: X! ¢ K for somei € {1,2...n}}.

By Jensen’s inequality, 6% > &2. The law of {(X!, X,2 ... X!); t = 0} is that of a d-dimensional
Markov process with generator

@ﬁﬁ@fﬁhZEZ (m+—2§:

1<;<d 1<i,j<d
i#]

o 8p, ») (6)

forall p = (p1,p2...pa) € R% and all f € C?(RY). We note that thus the limit does
not correspond to the generator of an evolution in Diff>°(R) (in contrast to the case of [2]).
Namely, for distinct p; and p> in R x R, if X! and X2 are given as in (5), then th — X,2 =
m(p1)—m2(p2)+V 62 — 52{Wl] —le}; then X! — X2 will hit zero at some (random) time ¢*. But
this is not possible if X ,1* = ¢(m2(z1)) and th* = ¢(m2(z2)) for some (random) diffeomorphism
@. In fact, Theorem 1.2 tells us that the limit of ¢¢ should in some sense have an uncountable
amount of randomness. Namely, fix a standard Brownian motion V and an uncountable collection
(WP : p € R?\ ~} of independent standard Brownian motions which are also independent of V.

Then define &;(p) dgnz(p) +aV, +{6% — EZ}WZp for all p € p (where, as usual, p € R?\ ~
is an equivalence class). Then in some sense ¢¢ converges to ®. We will not make this precise
in this paper. We point out that a rigorous proof of this would involve a number of topological
complications. For each ¢ > 0, &; is a map from R?\ ~ to R>; & should take values in the space
of trajectories whose values are such maps.

The characterization of stochastic flows as diffusions in the diffeomorphism group is due to
Baxendale in [1]. In our case that theory takes on the following guise. Define a : R? x R? — R
as

2 . /
def if p~
“@’)i{4 itrt o

Then the generator of (6) can be written as

dof 82f _ 82f -

% i»Pi) 5 i Pj

% ()& 21<iija(p p)apiz(p)JrlS;Sda(p P g P
si< i

= (p1,p2...pn) € R
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We note that a is discontinuous (at the diagonal); thus the reproducing kernel Hilbert space
associated with a is not separable, so we cannot make a decomposition a(x, y) = Z?’;l ej(x)
e;(y) for some countable collection {e;; j € N} of functions. This means that the limiting
dynamics are not those of a flow of diffeomorphisms. More precisely, let 77 Diff(R) be the
collection of functions from R x R to R of the form f o mp, where f € Diff(R). In the case
of [2], where w was constant, { #;; ¢ > 0}, which is a diffusion in C "O(S1 x R), in fact converged
(weakly, in the topology of probability measures on C([0, 00); C*®(S! x R)) to a diffusion in
(the smaller space) 73 Diff(R). Here {&;; ¢ > 0} does not converge (in fact, it does not converge
in C®(S! x R)).

The origins of 6 and & are natural. Fix {py, p2... ps} C R x R as in the statement of
Theorem 1.2. Forall ¢ > O and ¢ € (0, 1), let ¥, ¢ and Z;’e be the angular and axial components
of ¢f(p); ie., ¢(p) = (9, Z1°) (thus Z1® = &F(py)). Fix also f € CZ(RY). Then for
ee (0,1

. 4 1 3 .
Me def f(Zl £ e Z;,s) _f { Z 2(191 8) f(Zl e ZZ& ) Z;,s)
s=0

1<i<d 2
i,e J.€ azf l,e 2, € i,e
+ Z o (0o () ——(z)1¢, z2¢ ... z1%) Lds (7)
1<i,j<d 321 BZ] ‘
i#]

is a martingale. Recall that the Z"¢’s are the slow variables (the “actions”) while the #:¢’s are
the fast variables (the “angles”). We want to average in order to replace o2(9¢) by 62 and
o (99%)o (97°%) by G2 If Z¢ ~ z; over a “mesoscopic” time scale, then ¢ roughly evolves
like (a speeded up version of) ¢t — 6 + w(z;)t. Since

1 T
Tli/n;o - /szoaz(e + w(x;)s)ds = 62 (8)

a2
we should be able to average the coefficients of the "—z’s. To average the coefficients of the

% f
9225 Zj
roughly evolve like (again, a speeded up version of) ¢ = (0; + w(z;)t,0; + w(z;)1). If w(z;)

and w(z;) are not rationally related, i.e.,

’s, we move to the torus and observe that for i # j, the angular coordinates ("¢, /%)

{(j, k) € Z* : jo(z) + koo (z;) = 0} = {(0, 0)}

then

T
lim l/ o (6 + 0 (2:)8)0 (0 + w(z;)s)ds = 5. 9)
T/o0T Jo—o

At this point, the technical challenge of our work becomes apparent: the problem of

resonances. Resonances are trivial from a probabilistic standpoint, but terrible from a
deterministic standpoint. For each nonzero (j, k) € Z?, define

Rt E(x, y) € R? : ko (x) + o (y) = 0}
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Then each Ry ; is a set of Lebesgue measure zero in the plane (recall that @ > 0 on all of R), so

RY U Rie,1

(k,1)eZ?

(k.)#(0,0)
is also a set of measure zero in the plane. If (97 (z;), @; (z;)) were to have a sufficiently regular
density (as ¢ N\ 0) with respect to two-dimensional Lebesgue measure on the plane, then we
should be able to ignore R (some similar calculations appear in [6]). On the other hand, if there
were no noise, then one would have to show that the process does not “stick” at the Ry ;’s
(i.e., one must preclude “capture into resonance”). Often this is a very complicated calculation
involving problems of “small divisors”.

Our problem is between the two extremes of full noise and no noise. From a probabilistic
perspective the noise is very degenerate. The simplest incarnation of the problem is in the
case of d = 2 (and indeed this case is definitive); we then want to replace functions of
the angle (9%, 9%¢) by effective quantities. It is easy to see that the Lie algebra spanned
by Vo ® Vg and V; ® Vi is at most two-dimensional; thus the four-dimensional diffusion
{(z?tl’g, Ztl’g, 193’8, th’g); t > 0} does not satisfy Hérmander’s requirement, and we cannot
expect to find a density for the slow variables (Ztl’g, Z?’E) by taking marginals of a four-
dimensional density. Moreover, if by luck we could use abstract machinery to show that
(Ztl’g, Z,Z’E) would have a density, it would be e-dependent and we would need to show that
as ¢ \ 0 it would still be regular enough that (Z,l’g, th,e) would be unlikely to be near the
Rk,1’s. Nevertheless, the noise should in some way make things simpler than in the deterministic
case. In fact, the calculations of [9] show that it is in fact unlikely to be captured into resonance
before leaving K; the tangent flow of {¢]; ¢+ > 0} grows in certain directions as ¢ \ 0 (see
also [4] and [3]). Thus, even if z; and z; are close (but do not coincide), ¢ (p1) and ¢} (p2) are
repelled, and in fact Z,l"s and Z,Z’g are repelled, and hence should move away from at least Ry ;.

Our work thus represents to some extent a contribution to the theory of escape from resonance.
In our problem, there is exactly enough noise in the right direction (transversal to the R ; ¢ ’s) that
we can neglect the resonances. Furthermore, this noise does not vanish too quickly as ¢ N\ 0.
The work of [9] will help us to formalize this (see Section 4.3).

