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Abstract

The paper establishes, for a wide class of locally compact groupoids I, the E-theoretic descent functor at
the C*-algebra level, in a way parallel to that established for locally compact groups by Guentner, Higson
and Trout. Section 2 shows that I"-actions on a Cq(X)-algebra B, where X is the unit space of I", can be
usefully formulated in terms of an action on the associated bundle B %, Section 3 shows that the functor B —
C*(I', B) is continuous and exact, and uses the disintegration theory of J. Renault. Section 4 establishes the
existence of the descent functor under a very mild condition on I”, the main technical difficulty involved
being that of finding a I'-algebra that plays the role of Cy, (7', B)*°™ in the group case.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Groupoids; Asymptotic morphism; Descent functor

1. Introduction

In a number of situations, in particular for the assembly map, the Baum—Connes conjecture
and index theory ([15, Theorem 3.4], [5,14,31-33] and many others) the descent homomorphism
Jjc :KKg(A, B) - KK(C*(G, A), C*(G, B)), where G is a locally compact group and A, B are
G-C*-algebras, is of great importance. (There is a corresponding result for the reduced crossed
product algebras.) In noncommutative geometry, classical group symmetry does not suffice, and
one requires smooth groupoids in place of Lie groups [4,5], so that it is important to have avail-
able constructions, such as that which gives the descent homomorphism, for groupoid, rather
than just for group, actions. To this end, the work of Le Gall [16, 7.2]—see also [17]—shows
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the existence of the KK --descent homomorphism for I"-algebras, where I is a locally compact,
o -compact Hausdorff groupoid with left Haar system.

A similar issue arises when we consider E-theory rather than KK-theory. Non-equivariant E-
theory is developed in [1,5,6]. Guentner, Higson and Trout gave a definitive account of group
equivariant E-theory in their memoir [12]. In particular [12, p. 47, 60ff.], they established the
group equivariant E-theoretic descent functor and used it in their definition of the E-theoretic
assembly map. Another situation where the E-theoretic descent homomorphism is required is in
the Bott periodicity theorem for infinite-dimensional Euclidean space which was established by
Higson, Kasparov and Trout [13], with its applications to the equivariant topological index and
the Novikov higher signature conjecture. The descent homomorphism associates to an equivari-
ant asymptotic morphism from A to B a canonical homomorphism from Kg(A) to K (B), and
this is how it is used in [13]. The present paper studies the descent homomorphism in the much
more general situation involving groupoids rather than groups. By modifying the method of [12],
we prove the existence of the groupoid descent homomorphism at the C*-algebra level for a very
wide class of groupoids.

We start by reformulating the concept of a I'-action on a Co(X)-algebra. A I'-C*-algebra
is defined in the literature [16,25] as follows. Let X be the unit space of I" and A be a Co(X)-
algebra. Roughly, the latter means that A can be regarded as the Cp(X)-algebra of continuous
sections vanishing at infinity of a C*-bundle A* of C*-algebras A, (x € X). One pulls back A to
I' using the range and source maps r, s to obtain Co(I")-algebras r*A, s*A. An action of I" on
Ais just a Co(I")-isomorphism o : s* A — r* A for which the maps «,, : Ag)) = A,(,) compose
in accordance with the rules for groupoid multiplication. It is desirable to have available an
equivalent definition for a I"-action along the lines of an action (in the usual sense) of a group on
a C*-algebra: in groupoid terms, this should involve a continuity condition for the map y — «,
on the C*-bundle A*. The specification of this continuity is very natural: we require that for
each a € A, the map y — «ay, (as(,)) be continuous. This definition is useful in a number of
contexts, for example, in specifying the I"-algebra of continuous elements in a C*-algebra with
an algebraic I"-action, and in working with the covariant algebra C*(I", A).

Section 2 proves that the two definitions of I"-action on A are equivalent. We survey the
theory of C*-bundles, in particular, the topologizing of A*. We require the well-known result,
related to the Dauns—Hoffman theorem, that the “Gelfand transform” of A is an isomorphism
onto Co(X, A%). A simple modification of a corresponding result by Dupré and Gillette [9] gives
this result and we sketch it for completeness. (Another approach to this is given by Nilsen [21].)

Following the method of Guentner, Higson and Trout, we have to show that the functor A —
C*(I', A) is continuous and exact. This is proved in Section 3. The continuity of this functor is
proved in a way similar to that of the group case, while for exactness, we give a groupoid version
of the corresponding theorem of N.C. Phillips [24] for locally compact groups. The proofs of
these use the disintegration theorem of J. Renault.

Section 4 establishes our version of the descent homomorphism. The theory of groupoid
equivariant asymptotic morphisms for I"-algebras is developed using the work of R. Popescu
[25], to whom I am grateful for helpful comments. In particular, in place of the non-equivariant
Cyw(T, B), the Co(X)-algebra C,f(T, B) = Co(X)Cy(T, B) is used. A technical difficulty arises
since (unlike the locally compact group case) there does not exist a natural algebraic I"-action on
C]f(T, B). However, there is another natural bundle Cy,(T, B%) = | Cu(T, By) on which there
is a simple algebraic I"-action, derived from the given action on B, and a bundle map R from
CX(T, B)* to Cy(T, B¥). We show that if I” has local G-sets—a very mild, “transversal” condi-
tion satisfied by most groupoids that arise in practice—then we can find a canonical I"-algebra
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B C Cé((T, B) determined by the action of I" on Cp(T, B¥). The map B — B is functorial and
is the natural choice for defining the equivariant asymptotic algebra and the groupoid descent
homomorphism.

2. Groupoid C*-algebras

Let I" be a locally compact, second countable, Hausdorff groupoid with a left Haar system A.
The unit space of I" is denoted by X. The range and source maps r,s : I" — X are given by
r(y)=yy~ L s(y) =y "'y. We now review I"-spaces.

A I'-space is a topological space M with an open, onto, projection map p: M — X, M, =
p_l (x), and a continuous product map (a I"-action) from

I xgM={(y.m):s(y)=pm}— M,

so that the usual groupoid algebra holds: in particular, if s(y2) = p(m), then y;(yam) = (y1y2)m
whenever s(y1) = r(y2), and p(y2m) = r(y2). In the case where each M, is a C*-algebra and
each of the maps z — yz is a *-isomorphism from My, onto M,(,), then we say that M is a
I"-space of C*-algebras. We often write a,, (z) in place of y z. For such an M, there is a natural
groupoid Iso(M) whose elements are the *-isomorphisms ¢ from some M,, onto My, and with
unit space X. Of course, s(t) = x1 and r(¢) = x» and the product is given by composition of
maps. Then saying that y — o, is a I"-action is equivalent to saying that the map is a groupoid
homomorphism from I" into Iso(M). We call such an M a continuous I'-space of C*-algebras
if the map (y, z) — ay, (z) from I" x3 M into M is continuous.

Let A be a separable C*-algebra. We recall what it means for A to be Cy(X)-algebra [2,3,
9,15,16,21]. It means that there is a homomorphism 6 from Cy(X) into the center ZM(A) of
the multiplier algebra M (A) of A such that 6(Co(X))A = A. A Co(X)-algebra A determines
a family of C*-algebras Ay (x € X) where Ay = A/(I;A) with I, = {f € Co(X): f(x) =0}.
If J is a closed ideal of such an A, then the restriction map f — 6(f);; makes J also into a
Co(X)-algebra. Also, A/J is a Co(X)-algebra in the obvious way, and (A/J), = A,/ J.

A Co(X)-morphism from A to B, where A, B are Co(X)-algebras, is defined to be a *-
homomorphism 7 : A — B which is also a Cy(X)-module map. In that case, T determines a
*-homomorphism 7 : Ay — B, for each x € X. The following discussion is very close to, but
not quite contained, in the book on Banach bundles by Dupré and Gillette [9], and we will give
a brief description of the modifications required. Some of the details will be needed later.

Let a, be the image of a € A in A,. Let Al = LJAx and p: A? — X be the map: p(ay) = x.
Then (cf. [9, p. 8]), A® is a C*-algebra family: the map p : A® — X is surjective, and each
fiber A, = p~!(x) is a C*-algebra. Let a be the section of A given by a(x) = a,. By a C*-
family E being a C*-bundle, we mean [9, pp. 6-9] that E is a topological space with p open
and continuous, that scalar multiplication, addition, multiplication and involution are continuous
respectively from C x E — E, from E xy E — E, from E xx E — E and from E — E, and
the norm map ||.|| : E — R is upper semicontinuous and the following condition on the open sets
for E holds: if W is open in E, x € X and the zero O, of E, belongs to W, then there exists an
€ > 0 and an open neighborhood U of x such that

{bep™(U): bl <€} cW.

