
Journal of Complexity 28 (2012) 224–237

Contents lists available at SciVerse ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Constructing uniform designs: A heuristic integer
programming method
Yong-Dao Zhou a,∗, Kai-Tai Fang b,c, Jian-Hui Ning d

a College of Mathematics, Sichuan University, Chengdu 610064, China
b BNU-HKBU United International College, Zhuhai, 519085, China
c Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100190, China
d College of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China

a r t i c l e i n f o

Article history:
Received 9 November 2010
Accepted 29 September 2011
Available online 14 October 2011

Keywords:
Quadratic integer programming
Simulated annealing
Uniform design
Wrap-around L2-discrepancy

a b s t r a c t

In this paper, the wrap-around L2-discrepancy (WD) of asymmet-
rical design is represented as a quadratic form, thus the problem
of constructing a uniform design becomes a quadratic integer pro-
gramming problem. By the theory of optimization, some theoretic
properties are obtained. Algorithms for constructing uniform de-
signs are then studied. When the number of runs n is smaller than
the number of all level-combinations m, the construction problem
can be transferred to a zero–one quadratic integer programming
problem, and an efficient algorithmbased on the simulated anneal-
ing is proposed. When n ≥ m, another algorithm is proposed. Em-
pirical study shows that when n is large, the proposed algorithms
can generate designs with lower WD compared to many existing
methods. Moreover, these algorithms are suitable for constructing
both symmetrical and asymmetrical designs.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The main idea of the uniform design (UD) is to put experimental points uniformly scattered on
the experimental domain [8], and it is one kind of computer experimental designs and one kind
of physical experimental designs with model uncertainty [5]. The UD has gained prominence in
recent years. Many authors have proposed a number of construction methods for UD such as the
number theoreticmethodwhich includes the good lattice point (glp)method and the glpmethodwith
power generator (pglp method, see [8]), stochastic optimization algorithm [7,20], the combinatorial

∗ Corresponding author.
E-mail addresses: ydzhou@scu.edu.cn (Y.-D. Zhou), ktfang@uic.edu.hk (K.-T. Fang), jhning@mail.ccnu.edu.cn (J.-H. Ning).

0885-064X/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jco.2011.10.005

http://dx.doi.org/10.1016/j.jco.2011.10.005
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
mailto:ydzhou@scu.edu.cn
mailto:ktfang@uic.edu.hk
mailto:jhning@mail.ccnu.edu.cn
http://dx.doi.org/10.1016/j.jco.2011.10.005

Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237 225

construction method [5], and so on. In practical applications, however, uniform design tables with
large size (a large number of runs or/and a large number of factors) are urgent. It is known that
generating a uniform design is an optimization problem, where the objective function is determined
by a pre-given uniformity measure. In this paper, this optimization problem will be expressed as a
quadratic integer programming problem. By using the theory of quadratic integer programming, some
new construction methods for uniform designs are proposed.

As a measure of uniformity, the star Lp-discrepancy has been widely used in number-theoretic
methods [8,18]. Hickernell [10,11] pointed out some weakness of the star Lp-discrepancy and
proposed several modifications, among which the wrap-around L2-discrepancy (WD) has nice
properties. Fang and Ma [6] showed that the formula of WD of a symmetrical design can be
reformulated as a quadratic form. In this paper, their result is extended to asymmetrical designs. Note
that the theory of optimization including convex optimization and quadratic integer programming
has been rapidly developed in the past decades (see [3,4,12]); some efficient algorithms for quadratic
integer programming can be used to construct uniform designs for the two cases: (a) the number of
runs n is less than the total number of level-combinationsm = q1 · · · qs and (b) n ≥ m.

For the first case, the uniform design may require that the design points do not overlap each other
since the repeated points do not carrymore information in computer experiments, and thus the corre-
sponding quadratic programming problemmay be transferred to a zero–one quadratic programming
problemwith some constraints. Furthermore, this constrained problem can be reformulated as an un-
constrained zero–one quadratic programming problem (see Section 3). For solving the unconstrained
zero–one quadratic programming problem in case (a), many methods were proposed in the litera-
ture, such as some trajectory methods including Tabu search [2,19] and simulated annealing (SA, see
[2,14]), some population basedmethods including scatter search [1] and evolutionary algorithms [15,
17], and other local search heuristics [16]. More details about these heuristics can be read from [9].
Katayama and Narihisa [14] presented an SA-based heuristic to test on publicly available benchmark
instances of size ranging from 500 to 2500 variables and compared them with other heuristics. Com-
putational results indicate that this SA leads to high-quality solutions with a short CPU times. For
solving this problem Merz and Freisleben [16] proposed a greedy heuristic and two local search al-
gorithms: 1-opt local search and k-opt local search. Based on the above development, in this paper,
an algorithm called the SA-based integer programming method (SA-IPM) is proposed to solve the spe-
cial zero–one quadratic programming problem for constructing uniform designs. SA-IPM combines
SA-based heuristic and 1-opt local search with the best improvement move strategy.