Notation 1.3. We will use two cutoff functions. Let ¢y € C*°(R; [0, 1]) have support in [—2, 2]
and be such that x(—1.1] < @o (in other words @ is zero except in a small neighborhood of the

origin). Similarly, let o1 € C*°(R; [0, 1]) be such that O & supp @1 and ¢1 > xRr\[-1,1] (i-€., @1
is 1 except in a small neighborhood of the origin). Define

=2y, def [* r
@y (@)= po(s)ds tdr z € R.
r=0 s=0

Note that there is a K > 0 such that |¢(()72) ()| < Kand |<p(()72) )| = K|z| forall z € R.
For each j € Z, define
def !
oj = / exp[—27ijf]o(0)do
6=0

so that
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o(0) = ojexp[27ijo]
JEZL
for all 6 € R, and this sum converges pointwise.
Throughout, we let K be a generic constant, which may change from incarnation to incarna-
tion, and which depends only on o and w.

2. Nondegeneracy at resonance and proof of main result

Here we organize our calculations and identify the escape from resonance phenomenon which

underlies our averaging. This will rely on several calculations which simplify our interests

Prior to (7), we fixed p;’s and defined Z* and 9/¢’s. Define Z¢ & (z}*, 289,

Also fix i and j in {1,2...n}, which we shall use throughout the rest of the paper The first
observation which we wish to exploit is that it is in a sense sufficient to consider the two-point
motion. Namely, note that our goal is to use approximations like (8) and (9) in (7) to replace
the o (1#/-%)’s with constant coefficients. We should be able to separately do this for each i and j
in the two sums in (7); since each such term involves at most two angles, the two-point motion
should be sufficient. The Z¢’s are slow variables, so they should effectively be held constant
while we carry out the averaging. The details of these arguments will be in the proof below

of Theorem 1.2. Set oe Loie, xe & zie yellyie and ye & zie, et 0, 0¢, x, & xE,
def

Vo = ¥, and yo = Y'S Then (¢, X®) satisfies (1) and (¥¢, Y?) satisfies

dy? = éw(Yﬁ)dt
dYF = o (Y5)dW,
W5, Y5) = (o, yo).

Define C¢ & (X2, 02, ¥¢, y¢) forall & € (0, 1) and ¢ > 0.

Our second srmphﬁcation follows from a Fourier decomposition, which allows us to
efficiently exploit periodicity in the angular variables #° and v¢. Define C*°(T?) as the collection
of ¢ € C®(R?) such that (0 + j, ¥ + k) = @0, ¥) forall (8, ) € R? and (k,[) € Z?. For
@ € C®(T?) and (j, k) € Z?, define

PR / . / V6.9 exp =20 + k)]

then

lim sup |p@,¥)— E @jrexp[2mi(jé + ky)]| = 0.
N—oo 2
6. 9)eR (jkyez?
|jl+lkl=N

Lemma 2.1. Fix f* € C}RY), 0 < 51 < s5...5, < s < ¢, {gu}h_, C Cp(RY), and
(k,1) € Z*>\ {(0, 0)}. Then

t/\r;% _
é}}i{r(l)E H/’ FH(ZE) exp [27mi(jOF + kyrH)] d } ]:[ gn/(fon,)} =

=sATE
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The proof of our main result follows from this.

Proof of Theorem 1.2. According to the standard theory of convergence of Markov processes,
we need to prove three things: tightness, convergence to the limiting martingale characterization,
and uniqueness of the solution of the limiting martingale characterization. Tightness of
{(PF(z1), D°(z2) ... D°(zn)); t = O} follows from tightness of the one-point motions, which
is implied by the convergence result of Theorem 1.1. Uniqueness of the limiting martingale
characterization is standard. To show the desired convergence to the limiting martingale problem,

we argue as follows. Let f*, 5;’s, s, and  be as in Lemma 2.1. Fix also ¢ € C°°(T?) and define

7 de f[o 112 ¢(x, y)dxdy. By approximation by a finite Fourier series, we have that

INTE n
lim E / RO ) — @hdr ¢ [ ew(ZE ) | =0.
N0 | | r=sarg vl "

Since i and j were arbitrarily chosen at the beginning of the section, we have that

tATE ] . n _
lim E / FH @i, 075 — @yar t [ ew(ZE ) | =0
eNo0 r=sAtg "

n'=1

for all i and j. Letting f* be of the form a2f/az$ or 82f/8z,-8Zj and letting ¢ be of the form
O, Y)—> a@)a()or (O, V) — o2(9) as indicated by (7), we have that

Z/\‘L’Ig( 1 . 32 .
limEH/ { > -02(0;’8)—5(2}8,ZE’S...z;’S)
r 1<i<d 9z

Y =SAT 2

. . 92 ) _
+ D o) af ,(Z}’S,Zf’g--.Z;ﬁ)—(zdfof)}dr}
lgii;.éjjgd 4 ZJ
n -
<[] gn/(zin,)] =0.
n'=1

We finally use the fact that (7) is a martingale to see that in fact

IATR

Eli{%E“f(Z,M — [(Zipe) / (Laf)Z )dr}]‘[guzv,)}—o
r=sATg n'=1

which gives us the desired characterization of the limiting law of the Z®’s. [
The task before us is now to prove Lemma 2.1. Fix a nonzero (k, ) € 77 and define

g def g def

FECrof +1y° and a® € ko (XF) + 1o (YF).

We note that I'® evolves according to dIY /dt = s‘laf. Thus we have a separation of scales in
the quantity

F(Z) exp [2mil];
I'* moves much faster than Z¢ (and in particular faster than X* and Y ¢). Consequently, we should
be able to average. To do so, define
def €xp [2i6] — 1

26)= 2mwi
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for all & € R and define

Ué‘ dﬁf f (Zg ( )XRZ\RJk(XSvYS)

t

for all # > 0. We should then have that dUf ~ f*(Z¢) exp [27111”] de.
To start to make this precise, define
1 2 *
Fll,s déf_ Z °f (Ze) (191 8)0’(1915)

2 1< T<d 0z;0z;

FEE Y a]; VALICHD

1<i<d

]edefl

A" = S lka X, o2(07) + 1Y) (Yl))

26d£fkw(x Vo (0F) + la(Y{)o (Yf)

for all ¢+ > O; then
da® = A/ dr + AP9dW, and df*(Z°) = Fdr + FF5dw,.

Applying Ito’s formula to U¢, we then have that on {inf,c[o,1] [a¢| > 0},

t t
Uf - U§ = . f*(Zf) exp [Zniff] dr + / . A (r)P(IE)dr
r= r=

t
+ / £r.0(r) BTE)AW,
r=0
where, for all r > 0,

et {F‘ LTINS FEHAR)? FE**?A%@}

Ele(r)=c¢ a (af)Z (af)3 (af)z

2, ~ 2,
def Fr‘ f*(Zf)Ar’
r6(r) = { @y } .

Note that |F,*°| < Kand |A;®] < Kfori € {1,2},& € (0,1), and t > 0; thus the only source
of the singularity is the a7 in the denominator in U? and I°. Note also that in fact nothing in our
discussion actually precludes starting in R j x.

Noting that the highest power of a7 in the denominator is 3, the following lemma thus is a
natural goal.