(Recall that a map f : E — R is upper semicontinuous if, for each ¢g € E and each € > 0, there
is an open neighborhood U of ¢g in X such that f(e) < f(eg) + € foralle e U.)
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We now discuss briefly how, in a natural way, E = A* is a C*-bundle, and the map a — 4 is a
*-isomorphism from A onto Cy(X, AY) (a “Gelfand” theorem) (cf. [16, 2.1.3], [21]). One proves
first that each a is upper semicontinuous. To this end, we modify the proof of the corresponding
results [9, Proposition 2.1, Corollary 2.2] which are proved in [9] for the completely regular,
rather than locally compact Hausdorff, case. The first of these results for our case can be stated
as follows.

For each x € X, let N be the family of relatively compact, open subsets V of X containing x.
For each V € Ny, let fy : X — [0, 1] be continuous and such that it is 1 on a neighborhood
of x in 'V and vanishes outside V. Then

la) | =inf{ll fvall: V e Ny} 2.1)

The upper semicontinuity of ||a|| follow since if € > 0 and V is chosen so that

lac)| > Il fvall —e,

then for y in a neighborhood of x, |la(y)|| < || fvall < la(x)| + €. (Equality (2.1) is due to
J. Varela.)

The first part of the proof of (2.1) shows that ||a(x)| = inf{|| fya|: V € N,}. This is the
same as in the original Proposition 2.1. For the reverse inequality, let € > 0. Since A is a
Co(X)-algebra, a = fb for some f € Co(X),b € A, and using a bounded approximate iden-
tity in Co(X), there exists F' € Co(X) suchthat 0 < F <1, F(x) =1 and ||(1 — F)a|| <e€. As
(F—fvyael,A,anda = fya+ (1 — F)a+ (F — fv)a,

la@)| < | fva+ 1= Fa| <llfval +e
and we obtain ||a(x)| <inf{| fyall: V € Ny}
Since we have (2.1), the conditions of [9, Proposition 1.3] (or of [11, Proposition 1.6]) are

satisfied, and A* is a C*-bundle. A base for the topology on A¥ [9, pp. 9, 10, 16] is given by sets
of the form

Ula,€) ={bx € Ay:

by — ax| < €} (2.2)

where a € A, € > 0 and U is an open subset of X. Further, a local base at z € Ay is given by
neighborhoods of the form U (a, €) where a is any fixed element of A for which a,, = z, and
A is a closed *-subalgebra of Co(X, AY). To see that A= Co(X, AY), we just have to show (cf.
[9, Proposition 2.3]) that A is dense in Co(X, A%). This follows by a simple partition of unity
argument ([11, Proposition 1.7], [26, Lemma 5.3]). We then have the following theorem [16,
Théoreme 2.1.1]. It is also proved by Nilsen [21, Theorem 2.3] who derives the Dauns—Hoffman
theorem [26, Theorem A.34] from it.

Theorem 1. With the above topology on A%, A* is a C*-bundle over X. Further, the relative
topology on each A, is the norm topology. Last, the map a — a is a Co(X)-isomorphism from
A onto the Co(X)-algebra Co(X, A%) of continuous sections of A* that vanish at infinity.
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If A, B are Co(X)-algebras and 7 : A — B is a Cp(X)-morphism, then T?: A" - B s
continuous, where T%a, = Ty (ay) = (Ta),. (In fact (TH~Y(U(Ta, €)) D U(a,€).)

Next, if 8 is a Co(X)-subalgebra of a Co(X)-algebra B then for any x, I, BN ‘B = [,*B so
that we can identify 2B* with a subbundle of B, and the topology on 987 is the relative topology.

We now recall how the (maximal) tensor product A ®c,(x) B of two Co(X)-algebras is de-
fined. For more information, see [2,3,10,16]. One natural way to do this is to take A ®c,(x) B to
be the maximal Cy(X)-balanced tensor product: s0 A ®c,(x) B = (A Qmax B)/I, where I is the
closed ideal generated by differences of the form (af ® b —a ® fb) (a € A,b € B, f € Co(X)).
The Co(X)-action on A @c,(x) B is determined by f(a®b) = fa@b=a® fb for f € Co(X).
(Alternatively, one regards A ®max B as a Co(X x X)-algebra and “restricts to the diagonal”:
A Qcyx) B= (A ®max B)/Ca(A ®max B) where Cx = {g € Co(X x X): g(x,x) =0 for all
x € X}.) Next, (A Qcy(x) B)x = Ax ®max Bx. If D is an ordinary C*-algebra, then D ®max B is
a Co(X)-algebra in the natural way: 8(f)(d ® b) =d ® fb. (Alternatively, one can identify the
Co(X)-algebra D ®max B with (D Qmax Co(X)) ®cy(x) B.) An important case of this is when
D = Cy(Z) (Z alocally compact Hausdorff space): then Co(Z, B) = Co(Z) ® B is a Co(X)-
algebra, and Co(Z, B), = Co(Z) @ By = Co(Z, By). Itis easily checked that (g ® b)), = g Q@ by,
and it follows that for F € Co(Z, B), Fy(z) = F(2)x € By.

Now let B = Co(Y) (Y alocally compact Hausdorff space) with the Co(X)-action on B given
by a continuous map g : Y — X: here (f F)(y) = f(q(y))F(y) where F € Co(Y), f € Co(X).
In this case, one writes ¢g*A = A ®c,x) Co(Y). It is sometimes helpful to incorporate explicit
mention of the map ¢ in this tensor product by writing A ®c,(x),q4 Co(Y) in place of A ®c,(x)
Co(Y). g*A is actually also a Co(Y)-algebra in the obvious way: (a ® F)F' =a ® FF’ for
F,F' € Cy(Y),and foreach y € Y, we have (g*A)y = Ay(y). (The canonical map from (g*A), to
Ag4(y) comes from sending (a ® F')y to ay(y) F(y).) Nowlet Y x, At ={(y, agy)): y€Y, ac A}
with the relative topology inherited from ¥ x A®. From the above, ¥ x P A" is identified as a set
with (g*A)¥. We now show that the spaces are homeomorphic when g is open.

Proposition 1. If g is also open, then the identity map i 1Y x4 A? — (g*A)? is a homeomor-
phism.

Proof. A base for the topology of (¢g*A)? is given by sets of the form W (a ® F, €) where W is
a relatively compact open subset of Y, F € Cop(Y) is 1 on W and a € A. Then W(a ® F,¢€) =
W x4 q(W)(a, €) and the latter sets form a base for the topology of ¥ x, A% O

We now recall what is meant by a ["-algebra A [16,25]. Form the balanced tensor products
s*A=AQcyx).s Coll") andr*A = A®cy(x),r Co(I"). From Theorem 1, r*A = Co(T’, (r*A)h.
Then A is called a I"-algebra if there is given a Co(I")-isomorphism « : s*A — r*A such that
the induced isomorphisms a,, : (s*A), = Ay = (r*A), = A, satisfy the groupoid multi-
plication properties: @), = a)«a, whenever r(y") =s(y) and o,-1 = (ay)_l. Obviously, for
each x € X, ay is the identity map on A,.

As an example, suppose that I" is a locally compact group G. Then s*A =r*A=A®
Co(G) = Cy(G, A).For F € Co(G, A), we have F, = F(g) and by Proposition 1, (Co(G, A)? =
GxA.Ifa:Co(G,A) — Co(G, A) gives a G-action on Co(G, A), then since (Co(G, A))g = A,
we get isomorphisms a, : A — A. We are given that ag, = ag o ap, for all g, h € G. Last since
the map g — (a(a ® k), = ag(a)k(g) belongs to Co(G, A), it follows that for each a € A, the
map g — g (a) is norm continuous. So A is a G-algebra in the usual sense. (The converse is left
to the reader.) We now show that the groupoid version of the preceding holds; a I"-C*-algebra A
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can then be viewed in terms of a I"-action on A”. Note that the corollary characterizes I"-action
in terms exactly analogous to that of a group action.

Theorem 2. A is a I"-algebra if and only if A* is a continuous I'-space of C*-algebras Ay.

Proof. Suppose that A is a I"-algebra. So we are given a Co(I")-isomorphism « : s*A — r*A
with y — «, a homomorphism into Iso(A%). Let B = of. Then the continuity of the map
(v, 2) — ay (z) follows, using Proposition 1, by composing the following continuous maps:

. .1
M x, AP (A L vy S P ox, AR 22 4t

where p; is the projection onto the second coordinate. So A is a continuous I"-space of C*-
algebras.

