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Abstract

Our setup is a classical stochastic averaging one studied by Has’minskiı̆, which is a two-dimensional
SDE (on a cylinder) consisting of a fast angular drift and a slow axial diffusion. We seek to understand the
asymptotics of the flow generated by this SDE. To do so, we fix n initial points on the cylinder and consider
the axial components of the trajectories evolving from these points. We conclude a propagation-of-chaos.
There are two components of the limiting n-point motion: a common Brownian motion, and n independent
Brownian motions, one for each initial point.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of this paper is to understand some of the fine structure of stochastic averaging. We
will focus on a particularly simple situation. Let ω ∈ C∞(R) be such that ω̇ > 0 at all points
of R and such that for some ω− and ω+ in (0,∞), ω− ≤ ω(x) ≤ ω+ for all x ∈ R (think of
ω(x) = arctan(x)+ π ). Secondly, fix σ in

C∞(S1)
def
=
{
ϕ ∈ C∞(R) : ϕ(θ) = ϕ(θ + 1) for all θ ∈ R

}
.
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Suppose that (Ω ,F ,P) is a probability triple on which a standard Brownian motion W is
defined. Fix θ◦ and x◦ in R. For each ε ∈ (0, 1), consider the R2-valued SDE

dθεt =
1
ε
ω(Xεt )dt

dXεt = σ(θ
ε
t )dWt

(θε0 , Xε0) = (θ◦, x◦)

(1)

It is well known that Xε converges in distribution as ε ↘ 0. Define

σ̂
def
=

{∫ 1

θ=0
σ 2(θ)dθ

}1/2

,

and for each f ∈ C2(R), define

L1 f =
1
2
σ̂ 2 f̈ .

Theorem 1.1 (Has’minskiı̆ [7]). We have that limε↘0 Xε = X (in law; i.e., in P(C([0,∞);
R))) where X is Markov with generator L1 and initial distribution δx◦ (in other words,
X = x◦ + σ̂W , where W is a Brownian motion).

Our goal is to understand this result from a perspective of stochastic flows. Define vector fields
V0 and V1 on R2 as

(V0 f )(θ, x) = ω(x)
∂ f

∂θ
(θ, x) and (V1 f )(θ, x) = σ(θ)

∂ f

∂x
(θ, x)

for all f ∈ C1(R2) and (θ, x) ∈ R2. For each ε ∈ (0, 1), let {φεt ; t ≥ 0} be the Diff(R2)-valued1

stochastic process such that

dφεt =
1
ε

V0(φ
ε
t )dt + V1(φ

ε
t ) ◦ dWt t > 0

φε0 = id

where id is the identity map (we have used Stratonovich integration here out of respect for the
established notation for the theory of stochastic flows on manifolds [5]; it is easy to see that in
this case Stratonovich and Ito integrals coincide since the coefficient in V1 depends only on the

angle). Define π2(p)
def
= x for all p = (θ, x) ∈ R2, and define Φε

t
def
= π2 ◦ φ

ε
t for all ε ∈ (0, 1)

and t ≥ 0. Then the averaging result of Theorem 1.1 is that, defining p◦
def
=(θ◦, x◦), the law of

{Φε
t (p◦); t ≥ 0} converges, as ε ↘ 0, to an R-valued Markov process with generator L1 and

(naturally) initial distribution δπ2(p◦).
The more general question that we hope to investigate is: what is the limiting distribution, as

ε ↘ 0, of {Φε
t ; t ≥ 0}? Namely, for each ε ∈ (0, 1), {Φε

t ; t ≥ 0} is a stochastic process in

C∞(S1
× R) def

=
{
ϕ ∈ C∞(R× R) : ϕ(θ, x) = ϕ(θ + 1, x) for all (θ, x) ∈ R× R

}
.

1 For any C∞ manifold M , Diff(M) is the group of C∞ diffeomorphisms of M .
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Fig. 1. Graph of J .

Does it converge as ε ↘ 0? Since we can think of Φε as a random map from R × R into
C([0,∞);R) (i.e., map an initial point into an axial trajectory), we should naturally look at
the effect of this map on a finite collection of points in R × R (i.e., a finite-dimensional
approximation). Our main result is the following. For p and p′ in R2, we say that p ∼ p′ if
p − p′ ∈ Z× {0}. Define also

σ
def
=

∫ 1

θ=0
σ(θ)dθ.

We now need a escape from resonance condition. For λ ∈ R, define

J◦(λ)
def
= e−λ

3
∫ λ

ς=−∞

eς
3
dς =

1
3

∫
∞

ς=0

e−ς

(λ3 − ς)2/3
dς. (2)

From (16) below, we have that J◦ ∈ L1(R). Next define

κ1
def
=

{∫ 1

ϑ=0
(σ̇ (ϑ))2dϑ

}1/2

(3)

and

κ2(x)
def
=

(
2ω̇(x)

3κ2
1

)1/3

x ∈ R. (4)

Also, define

J (~) def
=

∫
λ∈R

{
3~λ

~ + λ2 +
~ − λ2

(~ + λ2)2

}
J◦(λ)dλ

for all ~ > 0. See also [4]. It is easy to see that lim~↘0 J (~) < 0. Numerical integration shows
that lim~↗∞ J (~) > 0 and a plot of J is given in Fig. 1. Numerical integration also shows that
J (~) > 0 if ~ > ~c ≈ 0.13064. Our main result is then the following. Fix K ⊂⊂ R such that
infx∈K J (κ2

2 (x)) > 0.
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Theorem 1.2. Fix {p1, p2 . . . pn} ⊂ R× R such that pi 6∼ p j if i 6= j and define

τ εK
def
= inf{t > 0 : Φε

t (pi ) 6∈ K for some i ∈ {1, 2 . . . n}}

(in other words, τ εK is the first time that one of the Φε(pi )’s leaves K ). Then

{(Φε
t∧τ εK

(p1),Φε
t∧τ εK

(p2) . . .Φε
t∧τ εK

(pn)); t ≥ 0}

converges in law (i.e., in the topology of P(C([0,∞]);Rn)) as ε ↘ 0 to {(X1
t∧τ̂K

, X2
t∧τ̂K

. . .

Xn
t∧τ̂K

); t ≥ 0}, where

X i
t = π2(pi )+ σVt +

√
σ̂ 2 − σ 2W i

t (5)

with V and the W i ’s being independent standard Wiener processes and where

τ̂K
def
= inf{t > 0 : X i

t 6∈ K for some i ∈ {1, 2 . . . n}}.

By Jensen’s inequality, σ̂ 2
≥ σ 2. The law of {(X1

t , X2
t . . . Xn

t ); t ≥ 0} is that of a d-dimensional
Markov process with generator

(Ld f )( p̄)
def
=

1
2
σ̂ 2

∑
1≤i≤d

∂2 f

∂p2
i

( p̄)+ σ 2
∑

1≤i, j≤d
i 6= j

∂2 f

∂pi∂p j
( p̄) (6)

for all p̄ = (p1, p2 . . . pd) ∈ Rd and all f ∈ C2(Rd). We note that thus the limit does
not correspond to the generator of an evolution in Diff∞(R) (in contrast to the case of [2]).
Namely, for distinct p1 and p2 in R × R, if X1 and X2 are given as in (5), then X1

t − X2
t =

π2(p1)−π2(p2)+
√
σ̂ 2 − σ 2

{W 1
t −W 2

t }; then X1
−X2 will hit zero at some (random) time t∗. But

this is not possible if X1
t∗ = ϕ̃(π2(z1)) and X2

t∗ = ϕ̃(π2(z2)) for some (random) diffeomorphism
ϕ̃. In fact, Theorem 1.2 tells us that the limit of Φε should in some sense have an uncountable
amount of randomness. Namely, fix a standard Brownian motion V and an uncountable collection
{W p
: p ∈ R2

\ ∼} of independent standard Brownian motions which are also independent of V .

Then define Φt (p)
def
= π2(p) + σVt + {σ̂

2
− σ 2
}W p

t for all p ∈ p (where, as usual, p ∈ R2
\ ∼

is an equivalence class). Then in some sense Φε converges to Φ. We will not make this precise
in this paper. We point out that a rigorous proof of this would involve a number of topological
complications. For each t > 0, Φt is a map from R2

\ ∼ to R∞; Φ should take values in the space
of trajectories whose values are such maps.

The characterization of stochastic flows as diffusions in the diffeomorphism group is due to
Baxendale in [1]. In our case that theory takes on the following guise. Define a : R2

× R2
→ R

as

a(p, p′)
def
=

{
σ̂ 2 if p ∼ p′

σ 2 if p 6∼ p′.

Then the generator of (6) can be written as

(Ld f )( p̄)
def
=

1
2

∑
1≤i≤d

a(pi , pi )
∂2 f

∂p2
i

( p̄)+
∑

1≤i, j≤d
i 6= j

a(pi , p j )
∂2 f

∂pi∂p j
( p̄)

p̄ = (p1, p2 . . . pn) ∈ Rd .
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We note that a is discontinuous (at the diagonal); thus the reproducing kernel Hilbert space
associated with a is not separable, so we cannot make a decomposition a(x, y) =

∑
∞

j=1 e j (x)
e j (y) for some countable collection {e j ; j ∈ N} of functions. This means that the limiting
dynamics are not those of a flow of diffeomorphisms. More precisely, let π∗2 Diff(R) be the
collection of functions from R × R to R of the form f ◦ π2, where f ∈ Diff(R). In the case
of [2], where ω was constant, {Φε

t ; t ≥ 0}, which is a diffusion in C∞(S1
×R), in fact converged

(weakly, in the topology of probability measures on C([0,∞);C∞(S1
× R)) to a diffusion in

(the smaller space) π∗2 Diff(R). Here {Φε
t ; t ≥ 0} does not converge (in fact, it does not converge

in C∞(S1
× R)).

The origins of σ̂ and σ are natural. Fix {p1, p2 . . . pd} ⊂ R × R as in the statement of
Theorem 1.2. For all t ≥ 0 and ε ∈ (0, 1), let ϑ i,ε

t and Z i,ε
t be the angular and axial components

of φεt (p); i.e., φεt (p) = (ϑ
i,ε
t , Z i,ε

t ) (thus Z i,ε
t = Φε

t (pi )). Fix also f ∈ C2
b(R

d). Then for
ε ∈ (0, 1)

Mε
t

def
= f (Z1,ε

t , Z2,ε
t . . . Z i,ε

t )−

∫ t

s=0

{ ∑
1≤i≤d

1
2
σ 2(ϑ i,ε

s )
∂2 f

∂z2
i

(Z1,ε
s , Z2,ε

s . . . Z i,ε
s )

+

∑
1≤i, j≤d

i 6= j

σ(ϑ i,ε
s )σ (ϑ

j,ε
s )

∂2 f

∂zi∂z j
(Z1,ε

s , Z2,ε
s . . . Z i,ε

s )

}
ds (7)

is a martingale. Recall that the Z i,ε’s are the slow variables (the “actions”) while the ϑ i,ε’s are
the fast variables (the “angles”). We want to average in order to replace σ 2(ϑ i,ε) by σ̂ 2 and
σ(ϑ i,ε)σ (ϑ j,ε) by σ 2. If Z i,ε

≈ zi over a “mesoscopic” time scale, then ϑ i,ε roughly evolves
like (a speeded up version of) t 7→ θ + ω(zi )t . Since

lim
T↗∞

1
T

∫ T

s=0
σ 2(θ + ω(xi )s)ds = σ̂ 2 (8)

we should be able to average the coefficients of the ∂2 f
∂z2

i
’s. To average the coefficients of the

∂2 f
∂zi z j

’s, we move to the torus and observe that for i 6= j , the angular coordinates (ϑ i,ε, ϑ j,ε)

roughly evolve like (again, a speeded up version of) t 7→ (θi + ω(zi )t, θ j + ω(z j )t). If ω(zi )

and ω(z j ) are not rationally related, i.e.,

{( j, k) ∈ Z2
: jω(zi )+ kω(z j ) = 0} = {(0, 0)}

then

lim
T↗∞

1
T

∫ T

s=0
σ(θi + ω(zi )s)σ (θ j + ω(z j )s)ds = σ 2. (9)

At this point, the technical challenge of our work becomes apparent: the problem of
resonances. Resonances are trivial from a probabilistic standpoint, but terrible from a
deterministic standpoint. For each nonzero ( j, k) ∈ Z2, define

Rk,l
def
={(x, y) ∈ R2

: kω(x)+ lω(y) = 0}.
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Then each Rk,l is a set of Lebesgue measure zero in the plane (recall that ω̇ > 0 on all of R), so

R def
=

⋃
(k,l)∈Z2
(k,l)6=(0,0)

Rk,l

is also a set of measure zero in the plane. If (Φε
t (zi ),Φε

t (z j )) were to have a sufficiently regular
density (as ε ↘ 0) with respect to two-dimensional Lebesgue measure on the plane, then we
should be able to ignore R (some similar calculations appear in [6]). On the other hand, if there
were no noise, then one would have to show that the process does not “stick” at the Rk,l ’s
(i.e., one must preclude “capture into resonance”). Often this is a very complicated calculation
involving problems of “small divisors”.

