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SUMMARY

Tourette syndrome (TS) is characterized by tics,
sensorimotor gating deficiencies, and abnormalities
of cortico-basal ganglia circuits. A mutation in histi-
dine decarboxylase (Hdc), the key enzyme for the
biosynthesis of histamine (HA), has been implicated
as a rare genetic cause. Hdc knockout mice ex-
hibited potentiated tic-like stereotypies, recapitu-
lating core phenomenology of TS; these were
mitigated by the dopamine (DA) D2 antagonist halo-
peridol, a proven pharmacotherapy, and by HA
infusion into the brain. Prepulse inhibition was
impaired in both mice and humans carrying Hdc
mutations. HA infusion reduced striatal DA levels; in
Hdc knockout mice, striatal DA was increased and
the DA-regulated immediate early gene Fos was up-
regulated. DA D2/D3 receptor binding was altered
both in mice and in humans carrying the Hdc muta-
tion. These data confirm histidine decarboxylase
deficiency as a rare cause of TS and identify HA-DA
interactions in the basal ganglia as an important lo-
cus of pathology.
INTRODUCTION

Tourette syndrome (TS) is characterized by pathognomic motor

and vocal tics, as well as by sensory and cognitive symptoms. It

affects 0.3%–1.0% of the population. The onset of tics is typi-

cally in childhood; many patients, although not all, experience

improvement of their symptoms in late adolescence or early

adulthood.

Convergent evidence implicates dysregulation of cortico-

basal ganglia circuits in TS (Albin, 2006; Leckman et al., 2010;

Williams et al., 2013). Focal ischemic damage to the striatum,

the input nucleus of the basal ganglia, can produce tics (Kwak

and Jankovic, 2002), as can local striatal disinhibition inmonkeys

(McCairn et al., 2009). Disruption of dopaminergic modulation of

this circuitry, in particular, is implicated, although the specific

nature and etiology of this abnormality are unclear (Albin, 2006;

Jankovic and Kurlan, 2011). Positron emission tomography

(PET) imaging suggests increased striatal intrasynaptic dopa-

mine (DA) in individuals with TS (Singer et al., 2002; Wong

et al., 2008). The D2 DA receptor antagonists haloperidol and

pimozide are the most efficacious pharmacological therapy for

severe tics (Bloch, 2008; Du et al., 2010; Kurlan, 2010). Psychos-

timulant drugs such as D-amphetamine can trigger or worsen

tics in patients (Leckman et al., 2010) and produce tic-like motor

stereotypies in animals (Kelley, 2001).
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The basal ganglia circuitry can be described, to a first ap-

proximation, as parallel cortico-striato-thalamo-cortical loops

specialized for processing different types of behaviorally rele-

vant information (Alexander et al., 1986; Choi et al., 2012;

Haber and Knutson, 2010). Striatonigral neurons expressing

the D1 DA receptor provide excitatory feedback to the cortex;

striatopallidal neurons expressing the D2 DA receptor provide

inhibitory feedback. Dynamic balance between these parallel

pathways contributes to regulating diverse behaviors (Albin

et al., 1989; Graybiel, 2008; Grillner et al., 2013; Haber and

Knutson, 2010).

TS has a heritability of approximately 0.58 (Davis et al., 2013).

Causative mutations and major risk alleles have proven elusive

(Bloch et al., 2011; O’Rourke et al., 2009; State, 2011). A recent

genome-wide association study failed to identify any common

polymorphisms with genome-wide statistical significance

(Scharf et al., 2013). In this setting, rare, highly penetrant

mutations are of particular value in the generation and testing

of pathophysiological hypotheses.

A recent study of a two-generation pedigree in a family with a

high incidence of TS identified a rare segregating nonsense

mutation, Hdc W317X, in the l-histidine decarboxylase (Hdc)

gene (Ercan-Sencicek et al., 2010). Histidine decarboxylase

(HDC) is required for the generation of histamine (HA) from

histidine (Haas et al., 2008). Subsequent analyses have also

implicated disruption of Hdc (Karagiannidis et al., 2013) or of

histaminergic signaling more generally (Fernandez et al., 2012)

in TS. However, the causal connection between reduced HDC

activity and TS symptoms and the pathophysiological links

between Hdc disruption and TS-relevant neurobiological abnor-

malities remain unclear.

HA is produced by neurons in the tuberomamillary nucleus of

the posterior hypothalamus that project throughout the central

nervous system (CNS) (Haas et al., 2008). Pharmacological

studies show that enhancing central HA production modulates

stereotypy produced by methamphetamine (Joshi et al., 1981;

Kitanaka et al., 2007) or apomorphine (Paul et al., 2000).

The Hdc W317X mutation is rare; it has not been identified

outside of the index family (Ercan-Sencicek et al., 2010). How-

ever, it has several characteristics that make it optimal for

testing in an animal model. It is dominantly acting and of high

penetrance. The enzymatic activity of HDC is well understood

(Haas et al., 2008), and the nonsense mutation completely abro-

gates biosynthetic capacity (Ercan-Sencicek et al., 2010).

Finally, the hypothesized ability of HA to modulate DA levels in

the CNS (Haas et al., 2008) leads to a testable hypothesis:

that reduced HA production produces TS phenomenology

through dysregulation of dopaminergic modulation of the basal

ganglia.

RESULTS

Individuals Carrying a Hypomorphic Hdc Allele Exhibit
Tics; Hdc Knockout Mice and Heterozygotes Exhibit
Potentiated Tic-like Stereotypies
The clinical histories of the carriers of the HdcW317X mutation

have been described elsewhere (Ercan-Sencicek et al., 2010).

Diagnoses were confirmed using the Structured Clinical Inter-
78 Neuron 81, 77–90, January 8, 2014 ª2014 Elsevier Inc.
view for DSM-IV (First et al., 1997) (Table S1 available online).

Tics were within a typical range of severity. There was no signif-

icant correlation between age and tic severity, as measured by

the Yale Global Tic Severity Scale (Leckman et al., 1989; p >

0.4). Four of the nine had comorbid obsessive-compulsive dis-

order (OCD) symptoms; three had a history of depressive symp-

toms; and one had high-functioning autism. None were treated

with high-potency D2 antagonists such as haloperidol (Bloch,

2008). Three were on SSRI antidepressants for treatment of co-

morbid depressive, anxiety, and OCD symptoms.

We turned to a mouse model to establish the causal relation-

ship of Hdc disruption to key behavioral and neurochemical

characteristics of TS. Hdc W317X produces a truncated protein

without enzymatic activity (Ercan-Sencicek et al., 2010; see

Figure 1A). Hdc knockout (KO) mice produce no HDC protein

(Krusong et al., 2011; Ohtsu et al., 2001). [HA] was reduced

in +/� mice, confirming haploinsufficiency, and was undetect-

able in �/� animals (Figure 1B).

Psychostimulants can potentiate tics and tic-like stereotypies.

We assessed motor stereotypies before and after administration

of a single intraperitoneal (i.p.) dose of D-amphetamine

(8.5 mg/kg in sterile saline, the threshold for production of

observable motor stereotypies in wild-type animals on this ge-

netic background).

Hdc+/� and Hdc�/� mice showed normal baseline locomotion

(Figure 1C), exploratory rearing, and center occupancy in an

open field (Figure 1D) and no evident spontaneous motor stereo-

typies. Wild-type mice showed locomotor activation after

amphetamine, which was attenuated in Hdc+/� and Hdc�/�

mice (Figure 1C). Reduced locomotion is often seen in wild-type

mice administered high doses of amphetamine, as stereotypical

movements compete with it. We observationally quantified a

range of stereotypies after D-amphetamine (Kelley, 2001); the

majority consisted of repetitive focused sniffing and orofacial

movements (seeMovies S1, S2, and S3). KOmice showedmark-

edly increased motor stereotypies (Figure 1E).

The reduced locomotion in heterozygotes suggests that

they were engaged in stereotypies that competed with loco-

motor behavior but fell below the threshold of detection. We

administered a higher dose of D-amphetamine (10 mg/kg) in

an independent cohort of mice to see whether enhanced stereo-

typies would manifest in heterozygotes. Locomotor activation

was again attenuated in +/� and �/� mice (Figure S1E). At

this higher dose, many of the KOs became immobile, rendering

quantification of stereotypy impossible. Heterozygotes now

showed increased stereotypy (Figure 1F). Thus, Hdc deficiency

potentiates tic-like stereotypies.