Lemma 2.2 (Stochastic Nondegeneracy at Resonance). Fix v € (0, 1/3). Fort > 0,

- IATE
lim E 3 ndr | =0.
) /r:o X{lag|<ev}

It turns out that this is exactly what is needed to prove Lemma 2.1.
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Proof of Lemma 2.1. To rigorously use Ito’s formula, define

- ag
= ( ) UE.
gV

By a careful application of Ito’s formula, we get that

tATR aa
/ ®1 (8 )f (Z%)exp [27il} ] dr = Mr UfMK
f

— €
=SATg

t/\‘[K _ .
+f E1.:() exp 2711]“5 dr—Z/ & o () SIE)dr

:SA'L'K r= S/\TK
ko 3
- / &6 (r) DI )AW,
r=SATg

where

(é‘l,g(n“éf{l— (iﬂf(zg .6 < gy <a—v)é"18(r)

at\ Alfus 1. /as\ (A>*)2ue
gSe(r)def (8_:) r U g4€(r)def (8_:>( 7 )UE

gV g2
awf ., (@ AV G (r f
PANL-F (;)8—2“ &g()d—ewl( )ofas(r)
at\ UfAr®
57e(r)def <—v>—v
& &

Since @1 > xr\[-1,1» | —¢1 < X(~1.1), SO
1616 (M < Kxglag)<ev)-

Next, since 0 & supp ¢, there is a ¢ > 0 such that (—g, ¢) N supp ¢1 = @. Thus

~ &
|Uf| < K—=X{lat|20¢")

a7 |
and
1—v
- & _
12,6 (] < K—= X{jag |06} 63,6 (] < K——X{lag|>0e"}
ay] ay]
B gl=2v _ gl-v
[€4,(r)] <K ] X{lat|> 06"} |5, (r)] < KwX{\ailzgsV},
1—v
_ e _
|66, ()] < K a £|2X{|a £|>0e"}> |67,6(r)] < K PRt
r

Combine things together and use standard calculations to get the desired result. We here use that
1-3v>0. O
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3. Averaging for k +1 # 0

We here prove Lemma 2.2 fork +/ # 0. Forc = (x,0, y, ¥) € R4, define first

ha(©) € (kix(x)0 (0) + Lo(y)o (¥))* = (kix(x))262(0) + (o)) o> (W)?
+2(k(x)) (16 (y))o (0)o (W)

then /1, (C?) = (At1 ’8)2. For A > 0, we define a corrector which will allow us to coarse-grain. Set

o0
H(c) dzef/ e M ha(x, 0 + ()1, y, ¥ + w(y)r)dr
r=0

forallx € (0, ) andc = (x, 0, y, ¥) € R,

Lemma 3.1. We have that H} € C*®(R*). Secondly, sup; (o) A H} || c2gs) < 0c. Thirdly,

H* dH! N
w(x)— =€) + () oy (6) = AH; () — ha(C)

forall » € (0, 1) and ¢ = (x,0,y,¥) € R, and finally there is a K > 0 such that
1
AH(C) > e Kx — Klkw (x) + Lo (y)]

forallh € (0,1)andc = (x,0,y,V¥) € R*,

Proof. The regularity and bound on derivatives are easy; one can differentiate under the integral.
The formula for the derivative is fairly easy to see; see [10].

Fix1 e (0,1)andCc = (x,60,y,V¥) € R*. We can explicitly compute that
A
A—=27i(j + jHox)
A
A —2mi(j + j)w(y)

LH(C) = (kx(x))* ) ooy exp[27i(j + j)6]
J,J'€Z

+ 6 Y ojojexp[2mi(j + j)v]
J,J' €L

+2(ko(0))Ua(y)) Y ojojexp [2mi(j6 + j'¥)]
J,J' €L

A
A =2mi(jo(x) + jo@())

Note that if jo(x)+ j'@(y) = 0 and kw (x) +lw(y) = 0, then® jl = j'k. Let M be the great-
est common factor of |k| and |/| and set k* détk/ M and 1+ & /M. Thus k* and [* are relatively
prime and jI* = j'k*. Hence j = mk* and j' = ml* for some m € Z; for simplicity, we denote
this for future reference as (j, j') € (k*, [*)Z. We hence rewrite )LHcf‘ as

AHMC) = T + (ka)(x)* 1 + (o(1))* I + (ko (x))(d(y) I3

2 Note that since > 0, j, j’, k and [ must all be nonzero.
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where

TEki@)? Y 1o + (o) Y loj1* + 2(kix@)) Uix(y))

JEZL

JEZL
x Z Ok Omi= eXp [2mim (k™0 + ") ] '\
— i A= 2mim(k*w(x) + *o(y))
def Ly A
I = oioiexp|2xi(j + j)O Y
! HZJ e p[ G+ ] A —=27i(J + jHw(x)
J+i'#0
def sl ./ A
L= ojoyexp[2mi(j + jHv —
,-_,-Zez I [ ] A =2mi(j + jo(y)
J+i'#0
def co ./ A
;= Z 00 jr €Xp [2711(]9 +j w)] — "
(o J ) EZA\K* 1)L, h—ami(je ) + e )
L)+ om|=vVi
def L. . A
Iy = Z 00 exp [2711(]9 +J I/f)]

(i ETA\W* I*)Z
ljo )+ o)<k

If j + j' # 0, then |j + j’| > 1. Thus

2

A= 2mi(jo(x) + jo())

2 2
A A
L= D Il —. =Dl | = Bl D] lel] Vi
- w_ : w_ :
JEL JEL JEZL
Next, note that

=<

A
‘k —27i(j + jw(x)
and thus, by Young’s inequality,
I> ko)) Y o+ o)) > ol
JELNK*Z JELNI*Z
and since the period of ¢ is exactly 1, the right-hand side must be positive.
We finally observe that if | jw (x) + j'w(y)| < ~/A and (j, j') € Z*\ (k*, [*)Z, then
(i1 +1J') K o) + Fo()] = |j (o) + Fo () — K (jo(x) + jo ()]
+ |/ Ko () + o () — F(jo(x) + jo ()| — 20k + )V

> |jl* = jK] (@) + o) = 20k + VA = 20- — 2(K*| + 1) VA
Thus if

602

_ 10
A £ )2 10

then (Ij| + [j']) lk*& (x) + I*o(y)| = o_, so either

K () + Fo()] = 0-/2 or ||k o) +Fo()]| = o-/2.
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Hence
Ll <2 ) oyl > o]
=/ Jjez
[ 1k* o () +H* o (y)|Zo— /2
1jlloj|
< 2% (x) + o (y)] oyl . :
j% ! ZZ: |l (x) + o (y)]
Lo () +H* o (y) 20— /2
<—|k*w<x>+l*w(y)| Dol | D lioj]
J' €L JEZL
Note that

lkw(x) + lw(y)|
M

This completes the proof of the bound on )LHaA if (10) holds. The bound on )LHcf‘ is trivial if (10)
does not hold. [

ko (x) + Fo(y)] = < lko(x) +lw(y)l.

We now have

Proof of Lemma 2.2 for k + [ # 0. Set A, & ¢v and define
Uadefz 2v ( 2)( >+5H)LF(C£)§0 <a£>

Then

£

INTR as 5 IATE
/ Ae H“(Cs)w ( )dr = UfM Us — E / &je(r)dr
r=0 j=1 r=0

8 InTY
- f e ()W,
j=6 r=0
where

gls(r)def v ( 2) (8 >A28

e aZH‘i\s 82 )Lg e
5)25(")de{ (G + - (C )} (j—)

é%smdefgz H’ (C)¢o ( )A“

&e(r)def 5 H“(Cs)w (a )(A“>2

dH, dH,* L
Eo(r)Zelm { 5y (CHo @) + = (Cf)a(lﬁf)}soo (:) AL
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(-2 (&
Eoe () E 26" (j) A

v

e 3Hak£ 8H,§"5 €
CROEE: { (G (6) + (Cf)o(dff)} %0 (a—>
X ay e

def |_ . [at
. (r) = &' 7 Hjy* (CHgo <s_> AVE.