Our problem is between the two extremes of full noise and no noise. From a probabilistic
perspective the noise is very degenerate. The simplest incarnation of the problem is in the
case of d = 2 (and indeed this case is definitive); we then want to replace functions of
the angle (ϑ1,ε, ϑ2,ε) by effective quantities. It is easy to see that the Lie algebra spanned
by V0 ⊗ V0 and V1 ⊗ V1 is at most two-dimensional; thus the four-dimensional diffusion
{(ϑ

1,ε
t , Z1,ε

t , ϑ
2,ε
t , Z2,ε

t ); t ≥ 0} does not satisfy Hörmander’s requirement, and we cannot
expect to find a density for the slow variables (Z1,ε

t , Z2,ε
t ) by taking marginals of a four-

dimensional density. Moreover, if by luck we could use abstract machinery to show that
(Z1,ε

t , Z2,ε
t ) would have a density, it would be ε-dependent and we would need to show that

as ε ↘ 0 it would still be regular enough that (Z1,ε
t , Z2,ε

t ) would be unlikely to be near the
Rk,l ’s. Nevertheless, the noise should in some way make things simpler than in the deterministic
case. In fact, the calculations of [9] show that it is in fact unlikely to be captured into resonance
before leaving K ; the tangent flow of {φεt ; t ≥ 0} grows in certain directions as ε ↘ 0 (see
also [4] and [3]). Thus, even if z1 and z2 are close (but do not coincide), φεt (p1) and φεt (p2) are
repelled, and in fact Z1,ε

t and Z2,ε
t are repelled, and hence should move away from at least R1,−1.

Our work thus represents to some extent a contribution to the theory of escape from resonance.
In our problem, there is exactly enough noise in the right direction (transversal to the R j,k’s) that
we can neglect the resonances. Furthermore, this noise does not vanish too quickly as ε ↘ 0.
The work of [9] will help us to formalize this (see Section 4.3).

Notation 1.3. We will use two cutoff functions. Let ϕ0 ∈ C∞(R; [0, 1]) have support in [−2, 2]
and be such that χ[−1,1] ≤ ϕ0 (in other words ϕ0 is zero except in a small neighborhood of the
origin). Similarly, let ϕ1 ∈ C∞(R; [0, 1]) be such that 0 6∈ suppϕ1 and ϕ1 ≥ χR\[−1,1] (i.e., ϕ1
is 1 except in a small neighborhood of the origin). Define

ϕ
(−2)
0 (z)

def
=

∫ z

r=0

{∫ r

s=0
ϕ0(s)ds

}
dr z ∈ R.

Note that there is a K > 0 such that |ϕ̇(−2)
0 (z)| ≤ K and |ϕ(−2)

0 (z)| ≤ K|z| for all z ∈ R.

For each j ∈ Z, define

σ j
def
=

∫ 1

θ=0
exp [−2π i jθ ] σ(θ)dθ

so that
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σ(θ) =
∑
j∈Z

σ j exp [2π i jθ ]

for all θ ∈ R, and this sum converges pointwise.
Throughout, we let K be a generic constant, which may change from incarnation to incarna-

tion, and which depends only on σ and ω.

2. Nondegeneracy at resonance and proof of main result

Here we organize our calculations and identify the escape from resonance phenomenon which
underlies our averaging. This will rely on several calculations which simplify our interests.

Prior to (7), we fixed pi ’s and defined Z i,ε and ϑ i,ε’s. Define Z̄ εt
def
=(Z1,ε

t , Z1,ε
t . . . Zd,ε

t ).
Also fix i and j in {1, 2 . . . n}, which we shall use throughout the rest of the paper. The first
observation which we wish to exploit is that it is in a sense sufficient to consider the two-point
motion. Namely, note that our goal is to use approximations like (8) and (9) in (7) to replace
the σ(ϑ i,ε)’s with constant coefficients. We should be able to separately do this for each i and j
in the two sums in (7); since each such term involves at most two angles, the two-point motion
should be sufficient. The Z i,ε’s are slow variables, so they should effectively be held constant
while we carry out the averaging. The details of these arguments will be in the proof below

of Theorem 1.2. Set θε
def
= ϑ i,ε, Xε

def
= Z i,ε, ψε

def
= ϑ j,ε, and Y ε

def
= Z j,ε. Set θ◦

def
= θε0 , x◦

def
= Xε0,

ψ◦
def
= ψε0 , and y◦

def
= Y ε0 . Then (θε, Xε) satisfies (1) and (ψε, Y ε) satisfies

dψεt =
1
ε
ω(Y εt )dt

dY εt = σ(ψ
ε
t )dWt

(ψε0 , Y ε0 ) = (ψ◦, y◦).

Define Cεt
def
=(Xεt , θ

ε
t , Y εt , ψ

ε
t ) for all ε ∈ (0, 1) and t ≥ 0.

Our second simplification follows from a Fourier decomposition, which allows us to
efficiently exploit periodicity in the angular variables θε andψε. Define C∞(T2) as the collection
of ϕ ∈ C∞(R2) such that ϕ(θ + j, ψ + k) = ϕ(θ, ψ) for all (θ, ψ) ∈ R2 and (k, l) ∈ Z2. For
ϕ ∈ C∞(T2) and ( j, k) ∈ Z2, define

ϕ̂ j,k
def
=

∫ 1

θ=0

∫ 1

ψ=0
ϕ(θ, ψ) exp [−2π i( jθ + kψ)] dθdψ;

then

lim
N→∞

sup
(θ,ψ)∈R2

∣∣∣∣∣∣∣ϕ(θ, ψ)−
∑

( j,k)∈Z2
| j |+|k|≤N

ϕ̂ j,k exp [2π i( jθ + kψ)]

∣∣∣∣∣∣∣ = 0.

Lemma 2.1. Fix f ∗ ∈ C2
b(R

d), 0 ≤ s1 ≤ s2 . . . sn ≤ s ≤ t , {gn′}
n
n′=1 ⊂ Cb(Rd), and

(k, l) ∈ Z2
\ {(0, 0)}. Then

lim
ε↘0

E

[{∫ t∧τ εK

r=s∧τ εK

f ∗(Z̄ εr ) exp
[
2π i( jθεr + kψεr )

]
dr

}
n∏

j=1

gn′(Z̄
ε
sn′
)

]
= 0.
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The proof of our main result follows from this.

Proof of Theorem 1.2. According to the standard theory of convergence of Markov processes,
we need to prove three things: tightness, convergence to the limiting martingale characterization,
and uniqueness of the solution of the limiting martingale characterization. Tightness of
{(Φε

t (z1),Φε(z2) . . .Φε(zn)); t ≥ 0} follows from tightness of the one-point motions, which
is implied by the convergence result of Theorem 1.1. Uniqueness of the limiting martingale
characterization is standard. To show the desired convergence to the limiting martingale problem,
we argue as follows. Let f ∗, si ’s, s, and t be as in Lemma 2.1. Fix also ϕ ∈ C∞(T2) and define

ϕ̄
def
=
∫
[0,1]2 ϕ(x, y)dxdy. By approximation by a finite Fourier series, we have that

lim
ε↘0

E

[{∫ t∧τ εK

r=s∧τ εK

f ∗(Z̄ εr ){ϕ(θ
ε
r , ψ

ε
r )− ϕ̄}dr

}
n∏

n′=1

gn′(Z̄
ε
sn′
)

]
= 0.

Since i and j were arbitrarily chosen at the beginning of the section, we have that

lim
ε↘0

E

[{∫ t∧τ εK

r=s∧τ εK

f ∗(Z̄ εr ){ϕ(ϑ
i,ε
r , ϑ

j,ε
r )− ϕ̄}dr

}
n∏

n′=1

gn′(Z̄
ε
sn′
)

]
= 0

for all i and j . Letting f ∗ be of the form ∂2 f/∂z2
i or ∂2 f/∂zi∂z j and letting ϕ be of the form

(θ, ψ) 7→ σ(θ)σ (ψ) or (θ, ψ) 7→ σ 2(θ) as indicated by (7), we have that

lim
ε↘0

E
[{∫ t∧τ εK

r=s∧τ εK

{ ∑
1≤i≤d

1
2
σ 2(ϑ i,ε

r )
∂2 f

∂z2
i

(Z1,ε
r , Z2,ε

r . . . Z i,ε
r )

+

∑
1≤i, j≤d

i 6= j

σ(ϑ i,ε
r )σ (ϑ

j,ε
r )

∂2 f

∂zi∂z j
(Z1,ε

r , Z2,ε
r . . . Z i,ε

r )− (Ld f )(Z̄ εr )

}
dr

}

×

n∏
n′=1

gn′(Z̄
ε
sn′
)

]
= 0.

We finally use the fact that (7) is a martingale to see that in fact

lim
ε↘0

E

[{
f (Z̄ εt∧τ εK

)− f (Z̄ εs∧τ εK
)−

∫ t∧τ εK

r=s∧τ εK

(Ld f )(Z̄ εr )dr

}
n∏

n′=1

gn′(Z̄
ε
sn′
)

]
= 0,

which gives us the desired characterization of the limiting law of the Z̄ ε’s. �

The task before us is now to prove Lemma 2.1. Fix a nonzero (k, l) ∈ Z2 and define

Γ ε
t

def
= kθεt + lψεt and aεt

def
= kω(Xεt )+ lω(Y εt ).

We note that Γ ε evolves according to dΓ ε
t /dt = ε−1aεt . Thus we have a separation of scales in

the quantity

f (Z̄ εt ) exp
[
2π iΓ ε

t

]
;

Γ ε moves much faster than Z ε (and in particular faster than Xε and Y ε). Consequently, we should
be able to average. To do so, define

Φ(θ) def
=

exp [2π iθ ]− 1
2π i
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for all θ ∈ R and define

U ε
t

def
= ε f ∗(Z̄ εt )

Φ(Γ ε
t )

aεt
χR2\R j,k

(Xεt , Y εt )

for all t > 0. We should then have that dU ε
t ≈ f ∗(Z̄ εt ) exp

[
2π iΓ ε

t

]
dt .

To start to make this precise, define

F1,ε
t

def
=

1
2

∑
1≤i, j≤d

∂2 f ∗

∂zi∂z j
(Z̄ εt )σ (ϑ

i,ε
t )σ (ϑ

j,ε
t )

F2,ε
t

def
=

∑
1≤i≤d

∂ f ∗

∂zi
(Z̄ εt )σ (ϑ

i,ε
t )

A1,ε
t

def
=

1
2
{kω̈(Xεt )σ

2(θεt )+ lω̈(Y εt )σ
2(ψεt )}

A2,ε
t

def
= kω̇(Xεt )σ (θ

ε
t )+ lω̇(Y εt )σ (ψ

ε
t )

for all t ≥ 0; then

daεt = A1,ε
t dt + A2,ε

t dWt and d f ∗(Z̄ εt ) = F1,ε
t dt + F2,ε

t dWt .