Conversely, suppose that A is a continuous I"-space of C*-algebras. Define g : I' x; A¥ —
I x, A? by B(y,z) = (v, a,(z)). By assumption, § is continuous. The map ,3_1 is also continu-
ous since it equals (inv® 1) o B o (inv® 1), where inv(y) = y_l. Then the map F — (iﬂi_l) oF
is a Co(I")-homomorphism from Co(I", (s*A)?) into Co(I", (r*A)¥) which is an isomorphism
since its inverse is the corresponding expression involving 8~!. By Theorem 1, this isomorphism
determines a Co(I")-isomorphism « : s*A — r*A and A is a ['-algebra. O

Corollary 1. A is a I'-algebra if and only if there is given a groupoid homomorphism y — a,
from I into Iso(A?) such that for each a € A, the map y — oy, (as(y)) is continuous.

Proof. Suppose that we are given a groupoid homomorphism y — «,, from I" into Iso(AF) such
that for each a € A, the map y — «, (ay(y)) is continuous. Let {(ys, z5)} be anetin I" X AP con-
verging to some (yp, zo). We show that o5 (zs) — ay,(z0). Let a, c € A be such that zg = a,(y,)
and oy, (z0) = ¢r(y)- Let V(c, €) be a neighborhood of ¢y, in A®. By continuity of the map
y — oy, (as(y)), there exists an open neighborhood Z of yy in I" and a §; such that for all § > 63,
ay (agy)) € V(c,€/2) for all y € Z. Since z5 — zo, we can also arrange that z5 € s(Z)(a, €/2)
for all 6 > 81. So for all 8 2> 81, llzs — asyy |l < €/2, giving [l (z5) — oy (@5 Il < €/2.
Since ay,(as(ys)) —> Cr(yy)» We can also suppose that for all § > 81, ay,(asyy)) € Ve, €/2),
i.e. |lay; (@sys) — Cry)ll < €/2. By the triangular inequality, o, (z5) € V(c,€) (8 > 1), and
oy, (z5) = oy (z0). By Theorem 2, A is a I'-algebra. The converse also follows from Theo-
rem?2. O

Now suppose that A is a ["-algebra and J is a closed ideal of A that is a I"-subalgebra of A
in the natural way, i.e. foreach y € I', j € J, we have ay, (js(y)) € Jy(y). Using the continuity of
the canonical map from A® to (A/J)? and Corollary 1, it is easy to prove that the Co(X)-algebra
A/J is also a I"-algebra in the natural way, and we have a short exact sequence of I"-algebras:

0—-J—>A—>A/J—0. (2.3)

Next suppose that A is a Co(X)-algebra, and that the A,’s form a I"-space of C*-algebras.
So we can say that A has an algebraic I"-action (with no continuity condition on the maps y —
oy (as(y))). We wish to define a C*-subalgebra A°°™ of A on which the I"-action is continuous.
For this result, we require that I" have local r-G-sets (cf. [29, p. 10], [23, p. 44]). This means
that for each yy € I', there exists an open neighborhood U of 7(yp) in X and a subset W of I"
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containing y such that ry = r|w is a homeomorphism from W onto U. Most locally compact
groupoids that arise in practice have local r-G-sets (e.g. Lie groupoids, r-discrete groupoids and
transformation group groupoids).

Proposition 2. Let I" have local r-G-sets, A have an algebraic I'-action and define
Aot — {a € A: the map y — oy (ag(y)) is continuous}.
Then A js a I' -subalgebra of A.

Proof. It is obvious from the definition of a C*-bundle that A" is a *-subalgebra of A.
Let a, — a in A with a, € A for all n. Then ay, ((an)s(y)) — @y (as()) uniformly in y.
Adapting the proof of the elementary result that a uniform limit of continuous functions is
continuous—one uses also the upper semicontinuity of the norm on A®—it follows that the
map y — &, (as(y)) is continuous, i.e. a € A°™. So A°™ is a C*-subalgebra of A. Next, if
f € Co(X), then ay, ((fa)sp)) = f(s(¥))ey (asy)), and the map y — ay, ((fa)s(y)) is con-
tinuous. So Co(X)A®M C ANt Also, if a € A", then a = f'a’ for some f' € Co(X),
a’ € A, and so a = lime,(f’a’) where {e,} is a bounded approximate identity for Co(X). So
Co(X)ANt = Aot and A js a Co(X)-algebra. Last, we have to show that if a € A"
and yp € I', then oy, (as(yy)) € (A™)r(y). Let W, U be as above so that ryy : W — U is a
homeomorphism. Let f € C.(U) be such that f(r(yp)) = 1. Then the section g of Al given by
glu) = f(l/l)()[rl;/l (u)(as(r‘;/l (u))) belongs to C.(X, AY). By Theorem 1, there exists b € A such that

b, = g(u) for all u € X. Since ay, (by(y)) = f(s(y))ay
see that b € A", O

cont
! 600 Gsyry s(py)) and @ € AT, we

Now let A, B be I'-algebras. The tensor product A ®c,x) B is a I"-algebra [16, 3.1.2] in
a natural way. Indeed, using the associativity of the balanced tensor product [2, p. 90] and the
equality Co(I") ®cyr) Co(I") = Co(I"), we obtain ¢*(A Qc,x) B) = q*A @cyry) q*B (g =
s,7). The I'-action on A ®c,(x) B is then given by o ® 8, where «, 8 are the I"-actions on A, B.
Further (@ ® ), = a, ® B, (recalling that (A ®cyx) B)x = Ax ®max By). Also, if A is just a
C*-algebra and B is a I"-algebra, then the Co(X)-algebra A ®max B is a I"-algebra: we identify
q* (A ®max B) with A ®max ¢* B with ¢ = s, r, and the I'-action is given by I ® . (Alternatively,
one can reduce this to the earlier case by using ¢*((A ® Co(X)) ®c,(x) B).) In particular, if B
is a I"-algebra, then the Co(X)-algebra Co(T, B) is also a I"-algebra, and the action is given by

ay (Fso)(0) =y (F()s(y))- 2.4)

A I'-homomorphism [16, Definition 3.1.2] from A to B is a Co(X)-homomorphism ¢ : A —
B such thatforall y € I',

ri)ty = By Ps(y) (2.5)

where «, 8 denote respectively the actions of I" on A and B. It is simple to check that with
I'-homomorphisms as morphisms, the class of I"-algebras forms a category.
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3. Continuity and exactness

Next, we need the notion of a crossed product of I' by a I"-algebra A [16,30]. We will need
to use the profound disintegration theorem of J. Renault of [30]. Renault develops a groupoid
version of the theory of twisted covariance algebras for locally compact groups, and working
in a very general context, constructs a C*-algebra C*(I", X, A, 1) where A is a I"-algebra and
S is a bundle of abelian groups over X with I" acting on the fibers and X' is a groupoid given
by an exact sequence of groupoids. (Also used in the construction is a homomorphism x on §
that we do not need to go into for our present purposes.) For the special case of the groupoid
crossed product, we take S = X = I'’ and X' = I'. In that context, we put on the algebra rfA=
Co (I, (r*A)%) = C.(I')r* A, a product and involution given by

Fix Fy(y) = / Py (B(yy)dr o), (F)*) = (Fi(y™)"). G.D
rrw

(The proof that F; x F> € rf A is given by P.-Y. Le Gall in [16, Proposition 7.1.1].) Next, r} A is
anormed *-algebra with isometric involution under the I-norm ||.||;, where

IFllr = max{[|F|, | F*|,}

and

IFIl, =sup/||F<y)H dr*(y).
xepr

The enveloping C*-algebra of (r} A, ||.|I7) is then defined to be the crossed product C*(I', A).

A very simple example of this is provided by the case where A = Co(X) with the usual action
of I" on X: a, (s(y)) =r(y). In that case, as is easily checked, AP =X xC, ay :Cspy) = Gy
is the identity map, s*A =r*A = Co(I"), and « : Co(I") — Co(I") the identity map. Of course,
(r*A)* is just I' x C, and r¥A = Cc(I'). Then C*(I', A) is just the C*-algebra C*(I") of the
groupoid [29].

We now turn to Renault’s disintegration theorem for representations of C*(I", A)—for a
detailed exposition for the case C*(I") see [18]. The theory uses the fundamental papers of
Ramsay [27,28]. We first formulate [30, Lemme 4.5] in Co(X)-algebra terms. Let A be a Co(X)-
algebra, $) = { H, }ycx a Hilbert bundle and p a probability measure on X. Let H = L2(X, i, 9).
We will say that a non-degenerate representation & : A — B(H) is a Co(X)-representation (for
(X, u, 9)) if # commutes with the Co(X)-actions on A and B(H), i.e. for all f € Co(X) and
alla € A, Tyn(a) =n(a)Ty = n(fa), where Ty is the multiplication operator on L?(H) as-
sociated with f. By taking strong operator limits, we get that every a commutes with every Ty
for f € L*°(X, u), i.e. with every diagonalizable operator. So [8, 11, 2, 5, Corollary] every m (a)
is decomposable, and from [7, Lemma 8.3.1],  is a direct integral of representations m, of A.
Further, for each f € Co(X), n,(fa) = f(x)my(a) so that 7, is a representation of A, on H,.
The 7,’s are non-degenerate a.e. by [7, 8.1.5]. We now discuss what is meant by a covariant
representation of (I, A).