For the second case, the corresponding optimization problem can also be reformulated as
a quadratic integer problem. But the variables are no longer binary since ‘n > m’ means that some
design points have to overlap each other. Thus, this is a more complex optimization problem than
the zero–one quadratic programming problem. To reduce the computational complexity, we propose
another new algorithm which bases on some so called combination method (CM). The main idea is
to divide the problem into two steps, i.e., first construct a small design with the number of runs
n0 (n0 ≡ n (mod m)), and then add the full factorial designs to get the final design. Some empirical
study shows that this algorithm is efficient.

The remainder of this paper is organized as follows. Section 2 presents a quadratic form of the
WD of an asymmetrical design and some properties of this form. Section 3 provides an algorithm, SA-
based heuristic with 1-opt local search, to construct uniform designs with the number of runs n < m.
Another algorithm for the case of n > m is considered in Section 4. Finally, Section 5 gives some
discussion and conclusions.

2. Quadratic form of WD

An asymmetrical design U(n; q1, . . . , qs) with n runs and s factors each having respectively
q1, . . . , qs levels is called a U-type design if all the levels of each factor appear equally often. Most
existing UDs are generated based on U-type designs. When all qi’s are equal to q, the design is
called symmetrical and denoted by U(n; qs). Let U(n; q1, . . . , qs) and U(n; qs) be the sets of all
U(n; q1, . . . , qs) and U(n; qs), respectively. By mapping f : l → (2l − 1)/(2qi), l = 1, . . . , qi, i =

1, . . . , s, the n runs of U(n; q1, . . . , qs) are transformed into n points in C s
= [0, 1]s. In this paper, we

226 Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237

only focus on designs in the C s. Let X = {xi = (xi1, . . . , xis), i = 1, . . . , n} be a set of n points in C s.
An analytical expression of squared WD(X) is given by (see [11])

WD2(X) = −

4
3

s

+
1
n2

n
i=1

n
j=1

s
k=1

3
2

− |xik − xjk| + |xik − xjk|2

. (1)

Under WD a uniform design Un(q1, . . . , qs) has the minimumWD over U(n; q1, . . . , qs).
For a given X ∈ U(n; q1, . . . , qs) let y = y(X) be a column vector of n(i1, . . . , is) arranged

lexicographically, where n(i1, . . . , is) is the number of runs at the level-combination (i1, . . . , is) in
the design X . Clearly, the length of y is m = q1 · · · qs. It is obviously that any design can be decided
by the corresponding y. The vector y may be called as the frequency vector. When the elements of the
vector y are all nonnegative integers, the corresponding design is called an exact design, otherwise
called continuous design. Each U-type design is an exact design.

Lemma 1. Let design X ∈ U(n; q1, . . . , qs) and y = y(X), then

WD2(X) = −

4
3

s

+
1
n2

y ′Ay, (2)

where A = A1 ⊗ A2 ⊗ · · · ⊗ As,

Ak = (tkij), tkij =
3
2

−
|i − j|(qk − |i − j|)

q2k
, i, j = 1, . . . , qk, k = 1, . . . , s, (3)

and ⊗ denotes the Kronecker product.

Lemma 1 is an extension of Theorem 4.1 in [6] and we omit the proof. It can be checked that
Ak (k = 1, . . . , s) in (3) are positive semidefinite matrices, so does A. Moreover, they also have some
nice properties such as

Ak1qk =

4qk
3

+
1
6qk

1qk , A1m =

s
k=1

4qk
3

+
1
6qk

1m,

A−1
k 1qk =

4qk
3

+
1
6qk

−1

1qk , A−11m =

s
k=1

4qk
3

+
1
6qk

−1

1m,

(4)

where 1t is the t-column vector of one’s andm = q1 · · · qs. For any exact designU(n; q1, . . . , qs), every
element of y = (y1, . . . , ym)′ should be a non-negative integer. Now for given q1, . . . , qs and n, based
on the formula (2), the problem of constructing a uniform design Un(q1, . . . , qs) can be formulated as
the following optimization problem:

(OP)

min f0(y) = −

4
3

s

+
1
n2

y ′Ay

s.t. 1′

my = n, y ∈ Zm
+
,

where Zm
+

= Z+ × · · · × Z+, Z+ = {0, 1, 2, . . .},m = q1 · · · qs, and y = (y1, . . . , ym)′ ∈ Zm
+

means
yi ∈ Z+. Actually, from the constraint 1′

my = n and y ∈ Zm
+
, we can reduce the range Zm

+
to Zm

n , where
Zn = {0, 1, 2, . . . , n}. Thus, the problem (OP) is equivalent to the following optimization problem:

(OP′)

min f1(y) = y ′Ay
s.t. 1′

my = n, y ∈ Zm
n .