Applying Ito’s formula to U ε, we then have that on
{
infr∈[0,t] |aεr | > 0

}
,

U ε
t −U ε

0 =

∫ t

r=0
f ∗(Z̄ εt ) exp

[
2π iΓ ε

r

]
dr +

∫ t

r=0
E1,ε(r)Φ(Γ ε

r )dr

+

∫ t

r=0
E2,ε(r)Φ(Γ ε

r )dWr

where, for all r ≥ 0,

E1,ε(r)
def
= ε

{
F1,ε

r

aεr
−

f ∗(Z̄ εr )A
1,ε
r

(aεr )2
+

f (Z̄ εr )(A
2,ε
r )2

(aεr )3
−

F2,ε
r A2,ε

r

(aεr )2

}

E2,ε(r)
def
= ε

{
F2,ε

r

aεr
−

f ∗(Z̄ εr )A
2,ε
r

(aεr )2

}
.

Note that |F i,ε
t | ≤ K and |Ai,ε

t | ≤ K for i ∈ {1, 2}, ε ∈ (0, 1), and t ≥ 0; thus the only source
of the singularity is the aεt in the denominator in U ε and I ε. Note also that in fact nothing in our
discussion actually precludes starting in R j,k .

Noting that the highest power of aεt in the denominator is 3, the following lemma thus is a
natural goal.

Lemma 2.2 (Stochastic Nondegeneracy at Resonance). Fix ν ∈ (0, 1/3). For t > 0,

lim
ε↘0

E

[∫ t∧τ εK

r=0
χ{|aεr |≤εν }dr

]
= 0.

It turns out that this is exactly what is needed to prove Lemma 2.1.
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Proof of Lemma 2.1. To rigorously use Ito’s formula, define

Ũ ε
t

def
= ϕ1

(
aεt
εν

)
U ε

t .

By a careful application of Ito’s formula, we get that∫ t∧τ εK

r=s∧τ εK

ϕ1

(
aεt
εν

)
f ∗(Z̄ εr ) exp

[
2π iΓ ε

r

]
dr = Ũ ε

t∧τ εK
− Ũ ε

s∧τ εK

+

∫ t∧τ εK

r=s∧τ εK

Ē1,ε(r) exp
[
2π iΓ ε

r

]
dr −

4∑
j=2

∫ t∧τ εK

r=s∧τ εK

Ē j,ε(r)Φ(Γ ε
r )dr

−

6∑
j=5

∫ t∧τ εK

r=s∧τ εK

Ē j,ε(r)Φ(Γ ε
r )dWr

where

Ē1,ε(r)
def
=

{
1− ϕ1

(
aεr
εν

)}
f ∗(Z̄ εr ), Ē2,ε(r)

def
= ϕ1

(
aεr
εν

)
E1,ε(r)

Ē3,ε(r)
def
= ϕ̇1

(
aεr
εν

)
A1,ε

r U ε
r

εν
, Ē4,ε(r)

def
=

1
2
ϕ̈1

(
aεr
εν

)
(A2,ε

r )2U ε
r

ε2ν

Ē5,ε(r)
def
= ϕ̇1

(
aεr
εν

)
A2,ε

r E2,ε(r)

εν
, Ē6,ε(r)

def
= ϕ1

(
aεr
εν

)
E2,ε(r),

Ē7,ε(r)
def
= ϕ̇1

(
aεr
εν

)
U ε

r A2,ε
r

εν
.

Since ϕ1 ≥ χR\[−1,1], 1− ϕ1 ≤ χ(−1,1), so

|Ē1,ε(r)| ≤ Kχ{|aεr |≤εν }.

Next, since 0 6∈ suppϕ1, there is a % > 0 such that (−%, %) ∩ suppϕ1 = ∅. Thus

|Ũ ε
t | ≤ K

ε

|aεt |
χ{|aεr |≥%εν }

and

|Ē2,ε(r)| ≤ K
ε

|aεr |3
χ{|aεr |≥%εν }, |Ē3,ε(r)| ≤ K

ε1−ν

|aεr |
χ{|aεr |≥%εν },

|Ē4,ε(r)| ≤ K
ε1−2ν

|aεr |
χ{|aεr |≥%εν }, |Ē5,ε(r)| ≤ K

ε1−ν

|aεr |2
χ{|aεr |≥%εν },

|Ē6,ε(r)| ≤ K
ε

|aεr |2
χ{|aεr |≥%εν }, |Ē7,ε(r)| ≤ K

ε1−ν

|aεr |
χ{|aεr |≥%εν }.

Combine things together and use standard calculations to get the desired result. We here use that
1− 3ν > 0. �
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3. Averaging for k + l 6= 0

We here prove Lemma 2.2 for k + l 6= 0. For c = (x, θ, y, ψ) ∈ R4, define first

h̄a(c)
def
= (kω̇(x)σ (θ)+ lω̇(y)σ (ψ))2 = (kω̇(x))2σ 2(θ)+ (lω̇(y))2σ 2(ψ)2

+ 2(kω̇(x))(lω̇(y))σ (θ)σ (ψ);

then h̄a(Cεt ) = (A
1,ε
t )2. For λ > 0, we define a corrector which will allow us to coarse-grain. Set

Hλ
a (c)

def
=

∫
∞

r=0
e−λr h̄a(x, θ + ω(x)r, y, ψ + ω(y)r)dr

for all λ ∈ (0, 1) and c = (x, θ, y, ψ) ∈ R4.

Lemma 3.1. We have that Hλ
a ∈ C∞(R4). Secondly, supλ∈(0,1) λ‖H

λ
a ‖C2(R4) <∞. Thirdly,

ω(x)
∂Hλ

a

∂θ
(c)+ ω(y)

∂Hλ
a

∂ψ
(c) = λHλ

a (c)− h̄a(c)

for all λ ∈ (0, 1) and c = (x, θ, y, ψ) ∈ R4, and finally there is a K > 0 such that

λHλ
a (c) ≥

1
K
− Kλ− K|kω(x)+ lω(y)|

for all λ ∈ (0, 1) and c = (x, θ, y, ψ) ∈ R4.

Proof. The regularity and bound on derivatives are easy; one can differentiate under the integral.
The formula for the derivative is fairly easy to see; see [10].

Fix λ ∈ (0, 1) and c = (x, θ, y, ψ) ∈ R4. We can explicitly compute that

λHλ
a (c) = (kω̇(x))

2
∑

j, j ′∈Z
σ jσ j ′ exp

[
2π i( j + j ′)θ

] λ

λ− 2π i( j + j ′)ω(x)

+ (lω̇(y))2
∑

j, j ′∈Z
σ jσ j ′ exp

[
2π i( j + j ′)ψ

] λ

λ− 2π i( j + j ′)ω(y)

+ 2(kω̇(x))(lω̇(y))
∑

j, j ′∈Z
σ jσ j ′ exp

[
2π i( jθ + j ′ψ)

] λ

λ− 2π i( jω(x)+ j ′ω(y))
.

Note that if jω(x)+ j ′ω(y) = 0 and kω(x)+ lω(y) = 0, then2 jl = j ′k. Let M be the great-

est common factor of |k| and |l| and set k∗
def
= k/M and l∗

def
= l/M . Thus k∗ and l∗ are relatively

prime and jl∗ = j ′k∗. Hence j = mk∗ and j ′ = ml∗ for some m ∈ Z; for simplicity, we denote
this for future reference as ( j, j ′) ∈ (k∗, l∗)Z. We hence rewrite λHλ

a as

λHλ
a (c) = Ī + (kω̇(x))2 I1 + (lω̇(y))

2 I2 + (kω̇(x))(lω̇(y))I3

2 Note that since ω > 0, j , j ′, k and l must all be nonzero.
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where

Ī
def
=(kω̇(x))2

∑
j∈Z
|σ j |

2
+ (lω̇(y))2

∑
j∈Z
|σ j |

2
+ 2(kω̇(x))(lω̇(y))

×

∑
m∈Z

σmk∗σml∗ exp
[
2π im(k∗θ + l∗ψ)

] λ

λ− 2π im(k∗ω(x)+ l∗ω(y))

I1
def
=

∑
j, j ′∈Z
j+ j ′ 6=0

σ jσ j ′ exp
[
2π i( j + j ′)θ

] λ

λ− 2π i( j + j ′)ω(x)

I2
def
=

∑
j, j ′∈Z
j+ j ′ 6=0

σ jσ j ′ exp
[
2π i( j + j ′)ψ

] λ

λ− 2π i( j + j ′)ω(y)

I3
def
=

∑
( j, j ′)∈Z2\(k∗,l∗)Z
| jω(x)+ j ′ω(y)|≥

√
λ

σ jσ j ′ exp
[
2π i( jθ + j ′ψ)

] λ

λ− 2π i( jω(x)+ j ′ω(y))

I4
def
=

∑
( j, j ′)∈Z2\(k∗,l∗)Z
| jω(x)+ j ′ω(y)|<

√
λ

σ jσ j ′ exp
[
2π i( jθ + j ′ψ)

] λ

λ− 2π i( jω(x)+ j ′ω(y))
.

If j + j ′ 6= 0, then | j + j ′| ≥ 1. Thus

|I1| ≤

∑
j∈Z
|σ j |

2
λ

ω−
, |I2| ≤

∑
j∈Z
|σ j |

2
λ

ω−
, |I3| ≤

∑
j∈Z
|σ j |

2
√
λ.

Next, note that∣∣∣∣ λ

λ− 2π i( j + j ′)ω(x)

∣∣∣∣ ≤ 1

and thus, by Young’s inequality,

Ī ≥ (kω̇(x))2
∑

j∈Z\k∗Z
|σ j |

2
+ (lω̇(y))2

∑
j∈Z\l∗Z

|σ j |
2

and since the period of σ is exactly 1, the right-hand side must be positive.
We finally observe that if | jω(x)+ j ′ω(y)| <

√
λ and ( j, j ′) ∈ Z2

\ (k∗, l∗)Z, then(
| j | + | j ′|

)
|k∗ω(x)+ l∗ω(y)| ≥

∣∣ j (k∗ω(x)+ l∗ω(y))− k∗( jω(x)+ j ′ω(y))
∣∣

+
∣∣ j ′(k∗ω(x)+ l∗ω(y))− l∗( jω(x)+ j ′ω(y))

∣∣− 2(|k∗| + |l∗|)
√
λ

≥
∣∣ jl∗ − j ′k∗

∣∣ (ω(y)+ ω(x))− 2(|k∗| + |l∗|)
√
λ ≥ 2ω− − 2(|k∗| + |l∗|)

√
λ.

Thus if

λ <
ω2

4(|k∗| + |l∗|)2
, (10)

then
(
| j | + | j ′|

)
|k∗ω(x)+ l∗ω(y)| ≥ ω−, so either

| j ||k∗ω(x)+ l∗ω(y)| ≥ ω−/2 or | j ′||k∗ω(x)+ l∗ω(y)| ≥ ω−/2.
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Hence

|I4| ≤ 2

∑
j ′∈Z
|σ j ′ |


 ∑

j∈Z
| j ||k∗ω(x)+l∗ω(y)|≥ω−/2

|σ j |


≤ 2|k∗ω(x)+ l∗ω(y)|

∑
j ′∈Z
|σ j ′ |


 ∑

j∈Z
| j ||k∗ω(x)+l∗ω(y)|≥ω−/2

| j ||σ j |

| j ||k∗ω(x)+ l∗ω(y)|


≤

4
ω−
|k∗ω(x)+ l∗ω(y)|

∑
j ′∈Z
|σ j ′ |

∑
j∈Z
| jσ j |

 .
Note that

|k∗ω(x)+ l∗ω(y)| =
|kω(x)+ lω(y)|

M
≤ |kω(x)+ lω(y)|.