Let u be quasi-invariant on X, v = f x At du(x) ([29, pp. 22-23], [23, Chapter 3]): quasi-
invariance means that v ~ v=!. Let U be a Borel subset of X which is p-conull. Then Iy =
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r~1(U) ns~1(U) is a Borel groupoid which is v-conull in I". Then Iy equipped with the
restrictions of w, v to U, Iy is a measured groupoid, called the inessential contraction of I’
to U. Next we are given a Hilbert bundle $ = {H,},ex; Iso(X % $) is the Borel groupoid of
unitaries Uy  : Hy — Hy as x, y range over X. (See [18, Chapter 3].) A covariant representation
(or a representation of the dynamical system (I", I', A) in the terminology of [30, p. 79]) (L, )
of the pair (I', A) consists of:

(i) a Borel homomorphism L : Iy — Iso(X * ) v,
(i) a (non-degenerate) Co(X)-representation w = f @ wydu(x) of Aon H= L2(X, uw, 5H): for
eacha e A,

52
n@) = [ 7@ dut)
(iii) forall y € INy and a € A, we have

Ly sy (@s))Ly-1 = Tr(y) (“y(aS(V)))- (3.2)

A. Ramsay [18,27,28] showed, at least in the case A = Co(X) above we can actually take U = X.
However, because of the conullity of U, we can effectively regard the pair (L, 7) as defined on
I' rather than Iy and will usually leave the U implicit.

Every covariant representation (L, ) of I integrates up to give a representation @ of
C*(I', A). Indeed, from [30, p. 80], for F erfAand &, n € H,

(& (F)E. 1) = / (1) (Fy) Ly sty ) 0 (%) (33)

where, as usual (see [29, p. 52], [23, 3.1]) dvg = D~Y2 4y with D = dv/du‘l.

Conversely, every representation ¥ of C*(I", A) on a Hilbert space K is equivalent to such
a @. Indeed, from [30, p. 88], elements ¢, & of the algebras C.(I"), C.(X, Au) act as left multi-
pliers on r; A where

¢ F(y)= / oy (F(y' ')A 0N, (hF)(y)=(hor)()F(y). (3.4)

rr

Renault shows that there are representations L', 7’ of Cc(I™), Cc(X, A" = C.(X)A on K and
determined by

U(p*F)=L(p)¥(F), W (hF)=n'(h)¥(F). (3.5)

Renault first studies the representation L’ of C.(I") and obtains a quasi-invariant measure pu
on X and a measurable Hilbert bundle $ = {H,} over X such that K can be identified with
L2(X , 103 $)). Then L’ is disintegrated into a representation L of the groupoid I", and the ’'(a)’s
are decomposable on $: 7’(a) = {m;(a,)} (with 7 in place of /). He then shows that L, 7 can
be taken to be such that the pair (L, ) is a covariant pair whose integrated form is equivalent
to Y.
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We now discuss exactness and continuity for functors. So let F be a functor from the category
of I'-algebras with I"-homomorphisms as morphisms into the category of ordinary C*-algebras
with *-homomorphisms as morphisms. Following [12, p. 19, ff.], we say that F is exact if for
every short exact sequence of I"-algebras

0->J—>A—>A/J—0
the induced sequence of ordinary C*-algebras
0—>F(J)—>FA) —>FA/J)—0

is exact. Now let / be a closed interval [a, b], B be a ["-algebra and /B be the I"-algebra
C(I)® B =C(I, B). For each k € F(I B), we can associate a function k : I — F(B) by setting
Ig(to) = F(ev,) (k) where ev,, : I B — B is evaluation at #o: ev; (g) = g(to). (Note that evy, is a
I'-homomorphism.) The functor F is said to be continuous if every k is continuous. The map
k — k then gives a homomorphism from F(/ B) into /F(B). Later, we will need to replace the
finite interval / in C(/, B) by the infinite interval 7. We cannot replace C (I, B) by Cy(T, B)
since the latter does not admit a I"-action in any natural way. However, the theory can be made
to work, as we will see later (Proposition 5) by replacing Cy(7, B) by a Co(X)-subalgebra ‘B
with a covering ["-action.

An exact, continuous functor F will now be constructed from the category of I"-algebras
with I"-homomorphisms as morphisms into the category of ordinary C*-algebras with *-
homomorphisms as morphisms. For a I"-algebra A, define F(A) = C*(I", A). We need to specify
what F does to morphisms. Let B also be a I"-algebra and ¢ : A — B be a I'-homomorphism.
Define, for each F € r} A, a section &(F): T — (r*B)! by

S(F)(Y) = brp) (Fy). (3.6)

We note that ¢ (F) is just the same as (r*¢)(F) e r}B = C(I, (r*B)*%). Using (3.1) and (2.5),
we obtain that for F, F, erfAandeachy € I',

B(Fy % F2)(¥) = ¢r () (F1 % F2) (7)) = ($(F1) % p(F2)) (v) (3.7)

and ¢((F1)*) = (¢(F1))*. So ¢ is a *-homomorphism from rFA to r}B. It is continuous for
the respective C*-norms since lp(F)Il; < ||F]l; so that 7 o <j~>~is a representation of C*(I", A)

whenever 7 is a representation of C*(I", B). We set F(¢) = ¢. It is easy to check that F is a
functor. In the following, A ® B means A Q@max B.

Theorem 3. The functor F is continuous and exact.

Proof. (a) We first show the continuity of F (cf. [12, Lemma 4.11] where the locally compact
group case is sketched). Let A be an ordinary C*-algebra and B be a I'-C*-algebra and recall
that A ® B is a I"-algebra. We show that

AQC*(I',B)=C*"(I', A® B). (3.8)
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There is a natural Co(I")-isomorphism @ from A ® r*B onto r*(A ® B) determined by
P(a® (b®cyx) F)) =(a®b) Qcyx) F (e.g. [25, Corollary 1.3]). The map @ restricts to
an isomorphism, also denoted @, from A ®a1e r¥ B onto a subalgebra of rf(A ® B). @ is also
an isomorphism when A ®qg 7B, (A ® B) are given the convolution product and involu-
tion of (3.1). Give A ®ag 1y B, ri(A ® B) the norms that they inherit as (dense) subalgebras of
A®C*(I',B),C*(I", A® B). We note that (A ® rB) is ||| ;-dense in r} (A ® B) and so also
dense in C*(I", A ® B). We show that @ is isometric.

A representation 7’ of r¥(A @ B) is determined by a covariant pair (L, ) where 7 is a
representation of A ® B on some H = L2(X , i, 9). Then [20, Theorem 6.3.5] there exist non-
degenerate, commuting representations 1, 72 of A, B on H such that 7(a ® b) = my(a)m2(b).
Further, using bounded approximate identities in A, B, m» is a Cp(X)-representation and 7
commutes with the Co(X)-multiplication operators T on H. Disintegrating, we get

w1(a)x (7m2)x (by) = mx(a ® by) = (712) x (bx)Tw1(a) 5

almost everywhere, and L,y (a)s(y)(ﬂz)s(y)(bs(y))Ly—l = 11(a@)r(y) (T2)r(y) (br(y)). It follows
that (L, mp) is covariant for B and Lymi(@)sq)Ly-1 = mi(a)r(y) ae. Let @ be the integrated
form of (L, m3). Then from (3.3) and the above, the representations 71, @, commute, and so the
C*-semi-norm that they induce on A ®,; C*(I', B) is < the maximum tensor product norm.
Since /(@ (w)) = (711 ® P2)(w) (w € A ®qig ¥ B), it follows that || @ (w)[| < [w].

On the other hand, each representation = of A ® C*(I", B) is determined by a pair of com-
muting representations 1, 73 of A, C*(I", B) on some H. Then m, disintegrates into a covariant
pair (), L) and we can identify H = L% (X, i, $). Using (3.5), 71 and w5 commute and L’
and 7y commute. Also, 1 commutes with the T¢’s (f € Co(X)). From the proof of the dis-
integration theorem, L, 7| (Q)S(V)LV—I = m1(a)r(y) almost everywhere. Then (7] ® rré, L)isa
covariant representation for A ® B and so determines a representation ¢ of C*(I", A® B). Then
on the range P of @, w o @~ = ¢, and it follows that ||@~!(z)|| < |z| for all z € P. So @
is isometric, and so extends to an isomorphism from A ® C*(I", B) onto C*(I", A ® B), giving
(3.8). For the continuity of F, we take A = C(I) where [ is some [a, b]. Then using (3.8), let
keF(UB)=C*(I,IB)=C(I,C*(I", B)). When k belongs (under the isomorphism @) to the
dense subalgebra C(I) ®ag r¥ B of C*(I", I B), we use (3.6) to show that k(o) = vy, (k) = k(19).
By uniform convergence in C(I, C*(I", B)), the same is true for k € C*(I', I B), and F is con-
tinuous.