By the equivalence between problem (OP) and problem (OP′), it is meant that they have the same
solution. Note that problem (OP′) is not a convex optimization problem [3]. However, if the constraint
y ∈ Zm

n is relaxed, we have the following convex optimization problem

(SDP)

min f2(y) = y ′Ay
s.t. 1′

my = n.

Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237 227

Problem (SDP) is a special convex quadratic programming, i.e., a semidefinite programming.
Therefore, we can use the theory of convex optimization to solve problem (SDP). It is known that
the Lagrange dual function is an effective tool for solving the problem (SDP) (see [3]). We have the
following result.

Theorem 1. The minimizer of problem (SDP) is

y∗
=

n
m

1m, (5)

where m = q1 · · · qs.
Proof. It is well known that the Lagrangian associated with the problem (SDP) is

L(y, µ) = y ′Ay + µ(1′y − n) = y ′Ay + µ1′y − µn, (6)

where µ ∈ R is the Lagrange multiplier associated with the constraint 1′y = n. The Lagrange dual
function can be obtained as follows:

g(µ) = inf
y

L(y, µ) = inf
y

y ′Ay + µ1′y

− µn. (7)

Derive the Eq. (6) with respect to y and let the derivative be zero, and we have

ŷ = −
1
2
µA−11. (8)

Thus

g(µ) = −
1
4
µ21′A−11 − µn, (9)

which gives a lower bound of the optimal value y∗ of the optimization problem (SDP). And the
Lagrange dual problem associated with the problem (SDP) becomes

max g(µ). (10)

Denote d∗ and p∗ are respectively the optimal value of problem (SDP) and the Lagrange dual problem
(10). Since the problem (SDP) is a semidefinite programming, the optimal duality gap is zero, which
means d∗

= p∗ (see [3]). From (9), the maximizer of problem (10) is

µ∗
= −

2n
1′A−11

. (11)

Substituting (11) into (8), we have

ŷ = −
1
2
(A−11)

−

2n
1′A−11

. (12)

Finally by the properties of A in (4), we obtain the minimizer y∗
=

n
m1, which completes the

proof. �

Remark 1. Theorem 1 is an extension of Theorem 4.2 in [6], but the current proof is simpler.

Remark 2. According to Theorem 1, usually the optimal design X associated with y∗ is not an exact
design. However, a full designwith n = km and y = k1 for some positive integer k is a uniform design
under WD.

Corollary 1. The squaredWD of a full design X ∈ U(n; q1, . . . , qs) with n = km runs is given by

WD2(X) =

s
i=1

4
3

+
1

6q2i

−

4
3

s

, (13)

where m = q1 · · · qs.

228 Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237

It can be seen that the squared WD-value of a full design is independent of k. If we substitute (5)
into (2) a lower bound of WD2 is given by the right hand side of (13). So a full design is a uniform
design.

Remark 3. When n ≠ km, k is a positive integer, it is easily known that the optimal value y∗ of
problem (SDP) is not the minimizer of problem (OP), and there exists a duality gap between problem
(SDP) and problem (OP) depending on k.

3. Algorithm for the case of n < m

In this section, we propose an algorithm for constructing uniform designs in the case that the
number of runs n is less than m = q1 · · · qs. It is reasonable to require that in this case the resulted
design should have no coincident points. Let the frequency vector of the design U(n; q1, . . . , qs) be
y = (y1, . . . , ym)′, where yi ∈ {0, 1} and

m
i=1 yi = n. And every element of y has the property

y2i = yi.
It is well known that quadratic integer programming problem (OP′) with a linear constraint is

equivalent to the following unconstrained optimization problem (see [13]):

(OP′′)

min f3(y) = y ′Ay + K(A)(1′

my − n)2

s.t. y ∈ {0, 1}m,

where y ∈ {0, 1}m means that each yi ∈ {0, 1}, and K(A) = 2
m

i=1
m

j=1 |aij| + 1 where A = (aij) is
defined in Lemma 1. Furthermore, because of the property y2i = yi, we can rewrite the problem (OP′′)
as follows:

(OP′′′)

min f4(y) = y ′Q0y + K(A)n2

s.t. y ∈ {0, 1}m,

where Q0 = A + K(A)1m1′
m − 2K(A)mIm is a symmetric matrix. Note that the value of K(A) is large

in most cases and the elements of Q0 is also large; it is better to divide the objective function by K(A)
and to remove the constant K(A)n2, and problem (OP) in the case of n < m can be rewritten as the
following unconstrained quadratic problem:

(BQP)

min f (y) = y ′Qy

s.t. y ∈ {0, 1}m,

where Q = Q0/K(A). In the literature, the problem (BQP) belongs to the unconstrained binary
quadratic programming problem. This problem is also known as the unconstrained quadratic bivalent
programming problem or the unconstrained quadratic zero–one programming problem (see [2]).