This completes the proof of the bound on λHλ
a if (10) holds. The bound on λHλ

a is trivial if (10)
does not hold. �

We now have

Proof of Lemma 2.2 for k + l 6= 0. Set λε
def
= εν and define

U ε
t

def
= 2ε2νϕ

(−2)
0

(
aεt
εν

)
+ εHλε

a (Cεt )ϕ0

(
aεt
εν

)
.

Then ∫ t∧τ εK

r=0
λεHλε

a (Cεr )ϕ0

(
aεr
εν

)
dr = U ε

t∧τ εK
−U ε

0 −

5∑
j=1

∫ t∧τ εK

r=0
E j,ε(r)dr

−

8∑
j=6

∫ t∧τ εK

r=0
E j,ε(r)dWr

where

E1,ε(r)
def
= εν ϕ̇

(−2)
0

(
aεr
εν

)
A2,ε

r

E2,ε(r)
def
=
ε

2

{
∂2 Hλε

a

∂x2 (Cεr )σ
2(θεr )+

∂2 Hλε
a

∂y2 (Cεr )σ
2(ψεr )

}
ϕ0

(
aεr
εν

)

E3,ε(r)
def
=
ε1−ν

2
Hλε

a (Cεr )ϕ̇0

(
aεr
εν

)
A2,ε

r

E4,ε(r)
def
=
ε1−2ν

2
Hλε

a (Cεr )ϕ̈0

(
aεr
εν

)
(A1,ε

r )2

E5,ε(r)
def
= ε1−ν

{
∂Hλε

a

∂x
(Cεr )σ (θ

ε
r )+

∂Hλε
a

∂y
(Cεr )σ (ψ

ε
r )

}
ϕ̇0

(
aεr
εν

)
A1,ε

r
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E6,ε(r)
def
= 2εν ϕ̇(−2)

0

(
aεt
εν

)
A1,ε

r

E7,ε(r)
def
= ε

{
∂Hλε

a

∂x
(Cεr )σ (θ

ε
r )+

∂Hλε
a

∂y
(Cεr )σ (ψ

ε
r )

}
ϕ0

(
aεr
εν

)

E8,ε(r)
def
= ε1−νHλε

a (Cεr )ϕ̇0

(
aεr
εν

)
A1,ε

r .

We then have that |E j,ε(r)| ≤ Kεν for j ∈ {1, 6} and |E j,ε(r)| ≤ Kε1−2ν/λε = Kε1−3ν for all
other j . We also note that

λεHλε
a (Cεr )ϕ0

(
aεr
εν

)
≥

{
1
K
− Kεν

}
ϕ0

(
aεr
εν

)
.

The claimed result follows.3 �

4. Averaging for k + l = 0

The next task is to average the 1:1 resonance. This is more challenging as it requires a detailed

analysis near the diagonal of (S1
×R)× (S1

×R). Define bεt
def
= Xεt −Y εt . The central component

of the proof of Lemma 2.2 for k = −l is then

Lemma 4.1. For each % > 0,

lim
ε↘0

E

[∫ t∧τ εK

r=0
χ[−%,%]

(
bεr
εν

)
dr

]
= 0.

We will prove this in several stages—the proof will culminate at the end of Section 4.3. First,
however, we return to our main goal.

Proof of Lemma 2.2 for k = −l. Since ω̇ > 0 and ω is smooth and invertible and K is compact,
there is a KK > 0 such that |ω−1(a) − ω−1(b)| ≤ KK |a − b| for all a and b in ω(K ). If
k|ω(Xεr )− ω(Y

ε
r )| ≤ ε

ν , Xεr ∈ K and Y εr ∈ K , then

|Xεr − Y εr | =
∣∣∣ω−1(ω(Xεr ))− ω

−1(ω(Y εr ))
∣∣∣ ≤ KK |ω(X

ε
r )− ω(Y

ε
r )| ≤

KK

k
εν .

Thus ∫ t∧τ εK

r=0
χ[−1,1]

(
aεr
εν

)
dr ≤

∫ t∧τ εK

r=0
χ[−KK /k,KK /k]

(
bεr
εν

)
dr.

The claim then follows from Lemma 4.1. �

To proceed, we further decompose χ[−%,%](bε
εν
). For ϑ ∈ R, define the “sawtooth” map

s(ϑ) def
= ϑ −

⌊
ϑ +

1
2

⌋
.

3 We use here the fact that ν < 1/3.



R.B. Sowers / Stochastic Processes and their Applications 119 (2009) 3549–3582 3563

Note that s is smooth on R \ (Z + 1
2 ), i.e., on the set s−1(− 1

2 ,
1
2 ), and that for ϑ ∈ s−1(− 1

2 ,
1
2 ),

s′(ϑ) = 1. Also note that finally, σ(θ)− σ(ψ) = σ(θ)− σ(θ + s(ψ − θ)) for all θ and ψ in R.
We next define

∆ε(r)
def
= s2(θεr − ψ

ε
r )+ (X

ε
r − Y εr )

2 and ∆̃ε(r)
def
= s2(θεr − ψ

ε
r )+

(
Xεr − Y εr
ε1/3

)2

.

Fix η ∈ (0, 1). We then write that

χ[−%,%]

(
bεr
εν

)
=

3∑
j=1

I εj (r)

where

I ε1 (r)
def
= χ[−%,%]

(
bεr
εν

)
χ[1,∞)

(
∆ε(r)

εη

)
I ε2 (r)

def
= χ[−%,%]

(
bεr
εν

)
χ[0,1)

(
∆ε(r)

εη

)
χ[0,1)

(
∆̃ε(r)

εη/4

)

I ε3 (r)
def
= χ[−%,%]

(
bεr
εν

)
χ[0,1)

(
∆ε(r)

εη

)
χ(1,∞)

(
∆̃ε(r)

εη/4

)
.

(11)

Each of these terms will require some work. We will consider I ε1 in Section 4.1, I ε2 in Section 4.2,
and I ε4 in Section 4.3.

4.1. Averaging away from the diagonal

Let’s first consider I ε1 . For c = (x, θ, y, ψ) ∈ R4, define

h̄b(c)
def
=(σ (θ)− σ(ψ))2 = σ 2(θ)+ σ 2(ψ)− 2σ(θ)σ (ψ);

then 〈
bε
〉
t =

∫ t

r=0
h̄b(Cεr )dr.

For λ ∈ (0, 1) and c = (x, θ, y, ψ) ∈ R4, define

Hλ
b (c)

def
=

∫
∞

r=0
e−λr h̄b(θ + ω(x)r, ψ + ω(y)r)dr.

Lemma 4.2. We have that Hλ
b ∈ C∞(R4). Secondly, supλ∈(0,1) λ‖H

λ
b ‖C2(R4) <∞. Thirdly,

ω(x)
∂Hλ

b

∂θ
(c)+ ω(y)

∂Hλ
b

∂ψ
(c) = λHλ

b (c)− h̄b(c)

for all c = (x, θ, y, ψ) ∈ R4. Finally, there is a constant K > 0 such that

λHλ
b (c) ≥

1
K

{
s2(θ − ψ)+ |ω(x)− ω(y)|2

}
− K

{
√
λ+
|x − y|

λ

}
for all λ ∈ (0, 1) and c = (x, θ, y, ψ) ∈ R4.
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Proof. Again, the regularity and bound on derivatives are easy; one can differentiate under the
integral and the formula for the derivative is fairly easy to see.

Fix λ ∈ (0, 1) and c = (x, θ, y, ψ) ∈ R4. We explicitly compute that

λHλ
b (c) =

∑
j, j ′∈Z

σ jσ j ′ exp
[
2π i( j + j ′)θ

] λ

λ− 2π i( j + j ′)ω(x)

+

∑
j, j ′∈Z

σ jσ j ′ exp
[
2π i( j + j ′)ψ

] λ

λ− 2π i( j + j ′)ω(y)

− 2
∑

j, j ′∈Z
σ jσ j ′ exp

[
2π i( jθ + j ′ψ)

] λ

λ− 2π i( jω(x)+ j ′ω(y))

= Ī + I1 + I2 + I3

where

Ī
def
= 2

∑
j∈Z\{0}

|σ j |
2
{

1− exp [2π i j (θ − ψ)]
λ

λ− 2π i j (ω(x)− ω(y))

}

I1
def
=

∑
j, j ′∈Z
j+ j ′ 6=0

σ jσ j ′

{
exp

[
2π i( j + j ′)θ

] λ

λ− 2π i( j + j ′)ω(x)

+ exp
[
2π i( j + j ′)ψ

] λ

λ− 2π i( j + j ′)ω(y)

}
I2

def
= −2

∑
j, j ′∈Z
j+ j ′ 6=0

| jω(x)+ j ′ω(y)|<
√
λ

σ jσ j ′ exp
[
2π i( jθ + j ′ψ)

] λ

λ− 2π i( jω(x)+ j ′ω(y))

I3
def
= −2

∑
j, j ′∈Z
j+ j ′ 6=0

| jω(x)+ j ′ω(y)|≥
√
λ

σ jσ j ′ exp
[
2π i( jθ + j ′ψ)

] λ

λ− 2π i( jω(x)+ j ′ω(y))
.

We immediately see that

|I1| ≤

∑
j∈Z
|σ j |

2
λ

ω−
and |I3| ≤ 2

∑
j∈Z
|σ j |

2
√
λ.

Next observe that if j + j ′ 6= 0 and | jω(x)+ j ′ω(y)| <
√
λ, then(

| j | + | j ′|
)
|ω(y)− ω(x)| = | j (ω(y)− ω(x))| + | j ′(ω(x)− ω(y))|

≥ | j (ω(y)− ω(x))+ jω(x)+ j ′ω(y)| + | j ′(ω(x)− ω(y))

+ jω(x)+ j ′ω(y)| − 2
√
λ

= | j + j ′|(ω(y)+ ω(x))− 2
√
λ ≥ 2ω− − 2

√
λ,
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so if λ < ω2
−/4, then either | j ||ω(y)− ω(x)| > ω−/2 or | j ′||ω(y)− ω(x)| > ω−/2. Thus

|I2| ≤ 2

∑
j ′∈Z
|σ j ′ |




∑
j∈Z

| j ||ω(y)−ω(x)|>ω−/2

|σ j |


≤ 2|ω(x)− ω(y)|

∑
j ′∈Z
|σ j ′ |




∑
j∈Z

| j ||ω(y)−ω(x)|>ω−/2

j |σ j |

| j ||ω(y)− ω(x)|


≤

4
ω−
|ω(x)− ω(y)|

∑
j ′∈Z
|σ j ′ |


∑

j∈Z
| j ||σ j |

 .
We use here the fact that since σ ∈ C∞,

∑
j∈Z | j ||σ j | <∞.

We finally bound Ī from below. We first write that

Ī = 4
∞∑
j=1

|σ j |
2
{

1−R

(
exp [2π i j (θ − ψ)]

λ

λ− 2π i j (ω(x)− ω(y))

)}
.

We will then optimize over two lower bounds. For convenience, set Θ
def
=(θ − ψ), W def

=

2π(ω(x)− ω(y)), and w̄
def
= 2π(ω+ − ω−).

First note that for each j ∈ Z,∣∣∣∣exp [2π i j (θ − ψ)]
λ

λ− 2π i j (ω(x)− ω(y))

∣∣∣∣ = λ√
λ2 + j2W2

;

thus

Ī ≥ 4
∞∑
j=1

|σ j |
2

1−
λ√

λ2 + j2W2

 .
Since q 7→ q

q+ j2W2 is increasing on (0, 1), we get that for λ ∈ (0, 1)

4

1−
λ√

λ2 + j2W2

 ≥ 4

1−
1√

1+ j2W2

 = 4 j2
∫ W

z=0

z

(1+ j2z2)3/2
dz

≥
4 j2

(1+ j2w̄2)3/2

∫ W

z=0
zdz

≥
2 j2W2

(1+ j2w̄2)3/2
.