Stereotypies in Hdc KO Mice Are Mitigated by
Haloperidol Pretreatment
We tested the responsiveness of tic-like stereotypies to halo-

peridol, a DA D2 receptor antagonist, in an independent cohort

of Hdc mice (Figure 2A). HA levels go up during the active

circadian phase (Haas et al., 2008; Figures 5B and S5B). Thus,

behavioral phenotypes may vary across the light-dark cycle.

We performed these experiments at night to replicate the core

phenotype while HA levels are elevated in wild-type animals

(because mice are nocturnal).
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Figure 1. Reduced HA Levels and Stereotypy

in Hdc KO and Haploinsufficient Mice

(A) Hdc W317X was devoid of enzymatic activity;

addition of equimolar Hdc W317X to a constant

amount of wild-type Hdc mRNA reduced HA

accumulation, confirming the in vitro dominant-

negative effect of this mutant.

(B) Hdc+/� and Hdc�/� mice showed reduced

whole-tissue HA in hypothalamus (left), striatum,

and neocortex (right), confirming efficacy of the KO

and haploinsufficiency in +/� mice (n = 5 per ge-

notype). WT, wild-type; Het, Hdc+/� (heterozygote).

(C) All genotypes showed similar exploratory activ-

ity over 20 min in a novel open field. Following

8.5 mg/kg D-amphetamine (i.p., in normal saline),

WT mice showed locomotor activation, which was

attenuated in �/� and +/� mice (RM-ANOVA, ge-

notype, F[2,15] = 3.8, p = 0.04; Time3 Genotype, F

[10,75] = 2.15, p = 0.02; n = 6 per genotype).

(D) Prior to amphetamine, KO mice showed normal

rearing (upper panel) and center occupancy time

(lower panel) in the open field, confirming normal

exploratory activity and anxiety.

(E) KO mice showed markedly increased stereo-

typy, beginning 10 min after D-amphetamine injec-

tion. RM-ANOVA, genotype: F[2,15] = 3.8; p = 0.04;

Time 3 Genotype, F[10,75] = 1.83, p = 0.06.

(F) At a higher dose of D-amphetamine (10 mg/kg),

several �/� mice became completely immobile,

making quantification of stereotypy impossible; +/�
mice, however, now showed enhanced stereotypy

(RM-ANOVA, genotype: F[1,10] = 7.70, p = 0.01;

Time 3 Genotype: F[5,50] = 4.36, p = 0.002; n = 6

per group). *p < 0.05.

Group data are represented as mean ± SEM. See

also Figure S1.
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Haloperidol pretreatment produced a modest but statistically

significant reduction in locomotor activity after amphetamine

that did not differ across genotypes (Figures 2B and S2). Hdc�/�

mice pretreated with i.p. saline again exhibited tic-like stereo-

typies after 8.5 mg/kg D-amphetamine; heterozygotes also

showed elevated stereotypies (Figure 2C). This experiment

was conducted in older animals (7–9 months) than the initial

characterization (Figures 1E and 1F; 3–7 months), suggesting

that stereotypy does not vary with age; this recapitulates the

persistence of tics seen in adult carriers of the Hdc W317X

mutation (Table S1).

Pretreatment with 0.3 mg/kg haloperidol attenuated stereo-

typies in �/� mice and eliminated them in heterozygotes

(Figures 2D and 2F). Pretreatment with 0.6 mg/kg haloperidol

eliminated stereotypies in all genotypes (Figures 2E and 2F).

The haloperidol effect was significant in the Hdc�/� mice,

considered in isolation (repeated measures [RM]-ANOVA: Halo-

peridol Dose 3 Time interaction, F[10,40] = 2.19, p = 0.039) but

not in the other genotypes. Collapsing across postamphetamine

time points, there was a main effect of genotype in the saline-

treated condition (Figure 2F; ANOVA of genotype and treatment

order, F[2,10] = 5.70, p = 0.022) that was attenuated at the

0.3 mg/kg (F[2,9] = 2.09, p = 0.18) and 0.6 mg/kg doses of halo-

peridol (F[2,9] = 0.86, p > 0.4). All animals received the highest

haloperidol dose on the third day; key effects remained signifi-

cant when analysis was restricted to only saline and 0.3 mg/kg
haloperidol, with treatment order randomized and the investi-

gator blind to treatment: RM-ANOVA with treatment order as

an independent factor (main effect of haloperidol, F[1,55] =

6.99, p = 0.023; main effect of genotype, F[2,11] = 3.99, p =

0.05; main effect of time, F[5,55] = 6.46, p < 0.001; Time 3 Ge-

notype interaction, F[10,55] = 2.69, p = 0.009).

To better quantify the potentiated stereotypies in Hdc+/� and

Hdc�/� mice, we combined data from the three experiments

described earlier (Figures 1E, 1F, and 2C). In the combined

data set (n = 17 +/+, 17 +/�, and 11 �/� mice), the differential

induction of stereotypies across genotypes was highly signifi-

cant (RM-ANOVA with genotype and experiment as between-

subjects factors: main effect of genotype, F[2,35] = 10.8, p <

0.001; main effect of time, F[5,175] = 26.8, p < 0.001; Time 3

Genotype interaction, F[10,175] = 3.6, p < 0.001). Bonferroni-

corrected post hoc comparisons showed that �/� mice have

more stereotypies than +/+ mice (p < 0.001) and +/� mice (p =

0.004); +/� mice had nominally more stereotypies than +/+

mice, but this difference did not reach significance.

Stereotypy in Hdc KO Mice Is Mitigated by HA Repletion
If the potentiation of tic-like stereotypies is a direct consequence

of HA reduction, then it should be mitigated by direct repletion

of brain HA. We infused HA or saline intracerebroventricularly

(i.c.v.) immediately before administering amphetamine in

Hdc+/+ and Hdc�/� mice. Stereotypy was delayed and reduced
Neuron 81, 77–90, January 8, 2014 ª2014 Elsevier Inc. 79
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typies in Hdc+/– and Hdc–/– Mice after

Pretreatment with Haloperidol

(A) Experimental design.

(B) Haloperidol pretreatment produced a modest

reduction in amphetamine-induced locomotion (F

[2,22] = 6.86, p = 0.005) that did not vary by

genotype (main effect of genotype: F[2,11] = 0.27,

p > 0.75; Genotype 3 Dose interaction: F[4,22] =

0.36, p > 0.8; n = 5 mice per group).

(C) Tic-like stereotypy was again seen in Hdc+/�

and Hdc�/� mice after saline pretreatment (n = 5

mice per group; RM-ANOVA with genotype and

treatment order as independent factors: main

effect of genotype, F[2, 10] = 5.7, p = 0.022;

main effect of time, F[5,50] = 5.7, p < 0.001;

Genotype 3 Time interaction, F[10,50] = 2.4, p =

0.019).

(D) Pretreatment with 0.3 mg/kg haloperidol

attenuated the development of stereotypies.

(E) Pretreatment with 0.6 mg/kg haloperidol elimi-

nated stereotypies in all genotypes (RM-ANOVA

across all haloperidol doses: main effect of time, F

[5,45] = 6.67, p < 0.001; main effect of haloperidol

dose, F[2,18] = 4.42, p = 0.027; main effect of

genotype, F[2,9] = 4.4, p = 0.046; Genotype 3

Time, F[10,45] = 2.10, p = 0.044).

(F) Total stereotypies across the 30 min

following amphetamine treatment are shown

for each condition (RM-ANOVA: Main effect of

genotype, F[2,9] = 4.39, p = 0.046; main effect

of haloperidol treatment, F[2,18] = 4,42, p = 0.027).

*p < 0.05 versus wild-type, main effect, or

Bonferroni-corrected post hoc analysis. n = 5 animals per genotype; see Experimental Procedures for detailed methods.

Group data are represented as mean ± SEM. See also Figure S2.
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in amplitude in surgically cannulated animals, necessitating a

modified monitoring paradigm (see Experimental Procedures).

All animals received both saline andHApretreatment, in counter-

balanced order.

When saline was given i.c.v. immediately before amphet-

amine, we again observed focused sniffing stereotypies (Figures

1E, 1F, 2C, and 2F) in both +/+ and �/� animals. As in previous

experiments, they were elevated in Hdc�/� animals (Figure 3A).

HA pretreatment almost completely eliminated these focused

stereotypies, in both genotypes (Figures 3A and 3B). Because of

a lack of variance in measured stereotypies in the HA-pretreated

animals, analysis of HA effects was performed using nonpara-

metric ANOVA-like statistics (see Experimental Procedures).

There was a robust effect of HA pretreatment (df = 1, ANOVA-

type statistic [ATS] = 28.47, p < 0.0001) and of time (df = 1,

ATS = 8.03, p < 0.0001) and a HA 3 Time interaction (df = 2.8,

ATS = 6.69, p = 0.0002). Collapsing across postamphetamine

time points, stereotypies were dramatically reduced by HA

pretreatment in both genotypes (Mann-Whitney U test: p <

0.05 for Hdc+/+ mice, p < 0.001 for Hdc�/� mice).