We then have that |& . (r)| < Ke” for j € {1, 6} and |} ()| < Kel=2 /1, = Kel=3" for all
other j. We also note that

aé 1 aé
Ae _r _ _r
reH (G (s”) > {K K‘g"}gﬁ0 (e”)'
The claimed result follows.> [

4. Averagingfork +1 =10

The next task is to average the 1:1 resonance. This is more challenging as it requires a detailed

analysis near the diagonal of (S! x R) x (S! x R). Define b? ey ¢ —Y/. The central component
of the proof of Lemma 2.2 for k = —/ is then

Lemma 4.1. For each o > 0,

IATR bt
lim E _ —L)dr|=0.
El\fj(l) /r‘=0 Xl—e.0l (8,,) r

We will prove this in several stages—the proof will culminate at the end of Section 4.3. First,
however, we return to our main goal.

Proof of Lemma 2.2 for k = —/. Since @ > 0 and w is smooth and invertible and K is compact,
there is a Kx > 0 such that [0 ' (a) — o' (b)] < Kgla — b| for all ¢ and b in w(K). If
klo(X8) —w(YP)| <e”, X € Kand Y} € K, then

X5~ ¥e) = (afl(w(xf)) -~ arl(wmf))] < Kklo(X}) — o)) < K,C—KE”-

Thus

tATE af 4 IATE bi 4
_ — | dr < _ — | dr.
/r:o X[-1,11 Y _/r:o XI—Kk /k,Kg /K] Y

The claim then follows from Lemma 4.1. [

To proceed, we further decompose x[—,,¢] (%). For ¢ € R, define the “sawtooth” map

s(9) &y — {19 + %J .

3 We use here the fact that v < 1/3.
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Note that s is smooth on R \ (Z + %), i.e., on the set s’l(—%, %), and that for ¥ € s’l(—%, %),

s’ () = 1. Also note that finally, 0 (9) — o () = o (0) — 0 (0 + s(yy — 0)) for all 9 and v in R.
We next define

def 2

€ —S_Ys ’
A EL0F —yH) + X - ¥ and A E e - ‘”fH( rsl/sr)'

Fix n € (0, 1). We then write that

Xl—o.0l (—) Zmr)

where

& bf, As(")
Iy (r) —X [—o,0] <—> X[1,00) ( o )

gy
def be Ae(r) Ac(r)
I5(r) = Xi—o,0] ( ) X[0,1) ( )X[O,l) (W) (11)

def b Ae(r) Ae(r)
I3(r) = X(—0.0 x| =5 ) xaeo \ |-

Each of these terms will require some work. We will consider 7 f in Section 4.1, 125 in Section 4.2,
and I; in Section 4.3.

4.1. Averaging away from the diagonal

Let’s first consider If. Forc = (x,0,y,v¢) € R*, define

hp©) L0 ©) — o ()2 = 02(0) + o 2(W) — 20 (O)o (V)
then

t
(b%), = / hip(CE)dr.
r=0
For A € (0,1)and ¢ = (x, 0, y, ¥) € R*, define

HM o) ¥ / . e ip(0 + w ()1, ¥ + o (y)r)dr.

Lemma 4.2. We have that Hlf‘ € C®(RY). Secondly, SUpP;.¢(0,1) )»||Hé\||c2(R4) < 00. Thirdly,
025 0 4 w) 2 (0) = 21 © = By

forallc = (x,0,y,¢) € R*. Finally, there is a constant K > 0 such that

|

1
ML) = 2 {820 =) + o) — 0P - {f+

forall » € (0,1)and c = (x,0, y, ¥) € R*.
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Proof. Again, the regularity and bound on derivatives are easy; one can differentiate under the
integral and the formula for the derivative is fairly easy to see.

Fix A € (0, 1) and ¢ = (x, 0, y, ¥) € R* We explicitly compute that

A
A—=27i(j + jHwx)
A
A= 2mi(j + j)o(y)
A
A —=2mi(jo(x) + j'o(y)

MHL(C) = Y ojojexp[2mi(j + j))6]
J,J'€Z

T Z ojoyexp[2mi(j + jHv]
J.j'€Z

-2 Z 00 exp [2ni(j9+j/1/f)]
J,J €L
=I+L+hL+h

where
€2 Y jo;P? {1 exp[27ij (6 — )] ’ }
- j - - _ . . _
S A=2mij(w(x) —w(y))
def s ./ A
I = oioiyexp|2mi(j + j)HO P
T2 ’{ PP ) G T e
J+i'#0
+ exp [27i(j + j)Hv] & }
A =27i(j + jHoy)
def o y A
L= -2 E 0o exp [2711(/9 +Jj 1//)] — v
,J'-J',/ZZO A —=2mi(jo(x) + j/oy))
j+i’

ljo@+j'o()|<vi

BE-2 Y ojoyexp[2riGie + )]

J.j'er

A
A —=2mi(o(x) + joy)

J+i'#0
ljo)+j oI=vi

We immediately see that

2 2

A
= {3 lojl | — and |B]<2| > oyl | Vi

JEZL - JEZL
Next observe that if j + j’ # 0 and |jw (x) + j'@(y)| < +/A, then

(1l + 1) o) —o@]| = lj@®) — o)+ |j (@) — o)
> [j@(®) — o) + jox) + j o)+ 1 (@x) — o)
+jo@) + o)) -2V
=1j + j1@®) + (X)) = 2V/A > 20_ — 2/,
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soif A < w? /4, then either | j||w(y) — w(x)| > w_/2 or |j||o(y) — w(x)| > w_/2. Thus

1Ll <23 oyl Yoo ol

J€Z ) Jez
lillo()—ox)|>w—/2

Jlojl
2o@) — 0] Y lojl » A | B
b=/ " )je(Z)‘ » [jllo(y) — w(x)]
Jllo(y)—ox)|>w—

IA

IA

4
—lo@ = oMl ) loplt 2 1illol

J' €’ JEL

We use here the fact that since o € C, ZjeZ ljllojl < oo.
We finally bound 7 from below. We first write that

I_=4iloj|2{1—%(exp[hij(@—lﬁ)] - * )}
T A —27ij(w(x) — @ (y))

We will then optimize over two lower bounds. For convenience, set @déf(e — ), Wdéf
2@ (x) — w(y)), and B L 27 (wy — w_).
First note that for each j € Z,

A A

r—2mij(@ix) —o)| \/m

exp [27ij (6 — ¥)]

thus

i e A
1342 loj1? 41—
j=1

/)\-2+j2W2

Since g — q+jq2W2 is increasing on (0, 1), we get that for A € (0, 1)

A 1

> (v 2z
ali-—2  toali o —— =4j/ 4
VA2 + W2 V1+ 2w =0 (1472222

4j2 w
e — d
= U+ 2022 /z=oz ¢

2j2W?
gl +j2u-)2)3/2'
Thus I > 0; W? where

2
def o . 2z
01 = ||a||L2([O,1)) {anlti 1 +Z2J)2} .
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On the other hand, we can explicitly compute that for each j € {1,2...},

2
i . JAW
+ sinQ27j O) ——8v—
CrIO) s aw
Dwxr2 .
. . J°W . JAW
=1—cosrjO)+ cosnjO)——— +sinQr @) ———
GriO) s i) 3w TN O e