Thus Ī ≥ %1W2 where

%1
def
= ‖σ‖2L2([0,1))

{
inf
z≥1

2z2

1+ z2w̄2

}
.
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On the other hand, we can explicitly compute that for each j ∈ {1, 2 . . .},

1−R

(
exp [2π i jΘ]

λ

λ− jW

)
= 1− cos(2π jΘ)

λ2

λ2 + j2W2

+ sin(2π jΘ)
jλW

λ2 + j2W2

= 1− cos(2π jΘ)+ cos(2π jΘ)
j2W2

λ2 + j2W2 + sin(2πΘ)
jλW

λ2 + j2W2

= 1− cos(2π jΘ)+
jW

λ2 + j2W2 R
(

e2π i jΘ ( jW−
√
−1λ)

)
≥ 1− cos(2π jΘ)−

jW√
λ2 + j2W2

≥ 1− cos(2π jΘ)−
jW
λ
.

Hence

Ī ≥ Ī ◦(Θ)− K2
W
λ

where K2
def
= 4

∑
∞

j=1 j |σ j |
2 and

Ī ◦(ϑ)
def
= 4

∞∑
j=1

|σ j |
2
{1− cos(2π jϑ)}

for all ϑ ∈ R. We claim that

%2
def
= inf
ϑ∈R

Ī ◦(ϑ)

s2(ϑ)
> 0.

First note that Ī ◦ is right-continuous. Fix ϑ ∈ R \ Z. Then |s(ϑ)| > 0 and

Ī ◦(ϑ) = 4
∑

1≤ j≤∞
j 6∈Z/θ

|σ j |
2
{1− cos(2π jϑ)}.

Since 1 − cos(2π jϑ) > 0 for all positive integers j 6∈ Z/ϑ , if Ī ◦(θ) = 0 then σ j = 0 for all
positive j 6∈ Z/ϑ . This violates the assumption that σ is exactly 1-periodic; hence Ī ◦ > 0 on
R \ Z. Next fix {ϑn} ∈ R such that limn→∞ ϑn = 0. Fix j∗ ∈ {1, 2 . . .∞} such that σ j∗ 6= 0
(which is possible since σ has period exactly 1). Then

lim
n→∞

Ī ◦(ϑn)

s2(ϑn)
≥ 4|σ j∗ |

2 lim
n→∞

1− cos(2π jϑn)

ϑ2
n

=
1
2
(2π j∗)2.

Collecting our thoughts together, we have that %2 > 0. Thus

Ī ≥ %2d2(Θ)− K2
W
λ
.
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Combining together our two bounds, we have that

Ī ≥ max
{
%1W2, %2d2(Θ)− K2

W
λ

}
≥ max

{
%1W2, %2d2(Θ)

}
− K2

W
λ

≥
1
2

{
%1W2

+ %2d2(Θ)
}
− K2

W
λ
.

Combine our estimates together and use the fact that λ <
√
λ for λ ∈ (0, 1). �

We can now complete this subsection and bound I ε1 of (11).

Lemma 4.3. We have that

E

[∫ t∧τ εK

r=0
I ε1 (r)dr

]
≤ K

{
εν−η + ε1−η−5ν/2

}
.

Proof. Set λε
def
= εν/2 and define

U ε
t

def
= 2%2ε2ν−ηϕ

(−2)
0

(
1
%

bεt
εν

)
+ ε1−ηHλε

a (Cεt )ϕ0

(
1
%

bεt
εν

)
.

Then ∫ t∧τ εK

r=0
λεHλε

a (Cεr )ϕ0

(
1
%

bεr
εν

)
dr = U ε

t∧τ εK
−U ε

0 −

3∑
j=1

∫ t∧τ εK

r=0
E j,ε(r)dr

−

6∑
j=4

∫ t∧τ εK

r=s∧τ εK

E j,ε(r)dWr

where

E1,ε(r)
def
=
ε1−η

2

{
∂2 Hλε

a

∂x2 (Cεr )σ
2(θεr )+

∂2 Hλε
a

∂y2 (Cεr )σ
2(ψεr )

}
ϕ0

(
1
%

bεr
εν

)
E2,ε(r)

def
=
ε1−η−2ν

2%2 Hλε
a (Cεr )ϕ̈0

(
1
%

bεr
εν

)
h̄b(Cεr )

E3,ε(r)
def
=
ε1−η−ν

%

{
∂Hλε

a

∂x
(Cεr )σ (θ

ε
r )+

∂Hλε
a

∂y
(Cεr )σ (ψ

ε
r )

}
ϕ̇0

(
1
%

bεr
εν

)
(σ (θεr )− σ(ψ

ε
r ))

E4,ε(r)
def
= 2%εν−ηϕ̇0

(
1
%

bεr
εν

)
(σ (θεr )− σ(ψ

ε
r ))

E5,ε(r)
def
= ε1−η

{
∂Hλε

a

∂x
(Cεr )σ (θ

ε
r )+

∂Hλε
a

∂y
(Cεr )σ (ψ

ε
r )

}
ϕ0

(
1
%

bεr
εν

)
E6,ε(r)

def
=
ε1−η−ν

%
Hλε

a (Cεr )ϕ̇0

(
1
%

bεr
εν

)
(σ (θεr )− σ(ψ

ε
r )).
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We then have that |E4,ε(r)| ≤ Kεν−η and |E j,ε(r)| ≤ Kε1−η−2ν/λε = Kε1−η−5ν/2 for all other
j . We also note that

ε−ηλεHλε
b (c)ϕ0

(
x − y

εν

)
≥
ε−η

K

{
s2(θ − ψ)+ |ω(x)− ω(y)|2

}
ϕ0

(
x − y

εν

)
− K

εν

λε
− K

√
λε

≥
1
K

s2(θ − ψ)+ |ω(x)− ω(y)|2

εη
ϕ0

(
x − y

εν

)
χ[1,∞)

(
∆ε(r)

εη

)
− Kεν/2.

We next note that

lim
ε↘0

inf
{

s2(θ − ψ)+ |ω(x)− ω(y)|2

εη
: (x, θ, y, ψ) ∈ R2, |x | < L , |y| < L

and s2(θ − ψ)+ |x − y|2 > εη
}
> 0.

The claimed result follows.4 �

4.2. Intermediate averaging

Our next task in the analysis of the errors of (11) is I ε3 . We start by simplifying the problem.

Lemma 4.4. For ε ∈ (0, ε̄), we have that

|I ε3 (r)| ≤ ϕ0

(
s(θεr − ψ

ε
r )

εη/2

)
ϕ1

(
√

2
Xεr − Y εr
ε1/3+η/8

)
.

Proof. If ∆ε(r) < εη, then |s(θεr − ψ
ε
r )| ≤ ε

η/2. If in addition ∆̃ε(r) > εη/4, then we have that

εη/4 ≤ s2(θεr − ψ
ε
r )+

(
Xεr − Y εr
ε1/3

)2

≤ εη +

(
Xεr − Y εr
ε1/3

)2

.

Let ε̄ ∈ (0, 1) be such that εη < 1
2ε
η/4 for ε ∈ (0, ε̄). Thus

I ε3 (r) ≤ χ[0,1)

(
s(θεr − ψ

ε
r )

εη/2

)
χ
[1/
√

2,∞)

(
Xεr − Y εr
ε1/3+η/8

)
.

The claim readily follows. �

We now claim that as long as 2
∣∣∣ Xεr−Y εr
ε1/3+η/8

∣∣∣ < % is uniformly bounded away from zero, then

θε − ψε is quickly varying. Indeed, in this case we have that

d(θεr − ψ
ε
r ) =

1
ε

{
ω(Xεr )− ω(Y

ε
r )
}

dr ≈ ω̇(Xεr )

{
Xεr − Y εr

ε

}
dr.

The other fact we have at our disposal is the fact that the support of ϕ0

(
s(θεr −ψ

ε
r )

εη/2

)
is “thin”.

4 We use here the fact that ν > η and η + 5ν/2 < 7ν/2 < 1.
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To quantify all of this, define

Hε(ϑ)
def
=

∫
∞

r=0
e−rϕ0

(
s(ϑ + r)

εη/2

)
dr

for all ε ∈ (0, 1) and ϑ ∈ R.

Lemma 4.5. For each ε ∈ (0, 1), Hε ∈ C(R) ∩ C∞(s−1(−1/2, 1/2)). Secondly,

H ′ε(ϑ) = Hε(ϑ)− ϕ0

(
s(ϑ)
εη/2

)
for all ϑ ∈ R. Finally, supε∈(0,1) ε

−η/2
‖Hε‖C(R) <∞.

Proof. We have that

Hε(ϑ) = eϑ
∫
∞

r=ϑ
e−rϕ0

(
s(r)
εη/2

)
dr

for all ϑ ∈ R \ Z. This easily implies the stated ODE. Since Hε is 1-periodic, a bound on
‖Hε‖C(R) will follow from a bound on ‖Hε‖C([0,1]). For ϑ ∈ [0, 1),

Hε(ϑ) = −eϑ
{∫ 1

r=ϑ
e−rϕ0

(
s(r)
εη/2

)
dr +

{
∞∑

k=1

e−k

}∫ 1

r=0
e−rϕ0

(
s(r)
εη/2

)
dr

}
.

This gives us the remainder of the claim. �

We can now finish off our analysis of I ε3 of (11).

Lemma 4.6. We have that

lim
ε↘0

E

[∫ t∧τ εK

r=0
I ε3 (r)dr

]
≤ Kεη/8.

Proof. We first write that∫ t∧τ εK

r=0
I ε3 (r)dr ≤

∫ t∧τ εK

r=0
ϕ0

(
s(θεr − ψ

ε
r )

εη/2

)
ϕ1

(
√

2
Xεr − Y εr
ε1/3+η/8

)
dr.

Set

U ε
r

def
= ε2/3−η/8 sgn(Xεr − Y εr )Hε(θ

ε
r − ψ

ε
r )ϕ1

(
√

2
Xεr − Y εr
ε1/3+η/8

)
.

Thus

U ε
t∧τ εK
−U ε

0 =

∫ t∧τ εK

r=0
Aε(r)dr +

2∑
j=1

∫ t∧τ εK

r=0
E j,ε(r)dr −

∫ t∧τ εK

r=0
E3,ε(r)dWr
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where

Aε(r)
def
= ε−1/3−η/8 sgn(Xεr − Y εr ){ω(X

ε
r )− ω(Y

ε
r )}ϕ0

(
s(θεr − ψ

ε
r )

εη/2

)
ϕ1

(
√

2
Xεr − Y εr
ε1/3+η/8

)
E1,ε(r)

def
= −ε−1/3−η/8 sgn(Xεr − Y εr ){ω(X

ε
r )− ω(Y

ε
r )}Hε(θ

ε
r − ψ

ε
r )ϕ1

(
√

2
Xεr − Y εr
ε1/3+η/8

)
E2,ε(r)

def
=
ε2/3−η/8

ε2/3+η/4 sgn(Xεr − Y εr )Hε(θ
ε
r − ψ

ε
r )ϕ̈1

(
√

2
Xεr − Y εr
ε1/3+η/8

)
(σ (θεr )− σ(ψ

ε
r ))

2

E3,ε(r)
def
=
√

2
ε2/3−η/8

ε1/3+η/8 sgn(Xεr − Y εr )Hε(θ
ε
r − ψ

ε
r )ϕ̇1

(
√

2
Xεr − Y εr
ε1/3+η/8

)
(σ (θεr )− σ(ψ

ε
r )).

We then compute that

|U ε
r | ≤ Kε2/3−η/8+η/2

= Kε2/3+3η/8

|E1,ε(r)| ≤ Kεη/2 |E2,ε(r)| ≤ Kεη/2−η/8−η/4 = Kεη/8

|E3,ε(r)| ≤ Kε1/3−η/4+η/2
= Kε1/3+η/4.