Direct delivery of HA into the brain is sedating (Kalivas, 1982;

Kamei et al., 1983; Onodera and Ogura, 1981). Consistent with

this, HA-pretreated mice showed reduced locomotor activity,

(Figure S3B), especially initially; HA-treated Hdc�/� mice

showed greater locomotor activation in the second half of the

hour than HA-treated Hdc+/+ mice, permitting dissociation of
80 Neuron 81, 77–90, January 8, 2014 ª2014 Elsevier Inc.
effects on locomotion and stereotypy. In the first 30min following

HA (Figure 3C, left panel) there was a significant effect of

HA (ANOVA: F[1,38] = 25.9, p < 0.001) with a trend-level

Genotype 3 HA interaction (F[1,25] = 2.96, p = 0.093) and post

hoc differences between the HA-treated and saline-treated

groups. In the latter 30 min, the effect of HA was at trend level

(F[1,38] = 2.90, p = 0.097) and the Genotype 3 HA interaction

was significant (F[1,38] = 5.2, p = 0.028), with only the HA-

treated +/+ animals showing significantly reduced activity

(Figure 3C). Since the reductions in stereotypy seen in HA-

pretreated Hdc�/� mice are apparent during the latter half of

the first hour following amphetamine administration (Figure 3A),

this rules out the possibility that the reduction is due simply to

sedation. Nonstereotypic, exploratory sniffing was not altered

by HA pretreatment (see Figures S3C and S3D).

Excessive grooming has been proposed to be a behavioral

manifestation of OCD-like pathology (Shmelkov et al., 2010;

Welch et al., 2007). It is surprising that HA infusion increased

grooming in both genotypes (Figures S3E and S3F). Stereotypies

and abnormal grooming may reflect distinct perturbations of the

basal ganglia circuitry.

Sensorimotor Gating Deficits in Humans and Mice
Carrying a Mutant Hdc Gene
TS is characterized by deficits in sensorimotor gating, reflected

in a deficit in prepulse inhibition (PPI) of startle (Castellanos
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Figure 3. Mitigation of Stereotypies by HA Repletion

(A) Increased stereotypies were again seen after D-amphetamine, and were

potentiated in Hdc�/� animals, after i.c.v. saline (SAL). These stereotypies

were completely eliminated by HA infusion (20 mg). Saline groups: RM-ANOVA

of genotype and treatment order, main effect of genotype, F[1,19] = 3.22, p =

0.09, significant at alpha = 0.1 for a predicted directional effect; main effect of

time, F[4,76] = 9.26, p < 0.001; n = 12 mice of each genotype. See Results for

analysis of HA effects. WT, wild-type.

(B) Stereotypies showed a similar temporal trajectory in Hdc+/+ and Hdc�/�

mice, peaking in the second half hour after amphetamine injection; they were

absent throughout this time after HA infusion in both genotypes.

(C) HA infusion led to reduced locomotor activation following amphetamine;

however, this effect dissociated from the mitigation of stereotypies, as loco-

motor activity recovered in the second 30min following amphetamine injection

in Hdc�/� animals. *p < 0.05; **p < 0.01; x indicates p < 0.05 genotype effect.

Group data are represented as mean ± SEM. See also Figure S3.
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et al., 1996; Swerdlow et al., 2001; Terrados et al., 2012). PPI

can be measured in humans and experimental animals using

nearly identical protocols (Baldan Ramsey et al., 2011; Swer-

dlow, 2012). PPI deficits are also seen in other neuropsychiatric

conditions, including OCD (Ahmari et al., 2012; de Leeuw et al.,

2010; Hoenig et al., 2005) and schizophrenia (Braff et al., 1978;

Turetsky et al., 2007). However, in the context of a genetic

abnormality independently associated with TS, an endopheno-

type such as a PPI deficit can provide valuable reinforcing

face validity.

We tested PPI in patients carrying the Hdc W317X mutation.

PPI of the startle response to an auditory stimulus, monitored

by electromyogram of the orbicularis oculi muscle, was as-

sessed in the nine individuals carrying the Hdc W317X mutation

and in nine age- and sex-matched controls, using standard

procedures (Lipschitz et al., 2005). TS patients had reduced

auditory PPI, measured either 15 or 20 ms after the onset of

the startle stimulus (Figure 4A; Figure S4A). There was no be-

tween-group difference in startle amplitude on trials in which

no prepulse was presented (t[16] = 0.82; p = 0.43 at 20 ms).

PPI within the TS group was variable (Figure S4A). There was a

weak negative association between PPI and age among the

patients that did not reach statistical significance (Figure 4B).

Heterogeneity of PPI in the patient group was not explained by

gender, medication status, comorbidity, or other clinical vari-

ables (Figures S4B–S4G). These data represent the first time,

to our knowledge, that a PPI deficit has been associated with a

specific genetic abnormality in humans (Kohl et al., 2013).

We predicted that Hdc KO mice would recapitulate this endo-

phenotype. We tested auditory PPI in mice, following a standard

protocol (Baldan Ramsey et al., 2011). Hdc+/� and Hdc�/� mice

exhibited a significant PPI deficit (Figures 4C and S4H).

There was a trend toward higher baseline startle in +/� and

�/� mice than in +/+ controls (Figure S4I), and PPI correlated

negatively with baseline startle across all animals (Figure 4D).

However, statistical significance was increased, not attenuated,

when startle was included as a covariate, controlling for the

possibility that a genotype effect on startle intensity underlies

the PPI phenotype (Figures 4D and S4J). There was a nominal

association of age with an increased PPI phenotype in the KO

mice, although it did not approach statistical significance

(Figure 4E). We repeated this experiment at night, with similar

results (Figures 4F, S4O, and S4P). Hdc�/� mice have been

reported to display increased anxiety (e.g., Dere et al., 2004),

which may affect startle; however, we found no evidence of

altered anxiety in the elevated plus maze or the open field in

these animals, possibly because they are on a different genetic

background than those described previously (Figures 1D and

S1A–S1D).

Striatal DA Is Negatively Regulated by HA and Is
Dysregulated in Hdc KO Mice
HA has been hypothesized to regulate DA negatively (Haas

et al., 2008; Schlicker et al., 1994). To examine this in vivo,

we infused HA i.c.v. into wild-type mice and measured striatal

DA using microdialysis. HA i.c.v. (20 mg in sterile saline) led to

a marked reduction in DA in the contralateral striatum (Fig-

ure 5A), accompanied by reduced activity (data not shown). In
Neuron 81, 77–90, January 8, 2014 ª2014 Elsevier Inc. 81
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Figure 4. Impaired PPI in Humans and Mice

with Deficient HDC Activity

(A) Patients carrying the Hdc W317X mutation

showed impaired PPI, measured 15 and 20 ms

after the startle stimulus. n = 9HdcW317X carriers

and 9 matched controls. One-tailed hetero-

skedastic t test: 15ms, t = 2.14, p = 0.02; 20ms, t =

1.81, p = 0.04.

(B) There was a weak negative association be-

tween PPI and age among the patients, but it did

not reach statistical significance (data are shown

for the 20 ms time point, p = 0.08; p = 0.16 at

15 ms). The association of PPI with age did not

approach significance in controls. The effect of

genotype on PPI remained significant after co-

varying for age (20 ms: main effect of genotype, F

[1,15] = 4.45, p = 0.05; 15 ms: main effect of

genotype, F[1,15] = 5.89, p = 0.03).

(C) Hdc+/� and Hdc�/� mice showed a deficit

in auditory PPI at three prepulse intensities. RM-

ANOVA: F[2,31] = 4.50; p = 0.019; n = 12 +/+,

16 +/�, and 11 �/� mice. WT, wild-type; Het,

Hdc+/� (heterozygote).

(D) Hdc+/� and Hdc�/� mice showed enhanced

startle, but the PPI phenotype was not explained

by this increased startle. r = �0.643; p < 0.001;

data shown are for the first PPI block. A similar

effect was seen in the second block: r = �0.622,

p < 0.001. When analyzed separately, this corre-

lation was seen in heterozygotes (n = 16;

r = �0.842; p < 0.001) and KOs (n = 11; r = 0.780;

p = 0.005) but not in WT mice (n = 12; r = �0.244; p > 0.4). RM-ANCOVA: F[2,35] = 6.67; p = 0.004; main effect of prepulse intensity: F[1,35] = 65.1, p < 0.001.