W .
— 1 —cos(2j ©) + /\2]—9% (ez’”f@(jW — «/—1,\))

+ j2W?
A
>1—cosnj@) — —I 0
VA2 + jEW?
W
> 1 —cos(2rj @) — ]T
Hence
. w
[>1°(0)—K,—
A
def o0 . 2
where Ky =43 77, jlo;|” and
o def
I°W) = 42 loj1*{1 — cos(2mj )}

j=1
for all 9 € R. We claim that

def g 1)
Q2= JeR $2()

First note that /° is right-continuous. Fix ¢ € R \ Z. Then [s(#)| > 0 and

Py =4 3" loj*{1 - cos@2mjv)}.
e
Since 1 — cos(2wj®) > O for all positive integers j & Z/1, if 1°(0) = 0 then oj = 0 for all
positive j & Z/¥. This violates the assumption that o is exactly 1-periodic; hence 71° > 0 on
R\ Z. Next fix {##,} € R such that lim, ¥, = 0. Fix j, € {1,2...00} such that o, # 0
(which is possible since o has period exactly 1). Then

I°( 1 — cos(2mj?,
lim 2( n) > 4o, P lim COS(ZJT] »)
n—oo 8“(%,) n—00 19,,

1
= — (")
5 Qi)
Collecting our thoughts together, we have that o > 0. Thus

- w
[ > 0:d*(O) — K27.
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Combining together our two bounds, we have that

W

_ A%
[ > max {Qlwz, 02d*(©) — KZT} max {Qlwz, chﬂ(@)} — Ko

v

\

1 5 5 W
= 2 {erW? + 02d’(©)] Koo

Combine our estimates together and use the fact that A < Vaforae 0,1). O

We can now complete this subsection and bound 7} of (11).

Lemma 4.3. We have that

&€

l/\tK
E / I£(rydr | <K {s”—’? + sl—"—5”/2} )
r=0

Proof. Set Ag = 8"/ 2 and define
1 b? 1 b¢
Uf £ 2022 gl 2)< v) +e'TTH}* (C))wo <——§>.
o¢ o¢
Then

tATE . 1be 3. [Tk
/ AgHaS(Cf)q)o( )dr = UfM -U; — E / & e (r)dr
r=0 o¢ j=17/r=0

£

6 IATE
[0 semaw,
=4 r=sATg
where
R 32 )ts 82 )»r 1b8
éﬁsm“gz { (CHo2(6) + (Ce)ozw)} ( —;)
oe
e 1 n—2v . 1bf
Gre(r) L H2 (C5)do (5—) hp(CE)

el | aH. dH)* _(1bf
G { (CHo (6 + (Cf)o(wf)> ¢ (——:) (0(67) — o (¥)))
0 ax ay o€

e o 1b¢
Ea.e(r) E 206" (5 ?) @)~ ()

e dH,* dH,* 1
Fse(r) E el {W(Cf)ow;ﬁ) + 5 (Cimwff)} %0 (Es_V>

—n—v
56 e(r) = ef5

1 bt
H2* (C)éo (5—’> 0 6) — o ().
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We then have that |64, (r)| < Ke"™" and |8 . (r)] < Kel=1=2v /3, = Ke!=7=5v/2 for all other
j. We also note that

_ . X =y
£ "AEH;(c)goo( — )
-n

O+ 100 — 00} e (x _vy> — K& Ky
e Ae

1520 —¥) + o) —o()]? — Ag(r) v
ER ;:x e QDO(xgvy)Xn,oo)( Enr)—Kg/z.

‘We next note that

{s2<9 —¥) + o) — o)

en

v

c(x,0,y,9) eR% x| <L, |yl <L

lim inf
e\0
and 26 — ¥) + |x — y|> > e"} =~ 0.
The claimed result follows.* [
4.2. Intermediate averaging

Our next task in the analysis of the errors of (11) is /5. We start by simplifying the problem.

Lemma 4.4. For ¢ € (0, £), we have that
115 ("] < o (%) @1 (ﬁ%> :

Proof. If A (r) < &7, then [s(67 — )| < /2 If in addition A, (r) > &"/*, then we have that
et <S20F — ) + (%)2 <&+ (%)2

Lete € (0, 1) be such that " < %8”/4 for ¢ € (0, ). Thus

8 S0 = v) X ¥t
13 (r) < X[0,1) (T X[l/ﬁ,oo) 5‘1/:)’—+77/8 .

The claim readily follows. [
We now claim that as long as 2 ‘%‘ < o is uniformly bounded away from zero, then
0¢ — ¢ is quickly varying. Indeed, in this case we have that

1 X& —Y¢
de: —y?f) = - {o(X8) —w(¥)} dr ~ o(X)) {%} dr.

The other fact we have at our disposal is the fact that the support of g (%) is “thin”.

4 We use here the fact that v > nand n+5v/2 <7v/2 < 1.
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To quantify all of this, define

& s
mo [ e ()
r=0 en/?

foralle € (0,1) and ¢ € R.

Lemma 4.5. For each e € (0, 1), H, € C(R) N C®(s~'(—1/2, 1/2)). Secondly,

/ s(¥)
H (0) = He(9) — 9o < )

571/2
Jorall ¥ € R. Finally, sup,¢q, 1 g*ﬂ/2||H8||C(R) < 00.

Proof. We have that

_ U oo —r s(r)
Hg(ﬂ) =¢ [:ﬂ € ¢ <m) dr

for all 9 € R\ Z. This easily implies the stated ODE. Since H, is 1-periodic, a bound on
| H; || c(ry Will follow from a bound on || H||¢((0,17)- For ¢ € [0, 1),

1 00 1
ol e (30 S e (30
H. (%) = —e {/r;ﬁe (p()(gn/z)dr—i—{;e }/rzoe 900(5,;/2 drg.
This gives us the remainder of the claim. [J

We can now finish off our analysis of /5 of (11).

Lemma 4.6. We have that

&

Z‘A‘[K
limE / I (r)dr | < Ke/3.
e\0 r=0
Proof. We first write that

IATE IATR 5(98 . ws) X¢ — ye
£ r r r r
[:0 L(r)dr < ./r:O ©o0 (—gn/2 ) 01 (\/5—81/3%7/8 ) dr.

Set

gdef 2/3—p/8 3 3 13 3 Xf — Yr(8
Ut e sgn(XE — YO He(0F — ¥ «/581/3—+n/8 .