(b) For exactness, one modifies the proof by N.C. Phillips of the corresponding result for the
group case [24, Lemma 2.8.2]. Let

0—>J—X>A£>B—>O

be a I"-equivariant short exact sequence of I -algebras. With j = F(x), v = F(¢), we have to
show that

0— C*(I' ) c*(I Ay 5 c*(I, B) > 0

is a short exact sequence of C*-algebras. So we have to show that (1) j is injective, (2) Yy o j =0,
(3) keryr C j(C*(I', J)), and (4) ¥ is surjective.
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(1) Let @ be a representation of C*(I'", J). Let (L, ) be a disintegration of @ on H =
L%(X, u; $) as earlier. Regarding the elements of A as multipliers on J in the obvious way,
7 extends to homomorphism 7’ of A. Further,

7'(a) =limm(aey)& (3.9

where {e,} is sequence that is a bounded approximate identity for J. It follows that every 7'(a)
is decomposable, and there is, for each x € X, a representation rr; of A, on H, such that for
eacha € A,

524

7' (a) =/n;(ax)du(x).

Further, for a.e. x, 7} is non-degenerate. Next, the restriction of 7’ to J is just w and so
by the uniqueness a.e. of the decomposition of a decomposable operator [8, II, 2, 3, Corol-
lary] and after removing a null set from U, we can suppose that 7, restricts to m, for all
u € U. Then n) (a,) = limm, (a,(e,),) in the strong operator topology. We claim that the {x,}
are covariant for the L, ’s. Indeed, let a € A. Then with convergence in the strong operator
topology, Ly ' (as(y)) L, -1 = lim Ly () (@s(y) (en)sy)) Loy -1 =1im,p) (0t (@5 (€n)s ) =
Lim 7, () (@) (as))) oy ((en)s))) = nr’(y) (aty (as(y))). (Here we use the fact that {or}, ((en)s())}
is a bounded approximate identity for J.(;y.) So the pair (L, ') is a covariant representation of
(I", A) and its integrated form @’ is a representation of C*(I", A). Further, since x is the identity
map, ®(g) = P'(j(g)) forall g e rXJ CrrA. It follows that | g|| < [l j(g)|l for all g € r¥J, and
by the continuity of j, this inequality extends to C*(I", J), and j is injective.

(2)$pox =0,F0)=0and F is a functor.

(3) From (1), j identifies C*(I", J) with a closed ideal of C*(I', A). Let go € C*(I", A) and
suppose that go ¢ C*(I", J). Then there exists a representation @ of C*(I", A) such that @
annihilates C*(I", J) while @ (go) # 0. Let (L, i) be the covariant representation of (I", A) asso-
ciated with @. If h € Co(X, J%), F r¥A,then hF erlJ,and so by (3.5), 7 (h) =0.Somj; =0
and  determines a Co(X)-representation 7; of A/J = B. Also fora € A, since 1] o p =7,

(”1)x(¢x(ax)) = 7y (ay). (3.10)

It is easy to check that the pair (L, 7rq) is covariant for (I, B). Let @ be the representation of
C*(I', B) that is the integrated form of (L, r1). A simple calculation using (3.3) and (3.10) gives
@ = @ o). Since D (go) # 0, we must have ¥ (go) # 0. So keryy € C*(I, J).

(4) Let F e rfB, € > 0. Then there exist F; € Cc(I"), b; € B such that || Y, b; Qcyx) Fi —
F|| <€ inrfB. By multiplying by a fixed function g € C.(I") with g = 1 on the support C of F,
we can suppose that there is a fixed compact set K, independent of €, containing the supports of
F and the F;’s. Then || Y, b; ®c,x) Fi — Fll1 < esup, A (K UK. Since 3, b ®cyx) Fi €
Y (rkA), it follows that ¥ is surjective. O

For later use, in the argument of (a) above, we can take in (3.8) A = Co(T') to obtain that for
k € Co(T, B), the function

k € Co(T,F(B)). (3.11)
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4. The descent homomorphism

The theory of I"-equivariant asymptotic homomorphisms was developed by R. Popescu [25].
(The case where I" is a locally compact group was treated in [12].) Recall first that in the
non-equivariant case, one is given two C*-algebras A, B. Let T = [1, 00). One defines AB =
Cyw(T, B)/Co(T, B). (The algebras A" B (n > 2) are defined inductively: A" B = AQA"=DB),
but for convenience, we restrict our discussion to the case n = 1.) An asymptotic morphism is a
*-homomorphism ¢ from A into 2AB.

The theory of asymptotic morphisms in the Co(X)-category requires natural and simple
modifications [22,25]. The algebras A, B are, of course, taken to be Cy(X)-algebras. However
Cy(T, B) is not a Cp(X)-algebra under the natural homomorphism 6 : Co(X) — ZM(Cy(T, B)),
where (O(f)F)(t) = fF(t) (f € Co(X), F € Co(T, B)). The reason is that Co(X)Cyp (T, B) #
Cv(T, B). Instead, one replaces Cy, (T, B) by its submodule Cé((T, B) = Co(X)Cyp(T, B) which
is a Cp(X)-algebra. To ease the notation, we write Cy(7, B) instead of Co(X)Cy(T, B) when
no misunderstanding can arise. Recall (earlier) that Co(T, B) is always a Co(X)-algebra with
(Co(T, B))x = Co(T, By). One defines Ay B, which, abusing notation slightly, will be abbre-
viated to 2B, to be the quotient Cy (T, B)/Co(T, B); then AB is a Co(X)-algebra. A Co(X)-
asymptotic morphism is defined to be a Co(X)-morphism ¢ : A — AB.

Now suppose that A, B are I -algebras. We would like Cyp (T, B), AB to be I"-algebras in a
natural way so that we can define I"-equivariant asymptotic morphisms from A to AB. As we
will see, there is a technical difficulty in defining the appropriate I"-actions, and indeed, even
in the group case of [12], continuous versions of Cy(7, B), 2B are required. The C*-algebras
(Cyw(T, B))y make sense, of course, since Cy (T, B) is now a Co(X)-algebra. The problem is
to obtain a natural I"-action on Cy(7T, B): how does one define the a) : (Co(T, B))s(y) —
(Co(T, B))r(y)? To deal with this it is natural to try to replace Cp(T, B)y by Cp(T, Byx) and
Cv(T, B)? by the bundle Cy(T, B*) =| |,y Cv(T, By); for, using the I"-action on B, Cy(T, B¥)
is a I"-space of C*-algebras in the natural way:

ay (hs(y))(t) =y (hs(y)(t)) 4.1)

where, of course, i) € Co(T, By(y)). For each x, there is a canonical homomorphism Ry :
Cw(T, B) — Cy(T, By) given by R, (F)(t) = F(t),. Note that R, (fF) = f(x)RF (f €
Co(X)). Since R, (I,Cp(T, B)) =0, the map R, descends to a *-homomorphism, also de-
noted R, from Cy(T, B), into Cy(T, By). Since R, (Co(T, B)) C Co(T, By), it also induces
a *-homomorphism, i, : AB — A(By). Then i, determines a *-homomorphism, also denoted
iy (AB)y — A(By): ix(Fy) = R, F where F = F + Co(T, B) and for g € Cy(T, By), we set
g =g+ Co(T, By). If we knew that R,,i, were onto isomorphisms, then we could identify
Cyw(T, B), with Cy(T, By) and (AB), with 2(B,) and be able to define (at least algebraically)
actions of I" on Cy(T, B),2B.

Unfortunately, the C*-algebra Cy (T, B) is too big for this to work (as we will see below).
However, there is a very useful, simple relation between sections of the bundles Cy (7, B)*
and Cy(T, B®) which we now describe. For each F € Cy(T, B) = Co(X, Cp(T, B)?) (Theo-
rem 1), define a section RF of the bundle Cy(T, BY) by setting: RF(x) = Ry F = R, Fy. Let
So(X, Cp(T, B¥)) be the C*-algebra of sections of the bundle Cy(7, B*) that vanish at in-
finity. The support supp H of a section H € So(X, Co(T, B%)) is the closure in X of the set
{x € X: H(x) # 0}. For F € Cy(T, B), the support supp F' of F is the (X—) support of the
section x — Fyx (not the support of F as a function of ¢).
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Proposition 3. The map
R:Cy(T, B) - So(X, Co(T, BY))
is a support preserving *-isomorphism.