(E) In a larger group of mice tested at different ages, the PPI phenotype did not change with age. RM-ANCOVA: main effect of genotype, F[2,56] = 3.79, p = 0.03;

age, F[1,56] = 0.12, p > 0.7; n = 16 +/+, 23 +/�, and 23 �/� mice.

(F) This PPI phenotypewas replicatedwhen animals were tested in their dark phase. RM-ANOVA across the three prepulse intensities: F[2,72] = 8.0, p = 0.001; n =

21 +/+, 26 +/�, and 28 �/� mice.

All data are represented as mean ± SEM. *p < 0.05. See also Figure S4.
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contrast, saline infusion had no lasting effect on striatal HA

levels.

Hdc KO mice have increased striatal DA turnover (Dere et al.,

2003). We assayed striatal [HA] and [DA] using in vivo micro-

dialysis (Figures S5A, S5B, and S5D). HA levels were dramati-

cally reduced in �/� mice (Figure 5B). In +/+ animals, [HA]

increased during the dark (active) phase (Figure S5E), reflecting

its role in arousal (Haas et al., 2008).

There was not a main effect of genotype on unnormalized

daytime striatal [DA] levels in KO mice, although given the vari-

ability inherent in unnormalized microdialysis data, we cannot

rule out a subtle abnormality. However, there was a significant

Genotype 3 Time interaction, with increased [DA] in Hdc�/�

mice in the dark phase, when HA is high in +/+ mice (Figure 5C).

We isolated this effect by normalizing DA to the daytime

baseline, thereby reducing between-subjects technical vari-

ability (see Figures S5E and S5F); analysis of normalized data

confirmed a significantly higher DA in Hdc�/� mice during the

dark cycle (Figure 5D).

DA Signaling Is Enhanced and Striasomal Activation Is
Potentiated in Hdc–/– Mice
We examined Fos immunoreactivity as a surrogate marker for

neuronal activation in striatal medium spiny neurons (Figures
82 Neuron 81, 77–90, January 8, 2014 ª2014 Elsevier Inc.
6A and 6B). Fos is upregulated in D1-expressing medium spiny

neurons (MSNs) in response to pharmacological elevations

in DA (Young et al., 1991). Doses of psychostimulants that

produce stereotypy preferentially upregulate Fos in MSNs in

striatal compartments known as striasomes (Canales and Gray-

biel, 2000); an imbalance between activation of striasomal and

matrix MSNs may lead to stereotypies and tics (Canales and

Graybiel, 2000; Crittenden and Graybiel, 2011).

At baseline, Fos was modestly elevated in both striasomes

and matrix of Hdc�/� mice, relative to Hdc+/+ sibling controls

(Figure 6C). As this tissue was collected during the day, this

suggests DA dysregulation in Hdc�/� mice even in the inactive

phase. There was nominally higher Fos in the matrix than in the

striasomes across genotypes, but this did not reach statistical

significance (F[1,10] = 0.8, p = 0.4).

Forty-five minutes after amphetamine injection (5 mg/kg

D-amphetamine, to avoid saturating the response) there was

a marked increase in Fos expression in both genotypes and

in both compartments. Fos was greatly increased in striasomes

of Hdc�/� mice, relative both to matrix in the same animals

and to striasomes in controls (Figure 6D). The genotype

effect was restricted to the striasomal compartment; the stria-

some-matrix difference was thus markedly enhanced in Hdc�/�

mice.
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Figure 5. HA Regulates Striatal DA

(A) HA (20 mg) or saline was infused i.c.v. into wild-

type mice, as in Figure 3. DA in microdialysate

from the contralateral striatum was markedly

reduced, starting 20 min after HA administration.

ns = 7 HA and 7 saline; RM-ANOVA: main effect of

time, F[9,108] = 10.5, p < 0.001; main effect of HA,

F[1,12] = 28.6, p < 0.001; Time 3 HA, F[9,108] =

3.9, p < 0.001.

(B) HA in striatal microdialysate was dramatically

reduced in Hdc�/� mice relative to controls.

RM-ANOVA: main effect of genotype, F[1,14] =

6.60, p = 0.02; Genotype 3 Time, F[7,98] = 4.23,

p < 0.001; n = 8 animals per group.

(C) DA in striatal microdialysate showed a signifi-

cant Genotype 3 Time interaction: F[9,126] =

2.70, p = 0.007; n = 8 animals per group.

(D) Microdialysis data were normalized to the

daytime baseline to reduce between-animal

technical variability. The interaction was again

apparent (main effect of genotype, F[1,14] = 2.99,

p = 0.11; Genotype 3 Time, F[9,126] = 2.85, p =

0.004); the genotype difference reached trend level across the final four time points (RM-ANOVA, F[1,14] = 3.8, p = 0.07) and significance across the final two (F

[1,14] = 4.6, p = 0.05). yp < 0.1.

All data represented as mean ± SEM. *p < 0.05. See also Figure S5.
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Dysregulated D2+D3 Receptors in the Basal Ganglia of
TS Patients Carrying the Hdc W317X Mutation
DA cannot be directly assayed in vivo in humans. However,

dysregulation of dopaminergic modulation within the basal

ganglia may be reflected in compensatory changes in DA recep-

tors. DA receptors can be examined in vivo in patients using PET.

We focused on D2 and D3 DA receptors, because D2 antago-

nists have therapeutic efficacy in TS (Bloch, 2008) and because

these receptors exhibit homeostatic change upon chronic hy-

perstimulation. D3 receptors on midbrain dopaminergic neurons

may function as inhibitory autoreceptors (Stanwood et al.,

2000a; White and Wang, 1984); substantia nigra (SN) D2/D3

binding is increased after chronic stimulation in rats (Stanwood

et al., 2000b) and in chronic users of cocaine (Payer et al.,

2013). Striatal D2 receptors are downregulated after chronic

pharmacological stimulation in rats and humans (Stanwood

et al., 2000b; Volkow et al., 2009) and in hyperdopaminergic

mice (Fauchey et al., 2000).

PET ligand binding permits limited discrimination between

D2 and D3 receptors. We used 11C-PHNO, an agonist tracer

that binds to high-affinity D2 and D3 receptors, with preference

for D3. This allows imaging of both the dorsal striatum, where

D2 receptor density is very high, and the SN, where D3

receptors predominate (Graff-Guerrero et al., 2008; Narendran

et al., 2006; Rabiner et al., 2009; Tziortzi et al., 2011).

PET scanning was performed in the four adult patients; usable

datawere acquired in three and compared to data from nine con-

trols matched for age, sex, and bodymass index (Figures 7A and

7B; Tables S2 and S3). Plasma free fraction and nonspecific

PHNO binding did not differ between groups (Figures S6A–

S6C). There was a significant increase in PHNO binding in

patients in the globus pallidus (GP) and SN (Figure 7C). This dif-

ference did not survive correction for multiple comparisons in the

GP (t[10] = 2.29; uncorrected p = 0.045) but did in the substantia

nigra (t[10] = 3.27, uncorrected p = 0.008; see also Figure 7D).
D2+D3 Receptor Dysregulation in Hdc KO and
Heterozygous Mice
We examined D2+D3 receptor density in Hdc+/� and Hdc�/�

mice using 3H-raclopride binding to brain slices ex vivo, where

there is no ambient DA. Raclopride binding was seen in SN

(Figure 8A; Figure S6D) and striatum (Figure 8D; Figure S6E). In

the SN, higher 3H-raclopride binding was found in KOs and

heterozygotes than in wild-type controls (Figures 8B and 8C).

SN raclopride binding correlated with the number of KO alleles.

This parallel to the human PET data establishes that this receptor

change is causally attributable to Hdc genotype and strongly

suggests that the abormality seen in vivo in patients reflects

increased receptor density or affinity, rather than reduced [DA]

in these structures.

Raclopride binding in the dorsal striatum showed a small

but statistically significant reduction as a function of genotype

(4%–14% reduction in +/� and �/� mice; Figures 8D and 8E).

Regression analysis across genotypes and caudal-rostral

location showed a significant inverse relationship between

dorsal striatal raclopride binding and number of Hdc KO alleles

(Figure 8E; Figure S6E), suggesting D2 downregulation in the

dorsal striatum in Hdc KO mice. This reduction was not seen

in the human PET data. This discrepancy may represent a

species difference. Alternatively, our power to detect such a

small difference may be limited due to the small number of

subjects carrying the Hdc W317X mutation we were able to

image.