Thus

IATE

K
3,6 (r)dW,

INTR 2 tATE
Ut — U :/ A (r)dr + Z/ . & (r)dr —/
r j:1 r= r
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where
def _1/3-y/8 _ B sO; —¥7) XY
As(r) =& 7T sgn(X7 — YY) {o(X7) — 0 (Y)}eo (—’8,7/2 — ) o1 «/5—8{/3+n 5
8 (1) eV 318 on(XE — Y9 w(X) — (Y He (6 — yE)pr (V20 0
le gn(X, — Y, r r )10y r )91 o1/3+1/8
2/3—n/8 & _ye
def € . X Y;
Ere(r) = = ngn(Xf = YO He (67 — ¥/)én <\/_m> (@) —o )?
def 2/3 n/8 ) & _ ye
830 () E V2 sen(X] = Y He (6 = V) (f W) (@) = o)),

We then compute that
|UE| < Ke2/3=n/8+1/2 _ Kg2/3+3n/8
rl =
|E1e()] < K2 |0 (r)] < Ke21/870/% = K8
|86 (r)| < Kel/3=n/44+n/2 _ K1/3+n/4
We finally observe that

o] @) — () senix —y)
21Trr(1)1nf{ o el < Lol < Land g1 (V25 ) #0

This completes the proof. [

4.3. Averaging near the diagonal

We finally consider If of (11), which measures the amount of time that As (r)is small, i.e., the
amount of time that (X¢,6°) and (Y%, ¢¢) are close (in an appropriate sense). The essence
of our argument is that there are three time scales when (X¢, 6%) and (Y?, ¥°) are close (this
was developed in [9]; see also [4,3]). The axial coordinates X* and Y? vary the most slowly
(the macroscopic scale). The angles ¢ and ¢ vary the most quickly (the microscopic scale).
In between, we have a mesoscopic scale, on which the angle of the vector (713 (X% — 1v?),
s(0f — %)) fluctuates. Note that by uniqueness of solutions to SDE’s,

inf{r >0: A, (r) =0} =

P-as. (if Ac(r) = 0, then (X2,0°) ~ (Y2, ¥®)). Fix a symbol « and define R* & R U {x}; we

r>Vr
give R* the usual topology of one-point compactification [8]. For ¢ € (0, 1) and r > 0, define

r

@ —vp O mvD#0
x if s(6° — &) = 0.

—1/3/ye _ ye
e X Y
¢ def #
Ar=

Note that if s(97 — ¥f) # 0, then

Xe—ve A [
81/3 = T (Af)Z As(r)
1 -
Is@; — )l = \/:\/ Ag(r).

1+ (4)?
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Thus we can make a coordinate change from (X¢, 6%, Y¢, ¥%) to (X¢, 6¢, A°, Ag). Foranyr > 0
such that s(67 — ¥7) # 0, we informally have that

e~ B3B8 — G(Wf))dwr _ 43 X7 = Y ((X5) — w(Y’e))dr
SO —¥7) O =D
~ 7136 09)dW, — e (XE)(4D)2dr.

dA° =

The import of this is that we expect to see fluctuations of AZ on time scales of order £2/3. Since

the fluctuations of ¢ are on the shorter time scale ¢, we should further be able to simplify the
effective dynamics of A°. Recalling (3), we have that

dAS ~ e B dW, — e 720 (XE)(A2)%dr. (12)

We finally note that this SDE implies that A° should reach an invariant measure on a time interval
of order £2/3. This invariant measure can in fact be explicitly described; see (17).

Note that

A 2 e e e e 2 e e e e
dAc(r) = =867 — ¥ {0 (X)) — 0 (D)} dr + S5 (X = Y) (0 6]) — o ())dW,

1

+ 3@ — o) dr = e 2P Ac(r)dr + 7P B (r)dW,
&

for r > O such that [s(67 — ¥?)| # %, where

X&) — w(YE
ey = 2500F ) (“E D) 00 - a2

(13)
X& —Y¢
Be(r) =2 (%) (0 (67) — o (¥y)).
e
Also, |A¢ ()] < KA (r) and | B (r)] < KA (r).
We will proceed in a number of steps. For convenience, set
s det Ae(r)
AL(r) = Tz
Then set
gt | Acr) 1B | 5,
ULe(r) =1=—--5=5 (A (r)) (14)
l,e {Ag(r) ) Ag(}") } @0 e

forall e € (0, 1) and r > 0.

Define £(z) défln(e + 1/z) for all z > 0; then £ is bounded from above for z large and behaves

like z > Inz~! for z small. We also note that we will localize all of our steps by Tk

Our first result is essentially to show that A; doesn’t spend too much time near the origin. We
should almost be able to do this by bounding u1 .. It would be an easy task if the term in braces
in (14) were bounded from below away from zero. In fact, this will only be true once we do a bit
more averaging. We also note that the bound on u  will use the bounds of Sections 4.2 and 4.3
to control some of the errors.
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Lemma 4.7. For each L > 0,

€

IATE tATE
E |:/ ul,g(r)dr:| < Kl(e)E |:/
r=0 r=0

Proof. Fix § > 0 and set

() + 5} dr | +Ke?Pe(e).
T+ 50}

USe ¥ 2B 1n( A, (r) + 8)po(AL(r)).
By Ito’s rule,

IATE IATE
K 5 8,6 8,e K
uf o ()dr = Up%e = Up® = .o (r)dr — {Mynze — M),
r r

=0 =l
where
ar| As(r) 1 BXr) } A
== ——— A
)= {A<r>+a 2 Ao+ )
€ & / B
o) & 2L 0000 + (A + 5O S G A0
r
1B2 - -
325 () + 8)i( AL 0)

and where M is a martingale. By dominated convergence,

IATE IATE
E / ure(r)dr | = limE / ul (r)dr |.
r=0 N0 r=0 ’

Keeping in mind that (x,, 85, Yo, ¥0) € R* is fixed, there is a K > 0 such that
IUSF| < Ke¥e(e) and USE. < Ke?e(e)

t/\s

for all § and ¢ in (0, 1). Then | ln(Ag(r) +68)| < Ke(e) forall e and § in (0, 1) and all r € [0, 7¢ ]
such that ¢0(Ag(r)) or gbo(ﬁ’g(r)) is nonzero. Thus

1&5.6(r)| < Ke@) x1.211 AL

foralleand8in (0, 1) and r € [0, T4 1. If|AL(r)| € [1, 2], then® | XE—Y7| < /2e!/31/8 < eV,
Hence

~, b? Aq(r
x11,21(1 45 (D = Xi—0.01 (;) X[1,00) (8;—54)) < I{(r) + I5(r)

foralle € (0,1) and r € [0, T ]. Combining our calculations, we get the desired result. Note
that we do not need a lower bound on U’: o (]
K

We now want to start replacing the term in braces in (14) by simpler expressions. First, we
replace differences in (13) by (first-order) Taylor approximations; this basically allows us to

5 We use here that 1/34+n/8 > v.
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consider the tangent flow, which was treated in [9]. Define
e _ye

X def 5. <& e ey [ Xr r s nen2e2 (0 e
AZ,s(r) = 26‘)()(r)s(er - wr) <8IT> + (0’(9;, ))°s (er - 1/jr)

& &

- def . X -7,
By (r) =25 (67) <%) s —¥;)

def | Aze(r) 1 égg(r)
u2,s(r) = = - ==
Ag(ry 2 A2(r)

foralle € (0, 1) and r > 0.

] 9o (AL(r))

Lemma 4.8. For each L > 0, we have that

IATE
Iim E / lty,e(r) —uz e (r)|dr| <0.
eNo r

Proof. Note that
|Ae(r) — Aze(r)| < KAY2(r) and  |Be(r) — Bao(r)| < KAY2(r).