We finally observe that

lim
ε↘0

inf
{
(ω(x)− ω(y)) sgn(x − y)

ε1/3+η/8 : |x | < L , |y| < L and ϕ1

(
√

2
x − y

ε1/3+η/8

)
6= 0

}
> 0.

This completes the proof. �

4.3. Averaging near the diagonal

We finally consider I ε2 of (11), which measures the amount of time that ∆̃ε(r) is small, i.e., the
amount of time that (Xε, θε) and (Y ε, ψε) are close (in an appropriate sense). The essence
of our argument is that there are three time scales when (Xε, θε) and (Y ε, ψε) are close (this
was developed in [9]; see also [4,3]). The axial coordinates Xε and Y ε vary the most slowly
(the macroscopic scale). The angles θε and ψε vary the most quickly (the microscopic scale).
In between, we have a mesoscopic scale, on which the angle of the vector (ε−1/3(Xε − Y ε),
s(θε − ψε)) fluctuates. Note that by uniqueness of solutions to SDE’s,

inf{r ≥ 0 : ∆̃ε(r) = 0} = ∞

P-a.s. (if ∆̃ε(r) = 0, then (Xεr , θ
ε
r ) ∼ (Y

ε
r , ψ

ε
r )). Fix a symbol ? and define R? def

= R ∪ {?}; we
give R? the usual topology of one-point compactification [8]. For ε ∈ (0, 1) and r ≥ 0, define

Λεr
def
=


ε−1/3(Xεr − Y εr )

s(θεr − ψεr )
if s(θεr − ψ

ε
r ) 6= 0

? if s(θεr − ψ
ε
r ) = 0.

Note that if s(θεr − ψ
ε
r ) 6= 0, then

Xεr − Y εr
ε1/3 =

Λεr√
1+ (Λεr )2

√
∆̃ε(r)

|s(θεr − ψ
ε
r )| =

1√
1+ (Λεr )2

√
∆̃ε(r).
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Thus we can make a coordinate change from (Xε, θε, Y ε, ψε) to (Xε, θε,Λε, ∆̃ε). For any r > 0
such that s(θεr − ψ

ε
r ) 6= 0, we informally have that

dΛεr =
ε−1/3(σ (θεr )− σ(ψ

ε
r ))

s(θεr − ψεr )
dWr − ε

−4/3 (X
ε
r − Y εr )(ω(X

ε
r )− ω(Y

ε
r ))

s2(θεr − ψ
ε
r )

dr

≈ ε−1/3σ̇ (θεr )dWr − ε
−2/3ω̇(Xεr )(Λ

ε
r )

2dr.

The import of this is that we expect to see fluctuations of Λεr on time scales of order ε2/3. Since
the fluctuations of θε are on the shorter time scale ε, we should further be able to simplify the
effective dynamics of Λε. Recalling (3), we have that

dΛεr ≈ ε
−1/3κ1dWr − ε

−2/3ω̇(Xεr )(Λ
ε
r )

2dr. (12)

We finally note that this SDE implies that Λε should reach an invariant measure on a time interval
of order ε2/3. This invariant measure can in fact be explicitly described; see (17).

Note that

d∆̃ε(r) =
2
ε

s(θεr − ψ
ε
r )
{
ω(Xεr )− ω(Y

ε
r )
}

dr +
2

ε2/3 (X
ε
r − Y εr )(σ (θ

ε
r )− σ(ψ

ε
r ))dWr

+
1

ε2/3 (σ (θ
ε
r )− σ(ψ

ε))2dr = ε−2/3 Aε(r)dr + ε−1/3 Bε(r)dWr

for r > 0 such that |s(θεr − ψ
ε
r )| 6=

1
2 , where

Aε(r) = 2s(θεr − ψ
ε
r )

(
ω(Xεr )− ω(Y

ε
r )

ε1/3

)
+ (σ (θεr )− σ(ψ

ε
r ))

2

Bε(r) = 2
(

Xεr − Y εr
ε1/3

)
(σ (θεr )− σ(ψ

ε
r )).

(13)

Also, |Aε(r)| ≤ K∆̃ε(r) and |Bε(r)| ≤ K∆̃ε(r).
We will proceed in a number of steps. For convenience, set

∆̃′ε(r)
def
=

∆̃ε(r)

εη/4
.

Then set

u1,ε(r)
def
=

{
Aε(r)

∆̃ε(r)
−

1
2

B2
ε (r)

∆̃2
ε(r)

}
ϕ0(∆̃′ε(r)) (14)

for all ε ∈ (0, 1) and r ≥ 0.

Define `(z)
def
= ln(e+ 1/z) for all z > 0; then ` is bounded from above for z large and behaves

like z 7→ ln z−1 for z small. We also note that we will localize all of our steps by τ εK .

Our first result is essentially to show that ∆̃′ε doesn’t spend too much time near the origin. We
should almost be able to do this by bounding u1,ε. It would be an easy task if the term in braces
in (14) were bounded from below away from zero. In fact, this will only be true once we do a bit
more averaging. We also note that the bound on u1,ε will use the bounds of Sections 4.2 and 4.3
to control some of the errors.
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Lemma 4.7. For each L > 0,

E

[∫ t∧τ εK

r=0
u1,ε(r)dr

]
≤ K`(ε)E

[∫ t∧τ εK

r=0

{
I ε1 (r)+ I ε3 (r)

}
dr

]
+ Kε2/3`(ε).

Proof. Fix δ > 0 and set

U δ,ε
r

def
= ε2/3 ln(∆̃ε(r)+ δ)ϕ0(∆̃′ε(r)).

By Ito’s rule,∫ t∧τ εK

r=0
uδ1,ε(r)dr = U δ,ε

t∧τ εK
−U δ,ε

0 −

∫ t∧τ εK

r=0
Eδ,ε(r)dr − {Mt∧τ εK

− M0},

where

uδ1,ε(r)
def
=

{
Aε(r)

∆̃ε(r)+ δ
−

1
2

B2
ε (r)

(∆̃ε(r)+ δ)2

}
ϕ0(∆̃′ε(r))

Eδ,ε(r)
def
=

A1,ε(r)

εη/4
ln(∆̃ε(r)+ δ)ϕ̇0(∆̃′ε(r))+

Bε(r)

∆̃ε(r)+ δ

Bε(r)

εη/4
ϕ̇0(∆̃′ε(r))

+
1
2

B2
ε (r)

εη/2
ln(∆̃ε(r)+ δ)ϕ̈0(∆̃′ε(r))

and where M is a martingale. By dominated convergence,

E

[∫ t∧τ εK

r=0
u1,ε(r)dr

]
= lim
δ↘0

E

[∫ t∧τ εK

r=0
uδ1,ε(r)dr

]
.

Keeping in mind that (x◦, θ◦, y0, ψ0) ∈ R4 is fixed, there is a K > 0 such that

|U δ,ε
0 | ≤ Kε2/3`(ε) and U δ,ε

t∧τ εK
≤ Kε2/3`(ε)

for all δ and ε in (0, 1). Then | ln(∆̃ε(r)+ δ)| ≤ K`(ε) for all ε and δ in (0, 1) and all r ∈ [0, τ εK ]
such that ϕ̇0(∆̃′ε(r)) or ϕ̈0(∆̃′ε(r)) is nonzero. Thus

|Eδ,ε(r)| ≤ K`(ε)χ[1,2](|∆̃′ε(r)|)

for all ε and δ in (0, 1) and r ∈ [0, τ εK ]. If |∆̃′ε(r)| ∈ [1, 2], then5
|Xεr−Y εr | ≤

√
2ε1/3+η/8

≤ %εν .
Hence

χ[1,2](|∆̃′ε(r)|) ≤ χ[−%,%]

(
bεr
εν

)
χ[1,∞)

(
∆̃ε(r)

εη/4

)
≤ I ε1 (r)+ I ε3 (r)

for all ε ∈ (0, 1) and r ∈ [0, τ εK ]. Combining our calculations, we get the desired result. Note
that we do not need a lower bound on U δ,ε

t∧τ εK
. �

We now want to start replacing the term in braces in (14) by simpler expressions. First, we
replace differences in (13) by (first-order) Taylor approximations; this basically allows us to

5 We use here that 1/3+ η/8 > ν.
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consider the tangent flow, which was treated in [9]. Define

Ǎ2,ε(r)
def
= 2ω̇(Xεr )s(θ

ε
r − ψ

ε
r )

(
Xεr − Y εr
ε1/3

)
+ (σ̇ (θεr ))

2s2(θεr − ψ
ε
r )

B̌2,ε(r)
def
= 2σ̇ (θεr )

(
Xεr − Y εr
ε1/3

)
s(θεr − ψ

ε
r )

u2,ε(r)
def
=

{
Ǎ2,ε(r)

∆̃ε(r)
−

1
2

B̌2
2,ε(r)

∆̃2
ε(r)

}
ϕ0(∆̃′ε(r))

for all ε ∈ (0, 1) and r ≥ 0.

Lemma 4.8. For each L > 0, we have that

lim
ε↘0

E

[∫ t∧τ εK

r=0
|u1,ε(r)− u2,ε(r)|dr

]
≤ 0.

Proof. Note that

|Aε(r)− Ǎ2,ε(r)| ≤ K∆̃3/2
ε (r) and |Bε(r)− B̌2,ε(r)| ≤ K∆̃3/2

ε (r).

Thus

|u1,ε(r)− u2,ε(r)| ≤ K

{
∆̃3/2
ε (r)

∆̃ε(r)
+

∆̃5/2
ε (r)

∆̃2
ε(r)

}
ϕ0(∆̃′ε(r)) ≤ Kεη/8. �

We can now sequentially treat the different time scales. We first average the fast variable,
i.e., θε (the microscopic time scale); this simplifies the σ̇ (θε) term in u2,ε. Set

Ǎ3,ε(r)
def
= 2ω̇(Xεr )s(θ

ε
r − ψ

ε
r )

(
Xεr − Y εr
ε1/3

)
+ κ2

1 s2(θεr − ψ
ε
r )

B̌3,ε(r)
def
= 2κ1s(θεr − ψ

ε
r )

(
Xεr − Y εr
ε1/3

)
u3,ε(r)

def
=

{
Ǎ3,ε(r)

∆̃ε(r)
−

1
2

B̌2
3,ε(r)

∆̃2
ε(r)

}
ϕ0(∆̃′ε(r)).

We will need the following averaging corrector. For λ ∈ (0, 1) and (x, θ) ∈ R2, set

Hλ
κ1
(x, θ)

def
=

∫
∞

s=0
e−λs(σ̇ (θ + ω(x)s))2ds.

Lemma 4.9. For each λ ∈ (0, 1), Hλ
κ1
∈ C∞(S1

×R). Secondly, supλ∈(0,1) λ‖H
λ
κ1
‖C2(R2) <∞.

Thirdly,

ω(x)
∂Hλ

κ1

∂θ
(x, θ) = λHλ

κ1
(x, θ)− (σ̇ (θ))2

for all (x, θ) ∈ R2. Finally, there is a constant K > 0 such that∣∣∣λHλ(x, θ)− κ1
2
∣∣∣ ≤ Kλ

for all (x, θ) ∈ R2 and λ ∈ (0, 1).
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Proof. The regularity, bounds on derivatives, and PDE follow from direct calculations [10]. To
prove the final bound, define

Φ(θ) def
=

∫ θ

r=0

{
(σ̇ (r))2 − κ1

2
}

dr;

for all θ ∈ R. Then we can integrate by parts to see that

λHλ
κ1
(x, θ)− κ1

2
= λ

∫
∞

r=0
e−λr Φ̇(θ + ω(x)r)dr

= −λΦ(θ)+ λ2
∫
∞

r=0
e−λrΦ(θ + ω(x)r)dr

= −λΦ(θ)+ λ
∫
∞

r=0
e−rΦ

(
θ + ω(x)

r

λ

)
dr.