This reduction in striatal D2+D3 binding and increased

SN D2+D3 binding (Figures 7D, 8C, and 8E) may represent

cellular responses to chronic elevation of striatal DA (Stanwood

et al., 2000b). Consistent with this possibility, there was an

inverse relationship between striatal (measured at caudal-rostral

levels 5 and 6, where the genotype effect was most prominent;

see Figures 8E and S6E) and nigral raclopride binding

(Figure 8F).
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Figure 6. Elevated Striatal Fos Expression in Hdc–/– Mice Is Potenti-

ated in Striasomes by Amphetamine

(A and B) Fos-positive cells (green) and m-opioid immunoreactivity (red), a

marker of striasomes (patches), 45 min after 5 mg/kg D-amphetamine in a

Hdc+/+ mouse (A) and a Hdc�/� mouse (B).

(C) At baseline, there was modestly but signifcantly increased Fos in Hdc�/�

mice. RM-ANOVA, main effect of genotype, F[1,10] = 49.8, p < 0.001; effect of

compartment and interaction, not significant; n = 6 slices from each of 6 mice

per genotype. Post hoc genotype effects: *p < 0.05.

(D) After D-amphetamine, there was increased Fos expression in both com-

partments (note the y axis scale) but much more prominently in striasomes;

striasomal activation was specifically potentiated in Hdc�/� mice. RM-

ANOVA: main effect of genotype, F[1,10] = 8.7, p = 0.015; main effect of

compartment, F[1,10] = 207, p < 0.0001; interaction, F[1,10] = 6.29, p = 0.03;

n = 2 slices from each of 6 animals. Post hoc genotype effects: **p < 0.01.

Group data are represented as mean ± SEM.
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DISCUSSION

TS is a developmental neuropsychiatric disorder that is

associated with basal ganglia abnormalities (Williams et al.,

2013). Recent genetic findings have suggested, for the

first time, that dysregulation of histaminergic neurotransmis-

sion represents a rare cause of TS (Bloch et al., 2011;

Ercan-Sencicek et al., 2010; Fernandez et al., 2012;

Karagiannidis et al., 2013). We have used parallel analysis

in Hdc KO mice and in nine unique patients known to

carry the hypomorphic Hdc W317X allele to confirm this

association.

Hdc Disruption Causes Core Behavioral and
Neurochemical Features of TS
The genetic relationship between the Hdc W317X mutation and

TS in the index family is statistically compelling (Ercan-Sencicek

et al., 2010). Direct evidence for causality, however, is not

achievable with human genetic studies alone.

We find parallel TS-associated behavioral and neurochemical

abnormalities in patients carrying the Hdc W317X mutation

and Hdc KO and heterozygous mice (Table 1). This provides

strong evidence for the causal association between Hdc disrup-

tion and TS.
84 Neuron 81, 77–90, January 8, 2014 ª2014 Elsevier Inc.
HA Regulates Dopaminergic Modulation of the Basal
Ganglia Circuitry
It has been speculated that HA regulates DA in the basal ganglia

in vivo (Haas et al., 2008; Schlicker et al., 1994). Hdc KO mice

were reported to exhibit increased DA turnover (Dere et al.,

2003); indirect pharmacological enhancement of central HA

modulates DA-associated stereotypical behaviors (Joshi et al.,

1981; Kitanaka et al., 2010; Paul et al., 2000). We find that

exogenously administered HA profoundly reduces striatal DA

levels (Figure 5A). In KO mice, we do not observe a clear change

in baseline DA during the day but find a dysregulation that

emerges during the animals’ active phase, when HA levels in

wild-type animals are highest (Figures 5B–5D).

The direct measure of DA (Figure 5) and the alterations in

baseline Fos (Figure 6) suggest chronic, if mild and fluctuating,

elevation of DA. The pattern of receptor alterations observed in

the Hdc KO mice is consistent with the pattern expected after

chronic dopaminergic hyperstimulation. This pattern is partially

recapitulated in patients carrying the Hdc W317X mutation, in

whomwe find elevated binding by the D2+D3 agonist radiotracer
11C-PHNO in the SN and, less profoundly, in the GP.

These data represent in vivo evidence in humans of a direct

relationship between alterations in histaminergic neurotransmis-

sion and dopaminergic modulation of the basal ganglia circuitry.

Histaminergic Regulation of Information Processing in
the Basal Ganglia
Despite the prominent expression of HA receptors in the basal

ganglia, the functional effects of HA in this circuitry have not

been extensively studied. Histaminergic axons in the striatum

are relatively sparse and make few direct synaptic contacts,

(Takagi et al., 1986); however, the axons are varicose (Takagi

et al., 1986), and the wild-type striatum contains a high amount

of HDC protein (Krusong et al., 2011). Several striatal synapses

are regulated by HA in vitro (Ellender et al., 2011). The ability of

HA to reduce striatal DA levels (Figure 5A) suggests that it may

provide a brake on DA.

The circadian modulation of HA (Figure 5B) suggests that

it may produce a circadian modulation of striatal information

processing, although direct evidence for this speculation is

lacking. This circadian modulation of HA may have important

implications for pathophysiology. Tics in TS typically do not

occur during sleep. If the emergence (or amplification) of an ab-

normality in DA that we observe in these mice (Figures 5C and

5D) is a general phenomenon, it may help explain this observa-

tion in TS and other movement disorders.

Dysregulation of dopaminergic modulation in the basal ganglia

is unlikely to be the only relevant effect of reduced histaminergic

tone. Hypothalamic HDC-expressing neurons project widely

throughout the CNS. Indeed, other investigations in the Hdc

KO mice indicate abnormalities in hippocampal and cortical

function (e.g., Acevedo et al., 2006; Dere et al., 2004). The inhib-

itory H3 receptor is expressed presynaptically on dopaminergic

terminals and may explain the ability of HA to reduce striatal DA,

but it is also expressed presynaptically on other cell types and

regulates other neurotransmitters (Ellender et al., 2011; Haas

et al., 2008; Schlicker et al., 1994). HA H1 and H2 receptors

are also expressed prominently in the basal ganglia circuitry
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Figure 7. Elevated SN D2/D3 Binding in Hdc

W317X Patients

(A) [11C]-PHNO binding potential in the striatum

and GP. Top row, structural MRI images for

anatomical reference; middle row, PHNO binding

in TS patients carrying the Hdc W317X allele;

bottom row, PHNO binding in matched control

subjects.

(B) [11C]-PHNO binding in more inferior, posterior,

and medial sections, showing the GP and SN.

(C) Patients carrying the HdcW317X allele showed

normal [11C]-PHNO binding in caudate and puta-

men but elevated binding in GP and SN. RM-

ANOVA: main effect of group: F[1,10] = 7.54; p =

0.035; main effect of region: F[3,30] = 33.48, p <

0.001; Group 3 Region interaction, F[3,30] = 6.85,

p = 0.001. n = 3 Hdc W317X patients, 9 controls

(mean ± SEM). BPND, [
11C]-PHNO binding poten-

tial. yUncorrected p < 0.05; **uncorrected p < 0.01,

significant after Bonferroni correction. Group data

are represented as mean ± SEM.

(D) Separation between patients and controls was

particularly striking in SN (individual data points

and group means are shown). Mann-Whitney U

test: p = 0.03. BPND, [
11C]-PHNO binding potential.

See also Table S2, Table S3, and Figure S6.
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and throughout the brain (Haas et al., 2008; Traiffort et al., 1994;

Traiffort et al., 1995; Zhou et al., 2006). How alterations in

information processing beyond the basal ganglia contribute to

pathophysiological changes relevant to TS is an important area

for future study.

Hdc KO Mice as a Pathophysiologically Realistic Model
of TS
Hdc abnormalities are unlikely to explain more than a small

fraction of TS cases. However, modeling this rare cause of TS

in an animal is likely to lead to generalizable pathophysiological

insights.

Animal models have traditionally been evaluated on the basis

of face validity (their recapitulation of recognizable signs and

symptoms of the modeled disease), predictive validity (their abil-

ity to predict what drugs will be efficacious in disease), and

construct validity (their recapitulation of hypothesized core path-

ophysiology). The first two are problematic in the case of neuro-

psychiatric disease (Nestler and Hyman, 2010; Pittenger, 2011).