Proof. The only non-trivial part of the proof that R is a *-isomorphism is to show R is one-
to-one. Suppose then that RF = 0. Then for fixed ¢, F(¢)y =0 in B, for all x. So F(t) =0 by
Theorem 1, and so F = 0. Now let F' € Cy(T, B) be general. Since R, is norm-decreasing, we
obtain that supp RF C supp F. Now suppose that supp RF # supp F. Then there exists an open set
V in X such that V NsuppRF =@ and f € C.(V) such that fF #0. Then R(fF)= f(RF)=0
and we contradict the *-isomorphism property. O

In most of what follows, we will replace Cy,(T, B) by a smaller Co(X)-subalgebra B
that contains Co(T, B). The constructions above for Cy (7', B) go through for 8. Let Br =
UxeX R.%3, a bundle of C*-algebras that is a subbundle of Cy(T, BF). As above, we obtain,
for each x, a *-homomorphism R, : 6 — R,‘B, which descends to R, : By — R;B. Then
B/Co(T, B) is a Co(X)-algebra, with B/ Co(T, B))x =B,/ Co(T, B,). We obtain a canonical
homomorphism iy : (B/Co(T, B))x — R+ (28,)/Co(T, By). We write s B, sy By in place of
B/Co(T, B), Ry (®B,)/Co(T, By). Note that R,, i, are onto, but unfortunately, are not usually
injective.

For example, consider the case where X = [0, 1] and B = C([0, 1]). Then the func-
tion F on T, where F(t)(x) = sin(¢x), belongs to Cy(T, B) using the mean-value theorem,
and Ro(F)(t) = sin(t0) = 0. So RyF = 0. But Fy # 0. For otherwise, F = fF’ for some
f €lo, F' € Co(T, B), and so sup, .y |sin(tx)| — 0 as x — 0. But if x is not zero, then
sup,cr | sin(tx)| = 1. It is obvious that the image Fo of F in (AB)g is non-zero yet ig(Fg) =0
in 2ABy. So i is not injective as well.

We now look at the question: when are the R, ’s *-isomorphisms for 8 as above? If the latter
holds, then every R, must be an isometry on By, and it follows that the map x — ||R, F| is
upper semicontinuous for all ¥ € *B. Here is the converse.

Proposition 4. Suppose that the map y — || Ry F || is upper semicontinuous for all F € B. Then
forevery y € X, Ry is a *-isomorphism on B .

Proof. Let F €3, y € X and € > 0. Since |R:F| < ||Fx|| = 0 as x — oo, there exists a
compact subset C of X such that || R, F'|| < € for all x € X \ C. Suppose that R, F' = 0. By upper
semicontinuity, there exists an open neighborhood U of y such that || Ry F'|| < € forall x € U. We
can suppose that U C C. Let h € Co(X) be such that 0 < h < 1, h(y) =0 and h(x) =1 for all
x€C\U.Also |Ry(F—hF)|=0ifxeC\U,<||R;F||<eifxeU,and <eifx e X \C.
So |Rx(F — hF)| < € for all x € X. Note next that |Ry(F — hF)|| = (1 —h(x))||R:xF]. So
for each ¢, |F(t)y — h(x)F(t),]| < € for all x, and so by Theorem 1, |F(t) — hF(?)|| < €.
So |[F —hF| <e.Since h € I, || Fy|| <€, and since € was arbitrary, F, =0. So Ry, : B, —
Co(T, By) is injective and so isometric. O

We note that under the condition of Proposition 4, every iy is also isometric. Now let B be a
I'-algebra. We have the canonical action of I" on the bundle B7: oy (Fyy))(t) = ay (F(t)sy))s
F € B provided that B is I"-invariant, i.e. o, (Ry(,)B) = R;(;)® for all y. In that situation, we
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look for an action 8 of I" on ®B—not necessarily continuous—related to o on B7; precisely, we
want S to cover « in the sense that for each y, the following diagram commutes:

By

Bs(y) B (y)

Rs(y) l \L Ry (y)

Rso)Bsty) ——= RrinBrn)

ie.,

Ry (y)By = ay Ry(y) 4.2)

on By, If this condition is satisfied and if 8 restricted to Co(7, B) is the canonical I"-algebra
action on Co(T, B) (see (2.4)), then we say that ‘B has a covering I"-action. In the case of a
continuous covering I"-action, we can extend the continuity condition for a continuous functor F
from finite intervals I = [a, b] to the infinite interval 7'. For such an I, the canonical I"-action on
1B (also as in (2.4)) will be denoted by y — «,,. It is determined by Ry(,)a;, = &ty Ry(y), where
ozj/, (hs))(t) =, (h(t)s(y)) (using Ry to identify (I B), with I By).

Proposition S. Let B C Co (T, B) have a covering I"-action and F be a continuous functor as
in Section 3. Then for all k € F(B), the function k € Cy(T,F(B)), and if B = Co(T, B), then
ke Co(T,F(B)).

Proof. Let I be a closed bounded interval inside 7 and p : B — I B be the restriction map.
We show first that p is a I'-homomorphism. Note first that p is a Co(X)-homomorphism: for
since fF({)=f-F() (f € Co(X), F €B) forall t, we get p(fF) = fp(F). Also, fort €I,
Rypx Fx(t) = F(t)y = R, F,(t). Using the above and (4.2), fort € I,

Rr () Prn) By Fs(y) (1) = Rr) By Fi() (1) = aty [ Ry () F ) (1]

=y [Rs(y) 05 ) Fs()1(1) = Rr) @, sy Fs ) (0).

Since Ry (y) is a bijection, we obtain p,,) B8, = a;, Ps(y)» S0 that o is a I'-homomorphism. With 1
a single point fy, we get that evy, is also a I"'-homomorphism. Now let I = [a, b] C T and p be as
above. Fort € I, ev; = ev; o p, and so for k € F(°B), lg(t) =F(ev;)(k) = F(ev,)(F(p)(k)) which
is continuous in ¢ by the continuity of F. So ke Cy(T,F(B)). The last part is just (3.11). O

One natural way in which a covering /"-action on some ‘B can arise is when, for each x, R, is
an isomorphism on 9B, and B7 is I'-invariant, in which case we can identify the bundles B and
B and obtain a /"-action on ‘B: effectively § = « in this case. An example of this is the situation
of Proposition 6 below. However, there are many cases where the R, ’s are not isomorphisms but
we can still find a covering action on some reasonable ‘B. For instance, in the example above
with X = [0, 1], where we take I" = X (a groupoid of units), we can take B = C[0, 1] and
Bx(Fy) = F,! Of course, this example in trivial, but as we will see in Theorem 5, such a ‘B
always exists under very general circumstances.
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Suppose now that I has local r-G-sets, and that B has a covering [ -action. By Propo-
sition 2, B js a I'-C*-algebra. By definition, the B action restricts to give the canon-
ical I'-action on Co(T, B) which is continuous. So Co(T, B) C B So we can define
Asgeon B = BN /C(T, B). If A is also a I'-C*-algebra, then an equivariant asymptotic mor-
phism from A to B (relative to B°M) is just a I"-homomorphism ¢ : A — gzcon B. In the
locally compact group case, one takes B = Cy(7T, B) and the asymptotic algebra Asggcont B =
Co(T, B)®"/Co(T, B) is the same as the AB of [12, p. 7]. In that case, there is a descent func-
tor for I'-C*-algebras using as morphisms homotopy classes of I"-homomorphisms into the
asymptotic algebra [12, Theorem 4.12]. However, since, for completely general I", we do not
have available a canonical B°™, it does not make sense to talk of “the functor B — 2sggcont B.”
(However, for a very wide class of groupoids I", we do obtain a canonical asymptotic algebra
and a functor from Theorem 5 below—it would be interesting to know if the complete theory of
the descent functor can be developed for this class of groupoids as in [12].) Instead at present,
we avoid a functorial description of the descent functor and give a direct, weaker version of the
descent homomorphism which is adequate for a number of applications.

Theorem 4. Suppose that I has local r-G-sets, and that B is a Co(X) subalgebra of Cy(T, B)
containing Co(T, B) and with a covering I'-action. Let A be a I'-C*-algebra and ¢ : A —
Asgcont B be a I'-homomorphism. Then there exists a canonical descent homomorphism (depen-
dent on B) given by i oF(¢) : C*(I', A) — AC*(I", B).

Proof. The proof is effectively the same as for the group case [12, Theorem 4.12]. Let F be as
in Theorem 3. From the exactness of F, we get the short exact sequence:

0 — F(Co(T, B)) — F(B™) - F(Ageom B) — 0.
We also have the short exact sequence for the ordinary C*-algebra F(B):
0— Co(T,F(B)) > Cy(T.F(B)) — AF(B) — 0.