This implies the stated result after observing that Φ is bounded. �

We can now show that u2,ε and u3,ε are close.

Lemma 4.10. For each L > 0,

lim
ε↘0

E

[∣∣∣∣∣
∫ t∧τ εK

r=0

{
u2,ε(r)− u3,ε(r)

}
dr

∣∣∣∣∣
]
= 0.

Proof. Set λε
def
= ε1/3. Define

qεr
def
=

(
Xεr − Y εr
ε1/3

)2

, Qε
r

def
=

1

∆̃ε(r)
− 2

qεr
∆̃2
ε(r)

U ε
r

def
= εHλε

κ1
(Xεr , θ

ε
r )s

2(θεr − ψ
ε
r )Q

ε
rϕ0(∆̃′ε(r))

= εHλε
κ1
(Xεr , θ

ε
r )

s2(θεr − ψ
ε
r )

∆̃ε(r)

{
1− 2

qεr
∆̃ε(r)

}
ϕ0(∆̃′ε(r)).

We note that informally

dqεr = ε
−1/3 Bε(r)dWr + ε

−2/3 h̄b(Cεr )dr

dQε
r = ε

−2/3

{
−

Aε(r)+ 2 h̄b(Cεr )

∆̃2
ε(r)

+
4qεr Aε(r)+ 5B2

ε (r)

∆̃3
ε(r)

−
6qεr B2

ε (r)

∆̃4
ε(r)

}
dr

+ ε−1/3

{
−3Bε(r)

∆̃2
ε(r)

+
4qεr Bε(r)

∆̃3
ε(r)

}
dWr .
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By Ito’s rule,∫ t∧τ εK

r=0
{u3,ε(r)− u2,ε(r)}dr = U ε

t∧τ εK
−U ε

0 −

∫ t∧τ εK

r=0
E1,ε(r)dr

−
ε

2

∫ t∧τ εK

r=0

∂2 Hλε
κ1

∂x2 (Xεr , θ
ε
r )σ

2(θεr )E2,ε(r)dr

− ε2/3
4∑

j=3

∫ t∧τ εK

r=0

∂Hλε
κ1

∂x
(Xεr , θ

ε
r )σ (θ

ε
r )E2,ε(r)dr

− ε1/3
8∑

j=5

∫ t∧τ εK

r=0
Hλε
κ1
(Xεr , θ

ε
r )E j,ε(r)dr

− ε

∫ t∧τ εK

r=0

∂Hλε
κ1

∂x
(Xεr , θ

ε
r )σ (θ

ε
r )E2,ε(r)dWr

− ε2/3
10∑
j=9

∫ t∧τ εK

r=0
Hλε
κ1
(Xεr , θ

ε
r )E j,ε(r)dWr

where

E1,ε(r)
def
=

{
λεHλε

κ1
(Xεr , θ

ε
r )− κ

2
1

} s2(θεr − ψ
ε
r )

∆̃ε(r)

{
1− 2

qεr
∆̃ε(r)

}
ϕ0(∆̃′ε(r))

E2,ε(r)
def
=

s2(θεr − ψ
ε
r )

∆̃ε(r)

{
1− 2

qεr
∆̃ε(r)

}
ϕ0(∆̃′ε(r))

E3,ε(r)
def
=

s2(θεr − ψ
ε
r )

∆̃ε(r)

{
−3Bε(r)

∆̃ε(r)
+

4qεr Bε(r)

∆̃2
ε(r)

}
ϕ0(∆̃′ε(r))

E4,ε(r)
def
=

s2(θεr − ψ
ε
r )

∆̃ε(r)

{
1− 2

qεr
∆̃ε(r)

}
ϕ̇0(∆̃′ε(r))

Bε(r)

εη/4

E5,ε(r)
def
= 2

1

∆̃ε(r)

(
s(θεr − ψ

ε
r )

{
ω(Xεr )− ω(Y

ε
r )

ε1/3

}){
1− 2

qεr
∆̃ε(r)

}
ϕ0(∆̃′ε(r))

E6,ε(r)
def
=

s2(θεr − ψ
ε
r )

∆̃ε(r)

×

{
−

Aε(r)+ 2 h̄b(Cεr )

∆̃ε(r)
+

4qεr Aε(r)+ 5B2
ε (r)

∆̃2
ε(r)

−
6qεr B2

ε (r)

∆̃3
ε(r)

}
ϕ0(∆̃′ε(r))

E7,ε(r)
def
=

s2(θεr − ψ
ε
r )

∆̃ε(r)

{
1− 2

qεr
∆̃2
ε(r)

}{
ϕ̇0(∆̃′ε(r))

A1,ε(r)

εη/4
+

1
2
ϕ̈0(∆̃′ε(r))

B2
ε (r)

εη/2

}

E8,ε(r)
def
=

s2(θεr − ψ
ε
r )

∆̃ε(r)

{
−3Bε(r)

∆̃ε(r)
+

4qεr Bε(r)

∆̃2
ε(r)

}
ϕ̇0(∆̃′ε(r))

B1,ε(r)

εη/4

E9,ε(r)
def
=

s2(θεr − ψ
ε
r )

∆̃ε(r)

{
−3Bε(r)

∆̃ε(r)
+

4qεr Bε(r)

∆̃2
ε(r)

}
ϕ0(∆̃′ε(r))

E10,ε(r)
def
=

s2(θεr − ψ
ε
r )

∆̃ε(r)

{
1− 2

qεr
∆̃ε(r)

}
ϕ̇0(∆̃′ε(r))

Bε(r)

εη/4
.
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Using Lemma 4.9, we have that |E1,ε(r)| ≤ Kλε = Kε1/6 and ε1/3
|E j,ε(r)| ≤ Kε1/3/λε = Kε1/6

for j ∈ {2, 3 . . . 10}. We similarly have that |U ε
r | ≤ Kε/λε = Kε5/6. �

We now want to use the mesoscopic time scale suggested by (12) and average out Λε. This
will take some work as (12) is only an approximate description of the dynamics of Λε. We first
rewrite some things. Define G ∈ C(R? × R) as

G(λ, x) =


2ω̇(x)λ+ κ2

1

1+ λ2 −
2κ2

1λ
2

(1+ λ2)2
if (λ, x) ∈ R× R

0 if (λ, x) ∈ {?} × R.

Then

u3,ε(r) = G(Λεr , Xεr )ϕ0(∆̃′ε(r)). (15)

We want to replace the dependence on Λε (the mesoscopic variable) with an effective constant.
We first define an averaging measure. We recall J◦ of (2) and κ2 of (4). Clearly

lim
|λ|→∞

λ2 J◦(λ) =
1
3
; (16)

thus J◦ ∈ L1(R). Next define

(AG)(x)
def
=

∫
λ∈R G(λ, x)J◦(κ2(x)λ)dλ∫

λ∈R J◦(κ2(x)λ)dλ
=

∫
λ∈R g

(
λ

κ2(x)
, x
)

J◦(λ)dλ∫
λ∈R J◦(λ)dλ

. (17)

Let’s now construct the corrector needed to replace G by AG.

Lemma 4.11. There is a Υ ∈ C(R? × R) ∩ C2(R× R) such that

κ2
1

2
∂2Υ
∂λ2 (λ, x)− ω̇(x)λ2 ∂Υ

∂λ
(λ, x) = G(λ, x)− (AG)(x) (λ, x) ∈ R× R

lim
|λ|→∞

Υ(λ, x) = 0 x ∈ R.

We also have that

lim
|λ|→∞

λ2 ∂Υ
∂λ
(λ, x) =

2
3
(AG)(x)

κ2
1κ

3
2 (x)

lim
|λ|→∞

∂2Υ
∂λ2 (λ, x) = 0

for all x ∈ R. Finally,

sup
i, j∈{0,1,2}

i+ j≤2
λ∈R
x∈K

(1+ |λ|)i+1
∣∣∣∣ ∂ i+ jΥ
∂λi∂x j (λ, x)

∣∣∣∣ <∞ (18)

for each K ⊂⊂ R.
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Proof. Define

T (λ, x)
def
=

2

κ2
1κ

2
2 (x)

{
g

(
λ

κ2(x)
, x

)
− (Ag)(x)

}
Υ(λ, x)

def
= −

∫ κ2(x)λ

ς=−∞

eς
3
{∫
∞

ν=ς

T (ν, x)e−ν
3
dν
}

dς

for all (λ, x) ∈ R × R. For all x ∈ R, g(·, x) ∈ C(R?) so ḡ(x)
def
= supλ∈R |T (λ, x)| is finite.

Hence∣∣∣∣eλ3
∫
∞

ς=λ

T (ς, x)e−ς
3
dς

∣∣∣∣ ≤ ḡ(x)J◦(−λ)

for all λ ∈ R and x ∈ R, so by (16), we know that Υ is well-defined and also that limλ→−∞

Υ(λ, x) = 0 for each x ∈ R. We also note that

lim
λ→∞

Υ(λ, x) =
∫
∞

ς=−∞

eς
3
{∫
∞

ν=ς

T (ν, x)e−ν
3
dν
}

dς

=

∫
∞

ν=−∞

T (ν, x)e−ν
3
{∫ ν

ς=−∞

eς
3
dς
}

dr

=

∫
∞

r=−∞
T (r, x)J◦(r)dr =

2

κ2
1κ

2
2 (x)

×

{∫
∞

r=−∞
g

(
r

κ2(x)
, x

)
J◦(r)dr − (Ag)(x)

∫
∞

r=−∞
J◦(r)dr

}
= 0.

Differentiating the formula for Υ , we get that

∂Υ
∂λ
(λ, x) = −κ2(x) exp

[
κ3

2 (x)λ
3
] ∫ ∞

ς=κ2(x)λ
T (ς, x)e−ς

3
dς

∂2Υ
∂λ2 (λ, x) = 3κ3

2 (x)λ
2 ∂Υ
∂λ
(λ, x)+ κ2

2 (x)T (κ2(x)λ, x)

for all (λ, x) ∈ R × R. The second formula is equivalent to the differential equation for Υ . We
next compute that

We can rewrite the first formula as

∂Υ
∂λ
(λ, x) = −

κ2(x)

3

∫
∞

ς=0

T
(
(ς + (κ2(x)λ)3)1/3, x

){
ς + (κ2(x)λ)3

}2/3 e−ςdς

= −
2

3κ2
1κ2(x)

∫
∞

ς=0

g
(
(ς+(κ2(x)λ)3)1/3

κ2(x)
, x
)
− (Ag)(x){

ς + (κ2(x)λ)3
}2/3 e−ςdς.

The claimed limit of λ2 ∂Υ
∂λ
(λ, x) follows, as do the claimed bounds on ∂ i+ jΥ/∂λi∂x j for i ≥ 1.

The bound for i = 0 follows by integrating ∂1+ jΥ/∂λ∂x j . �
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This should help us to average Λε out of (15); of course in doing so, we still have the fact that
(13) is only approximate. This will force us to take several extra steps. Set

αε(r)
def
=

∫ 1

γ=0
ω̇(Y εr + γ (X

ε
r − Y εr ))dγ

βε(r)
def
=

∫ 1

γ=0
σ̇ (Y εr + γ (X

ε
r − Y εr ))dγ.

Define now

v1,ε(r)
def
=

{
−αε(r)(Λεr )

2 ∂Υ
∂λ
(Λεr , Xεr )+

1
2
β2
ε (r)

∂2Υ
∂λ2 (Λ

ε
r , Xεr )

}
ϕ0(∆̃′ε(r))

if Λεr ∈ R, and set

v1,ε(r)
def
= −αε(r)

2
3
(AG)(Xεr )

κ2
1κ

3
2 (X

ε
r )
ϕ0(∆̃′ε(r))

if Λεr = ? (this case can also be defined by continuity). The point of v1,ε is that it is approximately
{G − (AG)}ϕ◦(∆̃′ε), where AG has averaged out the Λε term. This allows us to proceed to the
next step, but we use the estimates of Sections 4.2 and 4.3 to bound some of the errors.