Face validity raises challenges because of the subtle and subjec-

tive nature of psychiatric symptomatology. Not all repetitive

behaviors are tics. Clinically, tics are characterized by premoni-

tory urges, the fact that they can often be resisted at least to a

limited extent, and the way in which that tic emission discharges

a sense of discomfort. None of these can be readily evaluated in

a mouse model. Predictive validity also must contend with a lack

of specificity. D2 antagonists, for example, are used in the treat-

ment of TS, but also for psychosis, bipolar disorder, depression,

OCD, delirium, and other conditions. They are not efficacious in

every case. In this context, response to a medication does not

uniquely validate an animal model, and a lack of response

does not invalidate it. Construct validity is critical to the elabora-

tion of a pathophysiologically informative model.
The Hdc KO mice derive construct validity from a high-

penetrance disease-associated allele. Behavioral phenotypes

endow the model with reinforcing face validity (Figures 1, 2, 3,

and 4). Enhanced stereotypy and reduced PPI are not specific

to TS, but in the context of the inherent construct validity of

the Hdc KO mouse, they confirm that relevant processes

have been disrupted. Similarly, the mitigation of tic-like stereo-

typies by haloperidol (Figure 2) is not a TS-specific result, but

this predictive validity further reinforces the Hdc KO mouse as

a faithful recapitulation of core aspects of the pathophysiology

of disease.

Patients carrying the Hdc W317X are not likely to be wholly

deficient in brain HA; their wild-type allele should permit some

production. Therefore, it may be that Hdc+/� mice more faithfully

recapitulate the disease state than full KOs. Given this, it is

important that Hdc+/� mice show a phenotype intermediate

between wild-type and full KO mice in all key experiments: the

potentiation of tic-like stereotypy (Figures 1D, 1E, 2B, and 2D),

the impairment in PPI (Figure 4B), and the dysregulation of

D2+D3 receptors in the basal ganglia (Figures 8C and 8E).

Clinical Implications
Excessive movements can be produced by increased activity

of the striatonigral (direct) pathway or reduced activity of the

striatopallidal (indirect) pathway. Tics may derive from hypo-

activity of the indirect pathway, leading to deficient inhibition of

off-target movements (Albin, 2006; Mink, 2001; Williams et al.,

2013). Chronic moderate increases in DA in Hdc KO animals

might produce such a state. The D2 receptor expressed by

MSNs of the indirect pathway has a higher affinity for DA than

D1 receptor (Rankin et al., 2010) and may be more responsive

to modest, chronic elevations in DA. Tonically increased D2

tone would lead to tonically reduced activity in MSNs of the
Neuron 81, 77–90, January 8, 2014 ª2014 Elsevier Inc. 85
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Figure 8. Altered D2/D3 Binding in Hdc-KO Mice

(A) Ex vivo raclopride binding in SN of Hdc+/+, Hdc+/�, and Hdc�/� mice.

(B) Normalized SN binding was elevated in Hdc+/� and Hdc�/� mice relative to +/+ controls. *p < 0.05.

(C) Binding correlated with the number of KO alleles (r = 0.445; b = 31.795; p = 0.02). *p < 0.05.

(D) Stronger raclopride binding was seen in striatum, reflecting the high density of D2 receptors there.

(E) Regression analysis across genotypes and caudal-rostral location showed a small but significant inverse relationship between dorsal striatal raclopride

binding and number of HDC KO alleles, suggesting D2 downregulation in the dorsal striatum in HDCKOmice (b =�3.613, p = 0.017 for alleles; b = 6.01, p < 0.001

for rostral-caudal level).

(F) Raclopride binding in the midstriatum (A-P levels 5–6), where the effect of genotype on binding was most pronounced, was negatively correlated with nigral

raclopride binding in the same animals: r = �0.682; p = 0.015. All data represented as individual data points or as mean ± SEM. *p < 0.05. n = 5 Hdc+/+ (12 SN

slices, 23 striatal slices), 4 Hdc ± (8 SN slices, 15 striatal slices), 6 Hdc�/� (8 SN slices from 4 mice; 21 striatal slices).

Group data are represented as mean ± SEM. See also Figure S6.
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indirect pathway (Mink, 2001); this would be mitigated by D2

blockade, as in Figure 2.

We find that HA repletion mitigates potentiated stereotypies

in these animals (Figure 3). A similar effect was suggested by

indirect pharmacological modulation of HA levels in wild-type

mice (Joshi et al., 1981; Kitanaka et al., 2007; Paul et al.,

2000). This suggests that increasing brain HA may be of thera-

peutic value in TS. Dietary supplementation with histidine might

increase HA production (Kitanaka et al., 2010). H3 receptor

antagonists may increase HA release by blocking inhibitory

autoreceptors on histaminergic terminals (Flik et al., 2011),

although their effect on other cells is a complication (Ellender

et al., 2011; Schlicker et al., 1994). The generation of such test-

able hypotheses illustrates the potential utility of this pathophy-

siologically valid animal model.

EXPERIMENTAL PROCEDURES

More detailed methods are given in the Supplemental Experimental

Procedures.
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Mice

All mouse experiments were approved by the Yale University Institutional

Animal Care and Use Committee (Assurance Number: A3230-01). Generation

of Hdc KOmice has been described elsewhere (Ohtsu et al., 2001). Adult male

mice, aged 3–9 months, were used in all experiments.

HDC Activity Assay and HA Quantification

TheW317X mutation was introduced into the mouseHdc gene using standard

molecular cloning techniques. HDC enzymatic activity (Figure 1A) was quanti-

fied as previously described (Ercan-Sencicek et al., 2010). Quantification of

tissue [HA] (Figure 1B) was performed as described previously (Krusong

et al., 2011). Quantification of microdialysate [HA] (Figure 5B), which is two or-

ders of magnitude lower, was by mass spectrometry.

Open Field Exploration and Stereotypy in Mice

Adult male mice were placed in an unfamiliar novel open-topped white opaque

plexiglass box, and their exploratory activity was monitored for 20 min using

both observation and a video tracking system (AnyMaze). After 20 min,

D-amphetamine (Sigma; 8.5 mg/kg or 10 mg/kg) or saline was administered

i.p., andmonitoring was continued for another 30min. A broad range of stereo-

typical behaviors were noted (Kelley, 2001); the vast majority of observed

stereotypies consisted of repetitive focused sniffing movements, which are



Table 1. Summary of Parallel Findings in TS Patients Carrying the Hdc W317X Mutation and in Hdc–/– and Hdc+/– Mice

Characteristic Patients with Hdc W317X Mutation Hdc+/� and Hdc�/� Mice Figure, Table, or Reference

HA biosynthesis Reduced (in vitro) Reduced in tissue and striatal

microdialysate

Figures 1A, 1B, and 5B; Ohtsu et al.,

2001

Tics/stereotypy Motor, phonic tics Potentiated stereotypy after

threshold-dose amphetamine

Figures 1E, 1F, 2B, 3A, and 3B;

Table 1

PPI Reduced Reduced Figure 4

Striatal DA Not directly measured Increased in active-phase

microdialysate

Figures 5C and 5D

Striatal DA signaling Not directly measured Increased striatal Fos expression at

baseline and after amphetamine

Figure 6

SN D2/D3 binding Increased by in vivo PHNO

PET imaging

Increased by in vitro raclopride

binding

Figure 7

Dorsal striatal D2/D3 binding No evident change, by in vivo

PHNO PET imaging

Modest decrease, by in vitro

raclopride binding

Figure 8

The table is a summary of abnormalities found in TS patients carrying the Hdc W317X mutation and in Hdc haploinsufficient and/or KO mice.
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reported (Movies S1, S2, and S3). For haloperidol pretreatment (Figure 2),

animals were monitored in the environment for 20 min, then injected i.p. with

haloperidol (Sigma, 0.3 or 0.6 mg/kg) and observed for a further 15 min, and

then injected with amphetamine or saline as described earlier (Figure 2A). All

animals in this experiment (Figure 2) received both haloperidol and saline, in

counterbalanced order, 5–7 days apart; treatment order was included as an

independent factor of no interest in the ANOVA.

Elevated Plus Maze in Mice

Elevated plus maze analysis was performed as described elsewhere (Lee

et al., 2008).

HA Mitigation of Stereotypy

Pilot experiments showed surgical cannulation to reduce and delay

amphetamine-induced stereotypies; to increase sensitivity, we extended our

observation period and observed animals in higher ambient light in a clear-

sidedenclosure (a standard rat housingcage) rather thana larger opaque-sided

open-field box. Cannulae were implanted i.c.v. using standard stereotaxic sur-

gical technique; animals were allowed to recover for at least 5 days following

surgery before behavioral testing. Locomotor activity was measured before

and after administration by infrared beam-breaks on an open-field apparatus

(Med Associates). Mice were habituated to the environment for 60 min before

the first amphetamine treatment (Figure S3A). They were then briefly immobi-

lized and treated i.c.v. with HA (20 mg in 1 ml sterile saline) (Kalivas, 1982; Kamei

et al., 1983, 1984; Onodera andOgura, 1981) or saline and then immediately in-

jected i.p. with amphetamine (8.5 mg/kg). Stereotypical behaviors were

measured at intervals over 90 min by a trained observer blind to animal geno-

type and drug treatment. The procedure was repeated 5–7 days later with the

other treatment (saline or HA), in counterbalanced order.