Continuity (Proposition 5) gives *-homomorphisms iy : F(Co(T, B)) — Co(T,F(B)),
i : F(B"y — Co(T,F(B)) with i the restriction of iy to F(Co(T, B)), and these induce a
*-homomorphism i : F(2gcont B) — AF(B). Next we have a *-homomorphism F(¢) : F(A) —
F(lgcont B). So i o F(¢) : F(A) — AF(B) is a *-homomorphism. O

Before discussing our main theorem giving a canonical 8 we look at a situation in which
there is a very simple ‘B available. For motivation, Proposition 4 suggests that we should look
for a B with elements F' for which the map x — || R, F'|| is upper semicontinuous. I have been
unable to find a canonical such B in general. However, in cases that arise in practice—in par-
ticular, when I" is discrete, or when I" is a locally compact group (the case of [12]) or when
B =C(E) = Cy(R)® Cy(E, Cliff (E)) (E a I"-vector bundle)—there is a natural such 5 avail-
able. (The last of these cases is needed for the groupoid version of the infinite-dimensional Bott
periodicity theorem of Higson, Kasparov and Trout [13].) Intuitively, we wish to exclude from
B functions such as sin(xt) by requiring uniformly continuity in the X-direction. This requires a
strong condition on B, but the groupoid I" has to satisfy only the weak local r-G-set condition
of Proposition 2.
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We know that B is isomorphic to the C*-algebra Co(X, B?) of the C*-bundle (B, p). We
assume now that this C*-bundle B* is a locally trivial C*-bundle with (C*-algebra) fiber C.
Precisely, a chart (U, ) is given by an open subset U of X together with a fiber preserving
homeomorphism 7 from p~!(U) onto U x C with each 7, a *-isomorphism from B, onto C
(x € U). Local triviality means that the chart sets U cover X. (In particular, no structure group
condition is imposed.) For such a chart (U, n) and F € Cu(T, B), Ry F € Cv(T, By) and so
for x e U, ny o Ry F € Cy(T, C). We say that F is uniformly continuous (for X) if the map
NR(F) :x — ny o Ry F is continuous from U to Cy(T, C) for every chart (U, n). It is easily
checked that the set B = UCy, (T, B) of uniformly continuous functions is a C*-algebra, and a
Co(X)-subalgebra of Cy (T, B). Note that the equality R,B = Cy(T, B,) below shows that this
B is “big.”

Proposition 6. Let %6 = UCy(T, B). Then Co(T, B) C B, and for F € B, the map x — || R, F||
is continuous. The maps Ry, i, are *-isomorphisms. Further R, (8) = Cv(T, By), and B is I'"-
invariant (so that trivially B has a covering I -action).

Proof. Let k € Co(T, B). To show that k € UCy(T, B), we can suppose that k = h ® b where
h e Cc(T) and b € C¢(X)B. Using a partition of unity, we can suppose that there is a chart
(U, n) and a compact subset K of U such that k, =0 for all x € X \ K. Then nR (k) € C.(T x
U,C),and k € B. So Co(T, B) C B. Now let F € B. Then on U, the map x — ||nx o R, F|| =
IR, F| is continuous. By Proposition 4, each Ry, i, is an isomorphism. By definition, R, (*B) C
Cy(T, By). To show equality, we just have to show that if H € C.(U, C,(T, C)) then there exists
F € Cy(T, B) such that nR(F) = H (so that F € *B). For then we can take any ¢ € C,(T, By),
take g € C.(U) with g(x) =1 and H(y) = g(y)nx o ¢ to get R, F = ¢.

To show that such an F exists, fix . The map y — H,(¢) € C is continuous on U, and so
y— n;l H\ (2) is a continuous section of B supported on U. By Theorem 1, there exists b; € B
such that (b;), = n;lHy(t). Define F(t) = b;. Then F is bounded since ||(b,)y || < | Hy(®)| <
|H|lo. Last F is continuous. Indeed, given € > 0, there exists a § > 0 such that for all y € U,
|Hy(t) — Hy(s)|| <€ whenever |t —s| < 4. Let [t —s| < §. Then for all y, |[(by)y — (bs)yll <€.
Now take the supremum over y to get F continuous at . [

It follows from Theorem 4 that if I" has local r-G-sets, then UCy (T, B) determines a descent
homomorphism: this can be regarded as the natural descent homomorphism for such a special B.
We now show that under a very mild condition on I" and with B completely general, there always
exists a canonical *B with a covering I"-action giving a descent homomorphism. The algebra ®B is
functorial. The condition that we need on I is that it have local G-sets, i.e. local transversals for
r and s simultaneously. The algebra B consists (roughly) of those functions with a transversally
continuous action, and going to B then gives continuity of the action in every direction. We
now make these ideas precise.

A subset W of I is called a G-set (cf. [29, p. 10]) if the restrictions ry, sy of r, s to W are
homeomorphisms onto open subsets of X. The family of G-sets in I” is denoted by G.

Proposition 7. G is an inverse semigroup under pointwise product and inversion.
Proof. The discrete case is given in [23, Proposition 2.2.3]. For the topological conditions, we

need to show that for W, W, W, € G, the bijections rw,w,, Sw,w,, 'w-1, Syy-1 are homeomor-
phism onto open subsets of X. We will prove this for rw,w, leaving the rest to the reader.
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First, r(W1 W) = "Wlsv_vll (r(W>) N s(W1)) which is open in X. Next let x,, — x in r(W1W>).
We write uniquely x, = r(wjwj), x = r(wywz) where wy, wy € Wi, wj, wy € Wa. Then
(rw) "1 (xn) = w! — (rw,) "' (x) = w1, and similarly, w} — w>. So wiw} — wiw; and rvallw2
is continuous. O

We note that if W € G, the map rwsl;,1 is a homeomorphism from s(W) onto (W), and there

is a nice formula for rwsv_vl:

rws;V1 (x)=Wx wL

We will say that I" has local G-sets if | JG = T, i.e. every element of I belongs to a G-set.
This property is satisfied by most groupoids that arise in practice (e.g. r-discrete groupoids,
transformation group groupoids, many (all?) Lie groupoids). For motivation for the following,
suppose that W € G. Suppose that B C Cy(7', B) has a covering I"-action B that makes it into
a I"-algebra. For F' € B, the map r(y) — B, (Fs(y)) is continuous and so will come from an
element F’ of Cy(T, B) (at least after multiplying by a function in C.(s(W))). Now from Propo-
sition 3, we can recover F’ from RF’ and at the R-level, we do have the action ay . The idea
then is to consider functions F for which there is an F’ that goes down under R to the function
r(y) — oy (Ry) F) and define By, (Fyy)) = Fr’(y). We also insist that this definition is inde-
pendent of the choice of W. This does not ensure a continuous action but only one continuous
along the G-sets. However, the algebra of such functions is the largest subalgebra Cbr (T, B) of
Cy(T, B) admitting a reasonable covering action that is continuous along the G-sets. We now
develop the theory of C{; (T, B).

We identify Cy (T, B) with Co(X, (Cp(T, B))?). Abbreviate Cy(T, B) to Cp, and let F € Cy.
We say that F € C¢ = CY (I, B) if:

(1) FeCc(X)Cr;
(2) for all W € G with supp F C s(W), there exists F" e C}, such that

RFV =Ry F

where Ry F(x) = ay Ry(y) F if x =r(y) for some y € W, and is 0 otherwise;
(3) (uniqueness) if Wi, Wo € G, yo € Wi N W3 and supp F C s(W1) Ns(W>), then

W _ W,
(F 1)V(J/o) - (F )r()/o)'
We say that F € C = C[ (T, B) if fF € CE forall f € Cc(X).
Theorem 5. C{(T, B) is a Co(X)-subalgebra of Cy(T, B) with a covering I -action given by
Bro Fsom) = (F )}y (4.3)
where W € G, yp € W and f € Cc(s(W)) is such that f(s(yo)) = 1.

Proof. We prove the theorem in five stages.
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(a) Let F € CCG and W € G with supp F C s(W). Then FY is unique, and supp F¥ =
W (supp F)W~L. Also |FV | = || F|.

The uniqueness of F" follows from Proposition 3. The same proposition gives that supp F =
supp RF, supp Rw F = supp F" . Next, since a, is an isometry, for y € W, Ry F # 0 if and
only if Ry F(r(y)) # 0, so that R F # 0 if and only if Ry F(WxW ™) % 0 for x € s(W).
Closing up gives supp Ry F = W (supp RF) W 1. For the last part, use Proposition 3 and the fact
that the o, ’s are *-isomorphisms.

(b) Let F € CY and W € G with supp F C s(W). Then FW e CS, and for V € G with
supp FV Cs(V), (FW)Y = FVW. Further, F* € CY and (F*)V = (FW)*.