Thus

22(r) N A7%(r)

Ae(r) A2

[u1,6(r) —uze(r)| < K{ ]goo(A;(r)) <Ke"® O

We can now sequentially treat the different time scales. We first average the fast variable,
i.e., 0% (the microscopic time scale); this simplifies the ¢ (6°) term in us .. Set
v def . X, —Y?
A3 (r) S 20(XE)s(6F — ¥f) <%> + k3 (0F — yf)

5 def X;—-YE
By o (r) = 26186 — ) (T)

def { AV3,8(V) _ 1332,5(”

e = = = A; .
uze(r) Ay 2 20 }(po( (r)

We will need the following averaging corrector. For A € (0, 1) and (x, 8) € R2, set

H} (x,6) déf[oo e (6(0 + w(x)s))2ds.

s=0

Lemma 4.9. For each A € (0, 1), H!, € C®(S' x R). Secondly, sup; .1y M H., Il c2g2) < 00,
Thirdly,

A

89“' (x,0) = LH} (x,0) — (6(9))*

for all (x, ) € R Finally, there is a constant K > 0 such that

w(x)

AH (x,0) — k12| < Ka

forall (x,0) € R? and ) € (0, 1).
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Proof. The regularity, bounds on derivatives, and PDE follow from direct calculations [10]. To
prove the final bound, define

def

0
20 [ {607 -}
r=0

for all & € R. Then we can integrate by parts to see that
o

AHY (x,0) — K> = A/ eV PO + w(x)r)dr

1
r=0

= 1 P(0) + A2 /oo e ™M BB + w(x)r)dr

r=0

_ —A¢(9)+A/OO

e b (9 + w(x)f) dr.
r=0 A

This implies the stated result after observing that @ is bounded. [

We can now show that u; . and u3 . are close.

}:o.

Lemma 4.10. For each L > 0,

IATE
lim E / {u2,6(r) —uz e(r)}dr
e\ r

=0

Proof. Set A, d=ef81/3. Define

edef (XE—YF 2 edef 1 q;
@=\—"3 ) 0, == =24
€ Ae(r)y Az

def ~
Uf S eH! (X5 00)87(0F — ¥ QLgo(AL(r))
2cne & 5
9 —
= eH (XE,05)° ©r 1p’){l—zf”
e(r) Ag(r)

} @0(A,(r)).

We note that informally

dg: = e BB (r)dw, + 7%/ hp(CoHdr

dQf = ¢2 _Ae(r) :i' 2h(CY) + 4qus(f) +5B2(r) _ 6(];Bgz(r) dr
A2(r) Ad(r) Ad(r)

+8_1/3 _éBs(’”) +45];Bs(") dw,..
AZ(r) Ad(r)
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By Ito’s rule,

&
IATE

IATE
/ {us e (r) —uze(N}dr = Uy, .. = Ug = / &1.e(r)dr
-

=0 r=0
t/\rf( aZH)»e
£ / KL (X2, 09)02(05) &0 (r)dr
:

2 =0 8x2 e
4 l/\f;( 8H)¥s
2/3 K1 & pe &
—¢ XE,0%)0(09)& d
j§=3/r=0 i (Xy, 6,)0(8,)é2,6(r)dr

. 8 IATE
—£'y /0 H} (X5, 0580 (r)dr
j=sr=

tAT[S( 8 ’?\15 & & &
—8/_ a—x(Xr,er)U(Qr)@@Z,s(r)dWr
r=0
2/3 0 i A & pe
—¢ Z/r . HYs (XE, 05)E) . (r)dW,
j=9Jr=

where

R 208 — ¢ 3 "
6.0 E i o) - ) S0 w’){l—sz’ }soo(A;(r))

T Ae(r) A ()

2.6(r) ‘gfsz(iﬁm - ZAZ;(;) } 0o(AL(r))
S EEE I L 9 )
&) &2 z\:m (s(ef — ) {%}) {1 - ZA?;) } 20X
&,smd:e“z(iﬁm

x {_As(” Z\r:r’;b@f) N 4qu8(£>g (t)ngm B 6q§§(3r<)r)}¢o A
e d:efﬂejl% 1-2 Zé’:r) } lincaion L2 + i
a2 TE D —gf(s;pﬁg;ﬂmm» e
R T ) YR
Sioetr) & —Sz(izr)‘/”f Hi- 2%;)} o) o).
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Using Lemma 4.9, we have that | & . (r)| < KA, = Ke!/6 and 81/3|£j,8(r)| <Kel/3/n, = Kel/®
for j € {2,3...10}. We similarly have that |[Uf| < Ke/A, = Ke>/6. O

We now want to use the mesoscopic time scale suggested by (12) and average out A°. This
will take some work as (12) is only an approximate description of the dynamics of A¢. We first
rewrite some things. Define G € C(R* x R) as

20()A + Kk 26232 - RxR
GO x) = T2 Qrae if (A, x) e R x
0 if (A, x) € {x} xR.

Then
uz e (r) = G(AL, X)po(AL(r)). (15)

We want to replace the dependence on A° (the mesoscopic variable) with an effective constant.
We first define an averaging measure. We recall 7, of (2) and k7 of (4). Clearly

1
lim A27.(A) = —; (16)
|A]— 00 3
thus 7, € LI(R). Next define

det frer GOv ) Tola())dr fer 8 (ﬁ x) Jo(M)dr

(AG)(x) = = a7
fAGR To (k2 (x)A)dA fAeR Jo(X)dA
Let’s now construct the corrector needed to replace G by AG.
Lemma 4.11. Thereisa T € C(R* x R) N C2(R x R) such that
K%—BZT(X ) — a( )Kzar(?» )=GMA,x) —(AG)(x) (A, x) e RxR
- — —_— = — X
> a2 ,X) —o(x ) , X , X X , X
lim T(A,x)=0 xeR.
|A]—00
We also have that
or 2 (AG
im 22—, x) = —%
[A|—=00 oA 3 K5 (x)
2
lim —(,x)=0
|A|l~r>noo 922 (%)
for all x € R. Finally,
i+1 i
1+ A — (A, 18
,-,,-2}332}( + 2D a)JaxJ( x)| <00 (18)
i+j<2
reR

xek

foreach K CC R.
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Proof. Define

TG0 2 { ( . ) (Ag)( )}
LX) = ,x ) — X
Ic12/<22(x) & K2 (x) 8
def K2 (X)A 3 o) 3
T, x)= —/ es {/ T, x)e " dv}dg
S v

=—00 =c

for all (1, x) € R x R. Forall x € R, g(-,x) € C(R*) s0 §(x) & sup, g |T (%, x)| is finite.
Hence

= 8X)Jo(—=2)

3 _.3
e T(s,x)e”* dg
=X

forall » € R and x € R, so by (16), we know that 7" is well-defined and also that lim) _, _
T'(A, x) = 0 for each x € R. We also note that

o0 3 o0 3
lim T(A,x) = / e {f T(v,x)e " dv}dg
I v

A—00 ——00 =c

e 3 v 3
/ T(v,x)e™" {/ e dg} dr
V=—00 G=—00

= /00 T, x)J(r)dr =

2.2
——00 KKy (x)

x {/OO g (Lx> To(r)dr — (Ag)(x)/oo jo(r)dr} =0.
r=—00 KZ(x) F=—00

Differentiating the formula for 7", we get that

e¢]

0T 3
S0 1) = —ka(x) exp [k (047 / T(c,x)e S dg
dA c=k2 (1)

2T

T
Sz 0 = 3K23(x),\25()\, x) 4 k3 ()T (k2 (x)A, X)

for all (A, x) € R x R. The second formula is equivalent to the differential equation for 7". We
next compute that

We can rewrite the first formula as
9T T +/<x)»31/3,x
RSN S1C) (s + 2 (02) )2/3 ) e
o 3 =0 o+ (0]
341/3
oo g (SHERIIE o) - Ag))

= — fdg.
3ictia(x) Jo=0 et %

The claimed limit of Az% (%, x) follows, as do the claimed bounds on 9‘*/ T/ arox/ fori > 1.
The bound for i = 0 follows by integrating 3'*/ T'/axdx/. O
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This should help us to average A° out of (15); of course in doing so, we still have the fact that
(13) is only approximate. This will force us to take several extra steps. Set

1
f .
o (r) £ / WY +y(XE = YE)dy
y=0

1
B0 [ a0t vk =¥y,
Define now
o (r)dzef{—a (r)(/ﬁ)zgm X6 + ﬁ (r) <A€ Xs)}(po(ﬁ/(r))
,€ € GNPYY € A2 €

if AZ € R, and set

2 (AG)(XS)

& —0Qe = A‘/g
vy, N —a () A XE) @0 (A, (r))

if AZ = « (this case can also be defined by continuity). The point of v ¢ is that it is approximately
{G — (AG)}¢o(AL), where AG has averaged out the A° term. This allows us to proceed to the
next step, but we use the estimates of Sections 4.2 and 4.3 to bound some of the errors.