Because of the longer observation period, quantification of stereotypy was

performed by instantaneous sampling rather than continuous monitoring, us-

ing a well-validated method (Fray et al., 1980); the dependent measure is the

total number of sampled 10 s intervals during which a behavior was present.

Startle and PPI of Startle

Startle to a broadband acoustic stimulus wasmeasured using standard proce-

dures as described elsewhere (Baldan Ramsey et al., 2011). The initial PPI

experiment (Figures 4C and S4H–S4N) was performed using a 100 ms

prepulse-pulse interval; replication in the dark phase (Figures 4F, S4O,

and S4P) was performed using a 200 ms interval, which was found in pilot ex-

periments (data not shown) to produce amore robust separation of genotypes.

In Vivo Microdialysis

Adult male mice were implanted unilaterally with a guide cannula targeted to

the dorsal striatum using standard stereotaxic technique; animals for HA infu-
sion (Figure 5A) were simultaneously implanted contralaterally, with a cannula

guide targeted for i.c.v. infusion. After habituation, microdialysate was

collected in 30 min samples, and DA levels were measured using standard

techniques (Tellez et al., 2013). Following microdialyisis, mice were euthanized

and their brains were examined to establish cannula placement. Animals in

which chromatograms suggested excessive bleeding or anatomical analysis

indicated cannula misplacement were excluded, prior to data analysis.

HA Infusion with Microdialysis

After recovery from surgery, a microdialyisis cannula was inserted. Microdial-

ysis was performed as described earlier, with the exception that microdialy-

sate was perfused at 2 ml/min and collected in 10 min aliquots. Following a

3 hr baseline, mice were briefly immobilized and HA (20 mg in 1 ml sterile saline)

or an equivalent amount of saline was infused over 2 min; mice were then

monitored for 90 more min. DA was measured subsequently using high-pres-

sure liquid chromatography, as described earlier. All mice received both HA

and saline, separated by 1 week, in counterbalanced order.

Fos Immunoreactivity

At 45 min following saline or D-amphetamine (5 mg/kg i.p. in sterile saline)

administration, brains were removed, fixed overnight in 4% paraformalde-

hyde, and stored in 30% sucrose. Floating sections (30 mm) were immuno-

stained following standard procedures (see Supplemental Experimental

Procedures for details) with goat anti-c-fos (1:500, Santa Cruz Biotechnology)

and rabbit anti-m-opioid receptor (1:1,000, Immunostar) antibodies followed by

Alexa Fluor-coupled secondary antibodies (Jackson Immnoresearch). Fluo-

rescence was visualized on a confocal microscope. Fos-positive cells were

counted in m-positive (striasome) and m-negative (matrix) compartments bilat-

erally in multiple slices per animal (Young et al., 1991).

Raclopride Binding in Mice
3H-raclopride binding to unfixed fresh frozen slices of mouse brain was deter-

mined as described previously (Fasano et al., 2009). Signal was visualized

using a phosphor imager system (Cyclone Plus, Perkin Elmer). Images were

analyzed using Photoshop (Adobe), as further described in the Supplemental

Experimental Procedures and in Figure S6.

Human Subjects

All human testing was overseen by the Yale University Human Investigations

Committee (Federalwide Assurance #00002571). Nine individuals from a

single family who have previously been identified as having a current or past

diagnosis of a tic disorder and as carrying the Hdc W317X mutation (Ercan-

Sencicek et al., 2010) were evaluated for this study. Controls, matched for

age and sex and (for PET imaging) for body mass index were recruited from

the community through advertising. Patients and controls were assessed
Neuron 81, 77–90, January 8, 2014 ª2014 Elsevier Inc. 87
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using standard clinical instruments to confirm diagnoses and quantify

symptomatology.

PPI in Patients

Auditory startle and PPI were assessed as previously described (Lipschitz

et al., 2005) using the SR-HLAB system (San Diego Instruments).

PET Imaging

[11C]-(+)-PHNO was prepared, and PET imaging was performed as described

previously (Narendran et al., 2006; Tziortzi et al., 2011) (Table S3). Dynamic

scan data were constructed with all corrections using the MOLAR algorithm

(Carson et al., 2003). Arterial blood samples were collected throughout

scanning to measure the arterial input function. [11C]-(+)-PHNO volumes of

distribution were quantified using the multilinear analysis MA1 (Ichise et al.,

2002) using arterial input function data.

Statistical Analysis

All analysis was performed using PASW Statistics 18.0 (SPSS/IBM) in consul-

tationwith a biostatistician. The t tests, correlations, and ANOVA, with RMand/

or covariance as appropriate, were used as described in the text and figure

legends for each data set. Two-tailed tests with an a of 0.05 were used except

where clear, directional a priori hypotheses justified an a of 0.1, as indicated.

In the analysis of focused-sniffing stereotypy following HA injected i.c.v.

(Figure 3), parametric statistics were not appropriate because of the very

low variance in the HA-treated groups (no stereotypy was seen at most time

points), and nonparametric ANOVA-like statistics were used. The key PET

finding of increased PHNO binding in the SN was confirmed using the

nonparametric Mann-Whitney U test (Figure 5D) because of the low n in the

TS group.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, three tables, and three movies and can be found with this article

online at http://dx.doi.org/10.1016/j.neuron.2013.10.052.

ACKNOWLEDGMENTS

We thank StaceyWilber for assistance with mouse genotyping; Theresa Brand

for assistance with HA analysis in tissue; the staff of the Yale PET Center for

support in all PET studies and analyses; Brian Pittman for statistical consulta-

tion and support; and Marina Picciotto, Ronald Duman, and Ralph DiLeone for

helpful discussion and comments on themanuscript. This work was supported

by The Allison Family Foundation (C.P.) and National Institutes of Health grants

K08MH081190 (C.P.), R01MH091861 (C.P.), PL1DA024860 (G.M.A.),

R01NS056276 (M.W.S.), T32MH014276 (L.C.B.; Principal Investigator (PI), R.

Duman), T32MH018268 (K.A.W.; PI, J. Leckman), UL1RR024139 (Yale Center

for Clinical Investigation Pilot Award to C.P.; PI, R. Sherwin), 2P50AA012870

(J.H.K.), and D43TW06166 (K.K.; PIs, J. Gelertner and R. Malison). Additional

support came from the Tourette Syndrome Association (C.P., L.C.B.); the Yale

Program on Neurogenetics (A.G.E.S., M.W.S.); the Yale PET Center (Y.-S.D.,

J.-D.G.); the Brain Research Foundation, Chicago, IL; the Overlook Interna-

tional Fund; Pfizer Global Research (R.G., Z.A.H.); and the State of Connecti-

cut through its support of the Ribicoff Research Facilities at the Connecticut

Mental Health Center (C.P., L.C.B., V.P., M.R.). Z.A.H. and R.G. are employees

of Pfizer, Inc.

Accepted: October 18, 2013

Published: January 8, 2014

REFERENCES

Acevedo, S.F., Ohtsu, H., Benice, T.S., Rizk-Jackson, A., and Raber, J. (2006).

Age-dependent measures of anxiety and cognition in male histidine decarbox-

ylase knockout (Hdc-/-) mice. Brain Res. 1071, 113–123.
88 Neuron 81, 77–90, January 8, 2014 ª2014 Elsevier Inc.
Ahmari, S.E., Risbrough, V.B., Geyer, M.A., and Simpson, H.B. (2012).

Impaired sensorimotor gating in unmedicated adults with obsessive-compul-

sive disorder. Neuropsychopharmacology 37, 1216–1223.

Albin, R.L. (2006). Neurobiology of basal ganglia and Tourette syndrome: stria-

tal and dopamine function. Adv. Neurol. 99, 99–106.

Albin, R.L., Young, A.B., and Penney, J.B. (1989). The functional anatomy of

basal ganglia disorders. Trends Neurosci. 12, 366–375.

Alexander, G.E., DeLong, M.R., and Strick, P.L. (1986). Parallel organization of

functionally segregated circuits linking basal ganglia and cortex. Annu. Rev.

Neurosci. 9, 357–381.

Baldan Ramsey, L.C., Xu, M., Wood, N., and Pittenger, C. (2011). Lesions of

the dorsomedial striatum disrupt prepulse inhibition. Neuroscience 180,

222–228.

Bloch, M.H. (2008). Emerging treatments for Tourette’s disorder. Curr.

Psychiatry Rep. 10, 323–330.