Lemma 4.12. For each L > 0,

lim
ε↘0

E

[∣∣∣∣∣
∫ t∧τ εK

r=0
v1,ε(r)dr

∣∣∣∣∣
]
≤ KE

[∫ t∧τ εK

r=0

{
I ε1 (r)+ I ε3 (r)

}
dr

]
+ Kε1/3.

Proof. Set

U ε
r

def
= ε2/3Υ(Λεr , Xεr )ϕ0(∆̃′ε(r)).

Then ∫ t∧τ εK

r=0
v1,ε(r)dr = U ε

t∧τ εK
−U ε

0 −

5∑
j=1

∫ t∧τ εK

r=0
E j,ε(r)dr −

∫ t∧τ εK

r=0
E6,ε(r)dWr

where

E1,ε(r)
def
=

1
2
ε2/3 ∂

2Υ
∂x2 (Λ

ε
r , Xεr )σ

2(θεr )ϕ0(∆̃′ε(r))

E2,ε(r)
def
= ε1/3 ∂

2Υ
∂λ∂x

(Λεr , Xεr )σ (θ
ε
r )βε(r)ϕ0(∆̃′ε(r))

E3,ε(r)
def
= Υ(Λεr , Xεr )

{
ϕ̇0(∆̃′ε(r))

Aε(r)

εη/4
+

1
2
ϕ̈0(∆̃′ε(r))

Bε(r)

εη/2

}
E4,ε(r)

def
=
∂Υ
∂λ
(Λεr , Xεr )βε(r)ϕ̇0(∆̃′ε(r))

Bε(r)

εη/4

E5,ε(r)
def
= ε1/3 ∂Υ

∂x
(Λεr , Xεr )σ (θ

ε
r )ϕ̇0(∆̃′ε(r))

Bε(r)

εη/4
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E6,ε(r)
def
= ε1/3 ∂Υ

∂λ
(Λεr , Xεr )βε(r)ϕ0(∆̃′ε(r))+ ε

2/3 ∂Υ
∂x
(Λεr , Xεr )σ (θ

ε
r )ϕ0(∆̃′ε(r))

+ ε1/3Υ(Λεr , Xεr )ϕ̇0(∆̃′ε(r))
Bε(r)

εη/4
.

Here we have defined, by continuity,

∂ i+ jΥ
∂λi∂x j (?, x)

def
= 0

for all relevant nonnegative integers i and j and all x ∈ R. We easily see that E1,ε, E2,ε, E5,ε
and E6,ε are all bounded by Kε1/3. As in the proof of Lemma 4.7, both E3,ε(r) and E4,ε(r) are
bounded by

Kχ[1,2](|∆̃′ε(r)|) ≤ Kχ[−%,%]

(
bεr
εν

)
χ[1,∞)

(
∆̃ε(r)

εη/4

)
≤ K{I ε1 (r)+ I ε3 (r)}.

The claimed result easily follows.6 �

Next define

v2,ε(r)
def
=

{
−ω̇(Xεr )(Λ

ε
r )

2 ∂Υ
∂λ
(Λεr , Xεr )+

1
2
(σ̇ (θεr ))

2 ∂
2Υ
∂λ2 (Λ

ε
r , Xεr )

}
ϕ0(∆̃′ε(r))

if Λεr ∈ R, and set

v2,ε(r)
def
= −ω̇(Xεr )

2
3
(AG)(Xεr )

κ2
1κ

3
2 (X

ε
r )
ϕ0(∆̃′ε(r))

if Λεr = ?. This is even closer to {G − (AG)}ϕ◦(∆̃′ε); we have replaced αε and βε by ω̇(Xεr ) and
σ̇ (θεr ).

Lemma 4.13. We have that

lim
ε↘0

E

[∣∣∣∣∣
∫ t∧τ εK

r=0
v1,ε(r)− v2,ε(r)dr

∣∣∣∣∣
]
= 0.

Proof. If ϕ0(∆̃′ε(r)) > 0, then

|αε(r)− ω̇(X
ε
r )| ≤ K|Xεr − Y εr | ≤ Kε1/3

√
∆̃ε(r) ≤ Kε1/3+η/8

|βε(r)− (σ̇ (θ
ε
r ))

2
| ≤ K|s(θεr − ψ

ε
r )| ≤ K

√
∆̃ε(r) ≤ Kεη/8.

This gives us the desired result. �

We have almost finished. We next replace (σ̇ (θεr ))
2 by its average; recall that θε is the

microscopic (fastest) variable. Define

v3,ε(r)
def
=

{
−ω̇(Xεr )(Λ

ε
r )

2 ∂Υ
∂λ
(Λεr , Xεr )+

κ2
1

2
∂2Υ
∂λ2 (Λ

ε
r , Xεr )

}
ϕ0(∆̃′ε(r))

= u3,ε(r)− (AG)(Xεr )ϕ0(∆̃′ε(r))

6 Here is where we most need the localization by τ εK , so that we can take advantage of the uniform bounds of (18).
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if Λεr ∈ R, and set

v3,ε(r)
def
= −ω̇(Xεr )

2
3
(AG)(Xεr )

κ2
1κ

3
2 (X

ε
r )
ϕ0(∆̃′ε(r))

if Λεr = ?.

Lemma 4.14. For each L > 0,

lim
ε↘0

E

[∣∣∣∣∣
∫ t∧τ εK

r=0
{v2,ε(r)− v3,ε(r)}dr

∣∣∣∣∣
]
= 0.

Proof. Set λε
def
= ε1/6 and then set

U ε
r

def
=
ε

2
Hλε
κ1
(θεr , Xεr )

∂2Υ
∂λ2 (Λ

ε
r , Xεr )ϕ0(∆̃′ε(r)).

Then ∫ t∧τ εK

r=0
{v3,ε(r)− v2,ε(r)}dr = U ε

t∧τ εK
−U ε

0 −

11∑
j=1

∫ t∧τ εK

r=0
E j,ε(r)dr

−

15∑
j=12

∫ t∧τ εK

r=0
E j,ε(r)dWr

where

E1,ε(r)
def
=

1
2

{
λεHλε

κ1
(θεr , Xεr )− κ

2
1

} ∂2Υ
∂λ2 (Λ

ε
r , Xεr )ϕ0(∆̃′ε(r))

E2,ε(r)
def
=
ε

2
∂2 Hλε

κ1

∂x2 (θεr , Xεr )σ
2(θεr )

∂2Υ
∂λ2 (Λ

ε
r , Xεr )ϕ0(∆̃′ε(r))

E3,ε(r)
def
=
ε1/3

2
Hλε
κ1
(θεr , Xεr )

×

{
−αε(r)(Λεr )

2 ∂
3Υ
∂λ3 (Λ

ε
r , Xεr )+

1
2
β2
ε (r)

∂4Υ
∂λ4 (Λ

ε
r , Xεr )

}
ϕ0(∆̃′ε(r))

E4,ε(r)
def
=
ε

2
Hλε
κ1
(θεr , Xεr )

∂4Υ
∂λ2∂x2 (Λ

ε
r , Xεr )σ

2(θεr )ϕ0(∆̃′ε(r))

E5,ε(r)
def
=
ε1/3

2
Hλε
κ1
(θεr , Xεr )

∂2Υ
∂λ2 (Λ

ε
r , Xεr )

{
ϕ̇0(∆̃′ε(r))

Aε(r)

εη/4
+

1
2
ϕ̈0(∆̃′ε(r))

B2
ε (r)

εη/2

}
E6,ε(r)

def
=
ε

2
∂Hλε

κ1

∂x
(θεr , Xεr )σ

2(θεr )
∂3Υ
∂λ2∂x

(Λεr , Xεr )ϕ0(∆̃′ε(r))

E7,ε(r)
def
=
ε2/3

2
∂Hλε

κ1

∂x
(θεr , Xεr )σ (θ

ε
r )
∂3Υ
∂λ3 (Λ

ε
r , Xεr )βε(r)ϕ0(∆̃′ε(r))

E8,ε(r)
def
=
ε2/3

2
∂Hλε

κ1

∂x
(θεr , Xεr )σ (θ

ε
r )
∂2Υ
∂λ2 (Λ

ε
r , Xεr )ϕ̇0(∆̃′ε(r))

Bε(r)

εη/4
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E9,ε(r)
def
=
ε

2
Hλε
κ1
(θεr , Xεr )

∂4Υ
∂λ3∂x

(Λεr , Xεr )β
ε(r)σ (θεr )ϕ0(∆̃′ε(r))

E10,ε(r)
def
=
ε1/3

2
Hλε
κ1
(θεr , Xεr )

∂3Υ
∂λ3 (Λ

ε
r , Xεr )βε(r)ϕ̇0(∆̃′ε(r))

Bε(r)

εη/4

E11,ε(r)
def
=
ε1/3

2
Hλε
κ1
(θεr , Xεr )

∂3Υ
∂λ2∂x

(Λεr , Xεr )σ (θ
ε
r )ϕ̇0(∆̃′ε(r))

Bε(r)

εη/4

E12,ε(r)
def
=
ε

2
∂Hλε

κ1

∂x
(θεr , Xεr )σ (θ

ε
r )
∂2Υ
∂λ2 (Λ

ε
r , Xεr )ϕ0(∆̃′ε(r))

E13,ε(r)
def
=
ε2/3

2
Hλε
κ1
(θεr , Xεr )

∂3Υ
∂λ3 (Λ

ε
r , Xεr )βε(r)ϕ0(∆̃′ε(r))

E14,ε(r)
def
=
ε

2
Hλε
κ1
(θεr , Xεr )

∂3Υ
∂λ2∂x

(Λεr , Xεr )σ (θ
ε
r )ϕ0(∆̃′ε(r))

E15,ε(r)
def
=
ε2/3

2
Hλε
κ1
(θεr , Xεr )

∂2Υ
∂λ2 (Λ

ε
r , Xεr )ϕ̇0(∆̃′ε(r))

Bε(r)

εη/4
.

We have that |E1,ε| ≤ Kλε = Kε1/6. All of the remaining E j,ε’s can be bounded by Kε1/3/λε =

Kε1/6. The claim then follows. �

We can now pull everything together and rigorously complete the mesoscopic averaging that
we need to do. Recall that the goal of this subsection is finding a bound on I ε2 of (11). This allows
us to finish the proof of Lemma 4.1.

Lemma 4.15. We have that

lim
ε↘0

E

[∫ t∧τ εK

r=0
I ε2 (r)dr

]
= 0.

Proof. We first write that∫ t∧τ εK

r=0
I ε2 (r)dr ≤

∫ t∧τ εK

r=0
ϕ0(∆̃′ε(r))dr.

We proceed by writing that

(AG)(x) =
κ2

1κ
2
2 (x)∫

λ∈R J◦(λ)dλ
J (κ2

2 (x)).

Since J (κ2
2 (x)) > 0 for all x ∈ K , we must have that υK

def
= infx∈K (AG)(x) > 0. We conse-

quently can write that

υKϕ0(∆̃′ε(r)) ≤ (AG)(Xεr )ϕ0(∆̃′ε(r)) ≤ u3,ε(r)− v3,ε(r)

= {u3,ε(r)− u2,ε(r)} + {u2,ε(r)− u1,ε(r)} + u1,ε(r)

−{v3,ε(r)− v2,ε(r)} − {v2,ε(r)− v1,ε(r)} − v1,ε(r).

We combine our estimates and Lemmas 4.3 and 4.6 together to get that

lim
ε↘0

E

[∫ t∧τ εK

r=0
ϕ0(∆̃′ε(r))dr

]
= 0. �
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We can finally finish our proof of Lemma 4.1.

Proof of Lemma 4.1. Combine Lemmas 4.3, 4.6 and 4.15. �
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