Lemma 4.12. For each L > 0,
lim E |:
e\0

Proof. Set

&

IATE
/ vy ¢ (r)dr
r=0

&

INT
}5 KE [/ {If(r)+13g(r)}dri| + Kel/3,
r=0

Uf E BT XDeo(A()).
Then

INTY IATR
/ e (r)dr = - U - Z/ & e (r)dr —/ Eo.e(r)dW,

=0 =
where
E1e(r )def; 2/38 > (A8, X020 g0 (AL(r)
(& a Vi
Gre(r) S et (A X{)o (0)Be (r)po (A ()
538(r)defT(/1f,Xf){¢O(A;(V)) ;54)+ SG0(AL(r) ,7(/2)}
€ 8T . A/ 8
E1.6() S (AL XD Be(r)go( L) v
en
C a . A7 Bé‘
55,60 e P (A, X000 0 () o)
&
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C ar A/ ar & & & A/
oo ) & 1301 S (5 XD (D@0 Q) + 62 (45, XD)o (0o (X))
el BT XDgo(AL ) o)

Here we have defined, by continuity,
ai+ J T
k1) E0
ANi9x/
for all relevant nonnegative integers i and j and all x € R. We easily see that &1 ¢, &3¢, &5.¢

and &g . are all bounded by Ke!/3. As in the proof of Lemma 4.7, both &3,6(r) and &4 ¢ (r) are
bounded by

b; 4,
K203, = Koot () 1100 (%) < KU () + ().

The claimed result easily follows.> [

Next define

ef | 0T 27 -
vz,e(r)gf{—w(xf)(/lﬁ)zﬁ(/l XE) + = ((e 2L g Xﬂ}%mg(r))

A2
if A% € R, and set
2 (AG)( )

00(AL(r))
2 3(xe) PO

16N —a(x D3

if A% = . This is even closer to {G — (AG)}@O(A;); we have replaced a; and S, by @(X?) and
Lemma 4.13. We have that

lim E |:

e\0

5(69).
} _o
Proof. If go(A.(r)) > 0, then

lae (r) — (X)) < KIXE — YF| < Ke'Py/Ac(r) < Ke!PH0/8
1Be(r) — (6(09))*] < Kis(0f — ¥E)| < Ky A (r) < Ke™,

t/\r,g(
f V12 (F) — V20 (F)dr
i

This gives us the desired result. []

We have almost finished. We next replace (¢ (9;3))2 by its average; recall that 6° is the
microscopic (fastest) variable. Define

. , 3T 292 -,
vie(r) & —w(Xf)(Aﬁ)ZBT(A X + % (47 XS)}m(As(r))

= u3,:(r) — (AG)(X9)go(AL(r))

6 Here is where we most need the localization by rl's(, so that we can take advantage of the uniform bounds of (18).
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if A2 € R, and set

2 (AG)(XE)

9o (AL(r))
Ktie (X2)

V3 (1) E i 03
it A2 = .

Lemma 4.14. For each L > 0,

lim E |:
e\

Proof. Set A, dgsl/ 6 and then set

£

f/\‘L’K
/ {v2,6(r) — v3,6(r)}dr

=0

}zo.

32T -

U S HY 0 X)) 5 (AL XDeo(A ).

Then
INTE
/ 0 {v3,6(r) —v2.(r)}dr = U, Uo Z/ j,a(r)dr
=
f & e (r)dW,
j=12

where

. 2T -,
6.0 3 ey, Xf)—K%}W(Af’Xf)%(AE(F))

defSa HK
2 9x2

1
wrel? “—H (6, Xg)
2

&Ere(r) = 6%, X))o 2(96) (A X po(AL(r))

5’3 e(r) =

{ —ate (r) (A8)? W ST x4+ 1 ﬁsow (A, X@)}goo(A;(r))
Eae(r)E SHL 67, XD) ai;‘j S (A8, X9)a 207 po (A (r))
Ese(r) < fH*s(e xa) (Af XS){(ZJO(A/S(V)) ;54)+ Sd( ()=
&g(r)“"’fgaH“‘ 2. X5)o Z(Q)a;a (45, XDpo(A,(r)
£7g(r>def82/ aH“E<9€,X€> Ok °T AL XDB (D)
fgs(rf‘“;w”k’&(eﬂxa (9€> (A X9po(AL(r) ,f/f




R.B. Sowers / Stochastic Processes and their Applications 119 (2009) 3549-3582 3581

(& 84 Vi
Bo.6(r) & S HJ (07, XD) 5 (A5 XDB* (1) (000 (A,r)
C / 83 . A7 Bé‘
S0 & e 0, x0) LT X010 B ) o)
1/3 PEDY
Bine () = H . X)am (A5, X))o (0o (A, () ,7(/2)
defsaHKl € £ A/
Eine(r) & ©. x50 (e)m2 (A2, X0 (AL(r)
2/ 3 ~
B () & - HMG > <A X)B: (No( A, (1))

3

def € L5, ad
A4,6(r) = —H (07, X7) 93 29x

2/3 2 5 B.(r)
def € )»s e ey . / €
bis.e () = Hy 0. X)am (A5 X))o (AL 7

We have that |£] ;| < Ki, = Ke!/. All of the remaining &} .¢’s can be bounded by KelB3 /e =
Kel/6. The claim then follows. O

(A5, XE)o (0590 (AL(r))

We can now pull everything together and rigorously complete the mesoscopic averaging that
we need to do. Recall that the goal of this subsection is finding a bound on I3 of (11). This allows
us to finish the proof of Lemma 4.1.

Lemma 4.15. We have that

IATR
lim E f I5(rdr | =0.
e\ =0

Proof. We first write that

tATR IATR 5
/ I5 (r)dr 5/ @0 (AL (r))dr.

=0

We proceed by writing that
13 ()

(AG)(x) = m

J (k53 (x)).

Since j(/czz(x)) > O for all x € K, we must have that vg d:efinfxelg(AG)(x) > (0. We conse-
quently can write that

vk 9o(AL(r) < (AG)(XE)@o(AL(r) < uze(r) — v3,6(r)
= {u3.6(r) —up e (N} 4 {2,e(r) — w1 6 (r)} +up e (r)
- {U3,s(r) - UZ,S(V)} - {UZ,s(r) - Ul,s(r)} - Ul,s(’")-

We combine our estimates and Lemmas 4.3 and 4.6 together to get that

£

IATE _
limE/ oo(AL(r)dr | =0. O
eNo0 r=0
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We can finally finish our proof of Lemma 4.1.

Proof of Lemma 4.1. Combine Lemmas 4.3, 4.6 and 4.15. O
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