Bloch, M., State, M., and Pittenger, C. (2011). Recent advances in Tourette

syndrome. Curr. Opin. Neurol. 24, 119–125.

Braff, D., Stone, C., Callaway, E., Geyer, M., Glick, I., and Bali, L. (1978).

Prestimulus effects on human startle reflex in normals and schizophrenics.

Psychophysiology 15, 339–343.

Canales, J.J., andGraybiel, A.M. (2000). Ameasure of striatal function predicts

motor stereotypy. Nat. Neurosci. 3, 377–383.

Carson, R.E., Barker, W., Liow, J.-S., and Johnson, C. (2003). Design of a

motion-compensation OSEM list-mode algorithm for resolution-recovery

reconstruction for the HRRT. Nuclear Science Symposium Conference

Record, 2003 IEEE 5, 3281–3285.

Castellanos, F.X., Fine, E.J., Kaysen, D., Marsh, W.L., Rapoport, J.L., and

Hallett, M. (1996). Sensorimotor gating in boys with Tourette’s syndrome

and ADHD: preliminary results. Biol. Psychiatry 39, 33–41.

Choi, E.Y., Yeo, B.T., and Buckner, R.L. (2012). The organization of the human

striatum estimated by intrinsic functional connectivity. J. Neurophysiol. 108,

2242–2263.

Crittenden, J.R., and Graybiel, A.M. (2011). Basal Ganglia disorders associ-

ated with imbalances in the striatal striosome and matrix compartments.

Frontiers in neuroanatomy 5, 59.

Davis, L.K., Yu, D., Keenan, C.L., Gamazon, E.R., Konkashbaev, A.I., Derks,

E.M., Neale, B.M., Yang, J., Lee, S.H., Evans, P., et al. (2013). Partitioning

the heritability of tourette syndrome and obsessive compulsive disorder

reveals differences in genetic architecture. PLoS Genet. 9, e1003864.

de Leeuw, A.S., Oranje, B., van Megen, H.J., Kemner, C., and Westenberg,

H.G. (2010). Sensory gating and sensorimotor gating in medication-free

obsessive-compulsive disorder patients. Int. Clin. Psychopharmacol. 25,

232–240.

Dere, E., De Souza-Silva, M.A., Topic, B., Spieler, R.E., Haas, H.L., and

Huston, J.P. (2003). Histidine-decarboxylase knockout mice show deficient

nonreinforced episodic object memory, improved negatively reinforced

water-maze performance, and increased neo- and ventro-striatal dopamine

turnover. Learn. Mem. 10, 510–519.

Dere, E., De Souza-Silva, M.A., Spieler, R.E., Lin, J.S., Ohtsu, H., Haas, H.L.,

and Huston, J.P. (2004). Changes in motoric, exploratory and emotional

behaviours and neuronal acetylcholine content and 5-HT turnover in histidine

decarboxylase-KO mice. Eur. J. Neurosci. 20, 1051–1058.

Du, J.C., Chiu, T.F., Lee, K.M., Wu, H.L., Yang, Y.C., Hsu, S.Y., Sun, C.S.,

Hwang, B., and Leckman, J.F. (2010). Tourette syndrome in children: an

updated review. Pediatr. Neonatol. 51, 255–264.

Ellender, T.J., Huerta-Ocampo, I., Deisseroth, K., Capogna, M., and Bolam,

J.P. (2011). Differential modulation of excitatory and inhibitory striatal synaptic

transmission by histamine. J. Neurosci. 31, 15340–15351.

Ercan-Sencicek, A.G., Stillman, A.A., Ghosh, A.K., Bilguvar, K., O’Roak, B.J.,

Mason, C.E., Abbott, T., Gupta, A., King, R.A., Pauls, D.L., et al. (2010).

L-histidine decarboxylase and Tourette’s syndrome. N. Engl. J. Med. 362,

1901–1908.

http://dx.doi.org/10.1016/j.neuron.2013.10.052


Neuron

Histaminergic Pathology in Tourette Syndrome
Fasano, S., Pittenger, C., andBrambilla, R. (2009). Inhibition of CREBactivity in

the dorsal portion of the striatum potentiates behavioral responses to drugs of

abuse. Front. Behav. Neurosci 3, 29, http://dx.doi.org/10.3389/neuro.08.029.

2009.

Fauchey, V., Jaber, M., Caron, M.G., Bloch, B., and Le Moine, C. (2000).

Differential regulation of the dopamine D1, D2 and D3 receptor gene expres-

sion and changes in the phenotype of the striatal neurons in mice lacking

the dopamine transporter. Eur. J. Neurosci. 12, 19–26.

Fernandez, T.V., Sanders, S.J., Yurkiewicz, I.R., Ercan-Sencicek, A.G., Kim,

Y.S., Fishman, D.O., Raubeson, M.J., Song, Y., Yasuno, K., Ho, W.S., et al.

(2012). Rare copy number variants in tourette syndrome disrupt genes in his-

taminergic pathways and overlap with autism. Biol. Psychiatry 71, 392–402.

First, M.B., Spitzer, R.L., Gibbon, M., and Williams, J.B. (1997). Structured

Clinical Interview for DSM-IV Axis I Disorders: Clinical Version (SCID-CV).

(Washington, DC: American Psychiatric Press).

Flik, G., Dremencov, E., Cremers, T.I., Folgering, J.H., and Westerink, B.H.

(2011). The role of cortical and hypothalamic histamine-3 receptors in the

modulation of central histamine neurotransmission: an in vivo electrophysi-

ology and microdialysis study. Eur. J. Neurosci. 34, 1747–1755.

Fray, P.J., Sahakian, B.J., Robbins, T.W., Koob, G.F., and Iversen, S.D. (1980).

An observational method for quantifying the behavioural effects of dopamine

agonists: contrasting effects of d-amphetamine and apomorphine.

Psychopharmacology (Berl.) 69, 253–259.

Graff-Guerrero, A., Willeit, M., Ginovart, N., Mamo, D., Mizrahi, R., Rusjan, P.,

Vitcu, I., Seeman, P., Wilson, A.A., and Kapur, S. (2008). Brain region binding of

the D2/3 agonist [11C]-(+)-PHNO and the D2/3 antagonist [11C]raclopride in

healthy humans. Hum. Brain Mapp. 29, 400–410.

Graybiel, A.M. (2008). Habits, rituals, and the evaluative brain. Annu. Rev.

Neurosci. 31, 359–387.

Grillner, S., Robertson, B., and Stephenson-Jones, M. (2013). The evolutionary

origin of the vertebrate basal ganglia and its role in action selection. J. Physiol.

591, 5425–5431.

Haas, H.L., Sergeeva, O.A., and Selbach, O. (2008). Histamine in the nervous

system. Physiol. Rev. 88, 1183–1241.

Haber, S.N., and Knutson, B. (2010). The reward circuit: linking primate anat-

omy and human imaging. Neuropsychopharmacology 35, 4–26.

Hoenig, K., Hochrein, A., Quednow, B.B., Maier, W., and Wagner, M. (2005).

Impaired prepulse inhibition of acoustic startle in obsessive-compulsive disor-

der. Biol. Psychiatry 57, 1153–1158.

Ichise, M., Toyama, H., Innis, R.B., and Carson, R.E. (2002). Strategies to

improve neuroreceptor parameter estimation by linear regression analysis.

J. Cereb. Blood Flow Metab. 22, 1271–1281.

Jankovic, J., and Kurlan, R. (2011). Tourette syndrome: evolving concepts.

Mov. Disord. 26, 1149–1156.

Joshi, V.V., Balsara, J.J., Jadhav, J.H., and Chandorkar, A.G. (1981). Effect of

L-histidine and chlorcyclizine on apomorphine-induced climbing behaviour

and methamphetamine stereotypy in mice. Eur. J. Pharmacol. 69, 499–502.

Kalivas, P.W. (1982). Histamine-induced arousal in the conscious and pento-

barbital-pretreated rat. J. Pharmacol. Exp. Ther. 222, 37–42.

Kamei, C., Dabasaki, T., and Tasaka, K. (1983). Cataleptic effect of histamine

induced by intraventricular injection in mice. Jpn. J. Pharmacol. 33, 1081–

1084.

Kamei, C., Dabasaki, T., and Tasaka, K. (1984). Effect of intraventricular injec-

tion of histamine on the pinna reflex in mice. Jpn. J. Pharmacol. 35, 193–195.

Karagiannidis, I., Dehning, S., Sandor, P., Tarnok, Z., Rizzo, R., Wolanczyk, T.,

Madruga-Garrido, M., Hebebrand, J., Nöthen, M.M., Lehmkuhl, G., et al.
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