By (a), supp FV = W (supp FYW=' c v=lv, and so supp F' C s(VW). Now RyFW(x) =
oy, Ry FV if x = r(y1) for some y; € V, and is 0, otherwise. Next oy, Ry, FV =
Ay, (oty, Ry(y) F) if s(y1) = r(y2) for some (unique) y, € W and is 0, otherwise. Since
oy, (@, Ry(yp) F) =ty Ry F and 7(y1) = r(y12), it follows that Ry F¥ = RFYV. So
(F")Y = FVW  The uniqueness condition (3) of the definition of CCG with respect to FW fol-
lows from the corresponding property for F. The last part of the proof of (b) is easy.

(c) Let FeCI',W e G, fe Ccs(W)) and supp F C s(W) be compact. Then (fF)V =
fWFW and belongs to le, and Ry (fF) = R(fWFW) where fW € Cc(r(W)) is given
by fV(y)=fW-lyw).

Note that by definition, fF € Cf. Next, if y € W and y = r(y), then Rw(fF)(y) =
ay (Ryo) (fF)) = F s Rw (F)3) = fY () Rw F(r(y)) = Ry(f¥ FV). Both Rw (f F),
R(fWFWY) vanishat y if y ¢ r(W), and so Ry (fF) = R(fWFW"). By (a), (fF)" = fWFW.
Next we show that (fF)" € C{'. For let g € Cc(X) and h € Cc(r(W)) be such that i = 1
on supp FW = W(supp F)W~!, a compact subset of (W) (using (a)). Then g(fF)¥ =
(Y =g OV ()Y =(gh)V FF)Y €S by (b). So (FF)V e cl.

(d) C{ is a Co(X)-subalgebra of Cy, that contains Co(T, B).

Trivially, 0 € C!'. Let Fi, F, € C]', f € Co(X), W € G with C = supp(f(Fi + F2)) C
s(W). Choose f' € Cc(s(W)) so that /=1 on C. Then f(F, + F2) = f'fFI + f'fF
with supp ff Fi U supp f'fF» C s(W). Since Fy, F, € C[', we get f'fFy, f'fF, € CS.
Then Rw (fFi + fF2) = Rw(f'fF1) + Rw(f'fF2) = R((f fFDY + (f fF)") and we
obtain (fF; + fF)V = (f'fF)Y + (f'fF>)". For uniqueness, let W' € G, C C s(W')
and yp € W N W’. Then we can choose f' € Cc(s(W) N s(W’')) and obtain uniqueness using
(' FFO)rim = (L FEDY )rimys (' Ty = (F FFD)Y D). SO Fi 4+ F2 € cl.
Next, F1F, € C{ . The proof is similar to that for the sum above. Let W € G with C =
supp f F1 F» C s(W). Choose f' € Cc(s(W)) with f'=1o0n C.Then fF1F> = (f'fF)(f'F)
and we can use Ry (f F1F2) = Rw(f' fF)Rw(f' F2) to get (fFi )Y = (f/ fFFOY (f )W
The remaining details are left to the reader, as is also the proof that F f‘ € C{ (use (b)). So C{ is
a *-subalgebra of Cy,.

Next we show that C{ is complete. Let F,, — F in Cp with every F), € le . We show
that F € C{. Let f € Cc(X) and W € G be such that supp f F C s(W). We can suppose that
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f e Cc(s(W)). Let g € Cc(s(W)) be 1 on the support of f. Using (a) and Proposition 3,
IgFn — gFmll = IR(gFn — gFn)ll = (g F)" — (gF)™ || = 0 as n,m — oo. So there ex-
ists F” € Cy such that (gF,)" — F” in norm. By the continuity of Ry, R, we get for y € W,
Rw(fF)(r(y)) = lim Ry (f (g F))(r(y)) = lim Ry, (f ¥ (g F)™) = Royy (fV F"). We take
(fF)Y = fW F”. Uniqueness is proved using uniqueness for the F,,’s and a simple limit argu-
ment. To prove that Co(T, B) C Cbr, let F € Co(T, B), f € Cc(X), W e G, supp(fF) Cs(W).
Then we take (fF)W(r(y)) =a, (fF)s) (v € W), where « is the canonical I"-algebra action.
Uniqueness is obvious. So fF € C¢ and F € C[[".

Last we have to show that Cbr is a Co(X)-algebra. Let F € CbF and h € Co(X). Trivially, if
f€Cc(X) then f(hF)=(fh)F € CZ.So hF € C/". To prove that the action of Co(X) on C{'
is non-degenerate use the fact that C, = Co(X)Cp.

(e) The B, ’s give a covering I"-action on C{.

We first show that, for given F € le , the right-hand side of (4.3) is well defined. Let f, W
be as in (4.3) and let W € G, yp € W/ and f’ € C.(s(W")) be such that f'(s(y9)) = 1. Suppose
first that W = W’. Let g € C.(s(W)) be such that g =1 on supp f Usupp f’. Then fF = fgF,
f'F = f'gF, and using (©), (FF)Y = o)) @F)Y, = @)Y = F)Y . For
the case W # W/, find h € Cc(s(W) N s(W’)) such that h(s(yp)) = 1. Then using uniqueness,

(fF):[(/yO) = (hF)f‘(/VO) = (hF)?(/;O) = (f/F)f‘(/yO). Next we have to show that the right-hand side

of (4.3) depends only on the coset Fy(y,). So let F' = F + gF; where g € I, and Fj € C[".
Then (fF))(,) = (fF))(y) + 8" GO FD)riuy = (fF))Y,,)- We now show that y — 8,
defines an algebraic action on C,f . It is simple, using (b) and the proof of (d) to show that each
By is a *-homomorphism.

Next we show that B, B8,, = By, Whenever s(yp) =r(y1). Let F € C{ and let W € G con-
tain y; and f € Cc(s(W)) be such that f(s(y1)) = 1. Then B, Fy(,) = (fF)f[(/yl). By (¢),

(fF)W € Cbr so that (fF)%/l) € (C{)r(yl). Now let V € G be such that yy € V. Since
s(y0) =r(y1) belongs to s(V)Nr (W), we can find g € Cc(s(V)Nr(W)) such that g(s(yp)) = 1.

Then By, (By, Foiny) = (@(FF))Y 0 = (@7 ™) ey = (87 FF) W)y us-

. . -1 _

ing (b). Noting that (" /)(s(01)) = ¢Ws(oyD W) f(s(r) = gr(yD) f(s(1)) = 1
and ypy; € VW, we see that ((gW fF)VW)r(VOyl) is just By Fsy) and By By = Byoy -
If x € X, then trivially (using W = X), B, : (C{ )y — (CtI: )x is the identity, and it fol-
lows that y — B, is an algebraic I"-action on C{ . To show that the I'-action is covering,
in an obvious notation, R,(,)(B8y Fsy)) = Rr(,,)(fF)W =Rw(fF)r () =ay, (R (fF)) =
ay Rs) (f Fsy) = @y Ry(y) Fy(y)- It is left to the reader to check that g, restricted to Co(T, B)
gives the canonical I"-action on Co(7, B). O

Since I" has local G-sets, it satisfies the condition of Proposition 2, and so C{ (T, B)ycont

is a ["-algebra. This can be regarded as the canonical I"-algebra B for groupoids with local
G-sets. Indeed, the map B — C{ (T, B)*°" is functorial in the category of I'-algebras with
I'-homomorphisms as morphisms. To see this, let By, B, be ['-algebras and ¢ : By — B;
be a I"-homomorphism. Let B = CI (T, By), B> = CL'(T, B). Define ¢ : Co(T, By) —
Cv(T, By) by qS(F)(t) =¢(F(t)). Then ¢ :(f& is a Co(X)-homomorphism. One readily checks
that Ry (Y (F)) = ¢y o RyF. Let F € By. Let W € G, f € C.(X) and supp(fF) C s(W).
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Then for y € W, ayRs(y)(fw(F)) = ayRs(y)(I/’(fF)) = ay(d’s(y) o Rs(y)(fF)) = ¢r(y) o
(@y Rsy) (f F)) = br(y) o Ry (FF)Y) = Reiy W (FF)Y)). So (fy (F)Y = (FF)V) ex-
ists, and uniqueness is easily checked from that for F. So fi(F) € CCG(T, By) and ¢ (F) €
C{(T, By). Next, if yp € s(W) and f € Cc(s(W)) with f(s(y0)) = 1, we get By, (Vo) Fs(vo) =
Bro (0 (F))sr)) = FYFN oy = G Dri) = Y6 () = Vrom Bro Fsn)s 50
that ¥ is equivariant from B to B5. Last, using equivariance, ¥ : B{°™ — B5°™ and the func-
torial property follows.
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