3.1. Simulated annealing-based heuristic

To deal with the computational complexity of the problem (BQP) for large m, we combine the SA
algorithm and local search algorithm to generate uniform designs and call this algorithm as the SA-
based integer programming method.

Algorithm 1 The SA-IPM for constructing uniform designs in the case of n < m

1: Initialize I, J, Tinit , Tf , Tr ;
2: Generate an initial random solution y0 ∈ {0, 1}m;
3: for i = 1 : I
4: Set y = y0, T = Tinit , ct = 0;
5: Calculate gains gi of y for all i in {1, . . . ,m};
6: while ct < J;

Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237 229

7: Set ct = ct + 1;
8: for t = 1 : m
9: Find j with gj = minkgk;

10: If gj < 0, then set ct = 0 and yj = 1 − yj (and update all gains gi);
11: Otherwise, random choose k ∈ {1, . . . ,m}, set yk = 1 − yk with probability

e−gj/T (and update all gains gi);
12: end
13: Set T = Tf × T ;
14: end
15: If the design with respect to y reaches its lower bound, return y;
16: Otherwise, set y0 = y, Tinit = Tr × Tinit ;
17: end
18: Return y;

The pseudo-code of SA-IPM can be seen in Algorithm 1. Parameters I, J, Tinit represent the number
of time of annealing process, the termination conditional number at each iteration, the initial
temperature, respectively. Parameters Tf , Tr ∈ (0, 1) are two temperature reduction rates. Define
a neighbor of current solution y = (y1, . . . , ym) as

{yi = (y1, . . . , yi−1, 1 − yi, yi+1, . . . , ym), i = 1, . . . ,m},

so the hamming distance between yi and y is equal to 1. Define the gain gi = f (yi) − f (y), where f (·)
is the objective function in problem (BQP), and gi < 0 means yi is a good neighbor, otherwise it is a
bad one. According to [16], the gain gi can be calculated by

gi = qii(ȳi − yi) + 2
m

k=1,k≠i

qkiyk(ȳi − yi), (14)

where ȳi = 1 − yi, qki is the (k, i)-element of the matrix Q in problem (BQP). The gain gi can be
calculated in a linear time ofm, but all gains of neighbors must be calculated in O(m2) time. However,
the gains gi do not have to be recalculated each time. Assuming that all gi for a current solution
have been calculated and the bit k is flipped, we can compute the new gain gn

i efficiently with the
formula:

gn
i =

−gi, if i = k,

gi + 2qik(ȳi − yi)(ȳk − yk), otherwise,
(15)

and the update gains can be performed in a linear time. Step (9:) includes a local search for the best
improvement,which is different from the classical SA. It is possible in Step (10:) that there are different
j satisfied gj = mini gi. In this case, we randomly choose one bit to flip. In Steps (10:) and (11:), all gains
gi can be updated by using (15). Moreover, if the lower bound in Step (10:) is reached, the process is
terminated. The lower bound of design under WD can be seen in [7,21].

3.2. Computational results

This subsection shows performance of the SA-IPM for construction of uniform designs under
WD. For comparisons among the SA-IPM, the glp method (see [8]) and the existing designs on the
web (http://www.math.hkbu.edu.hk/UniformDesign/) we restrict our study only on construction of
symmetric uniformdesigns. All the results below are obtained by usingMatlab in a personal computer
with 2.1 GHz CPU processor.

Initial values of the parameters in SA-IPM are set by preliminary testing, i.e., for different cases in
Table 1, a unified setting of the parameters is considered to have a trade-off between the quality of
the resulted design and computer running time. In our simulation, we set Tinit = 1/q, where q is the
number of levels, J = 10 and the ratio Tf = 0.99. For the parameters I and Tr , from our experience,
we consider I = 10, Tr = 0.9 when m < 500, and I = 2, Tr = 0.8 when m ≥ 500. Since the
initial solution in SA-IPM is generated randomly, we repeat K = 30 times of SA-IPM for constructing
uniform design and choose the best one as the final solution.

http://www.math.hkbu.edu.hk/UniformDesign/

230 Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237

Table 1
Comparisons between SA-IPM and other constructing methods.

Case
no.

n s q m SA-IPM Time (s) C5 C95 RGM Designs
on web

glp or
pglp
method

Time (s)

1 9 3 3 27 0.100956 (−2.3074) 1.3 0 0 0.3182 0 0.3170 0.1
2 15 3 3 27 0.101118 (−2.1946) 1.3 0 0 0.2673 0 0.7961 0.1
3 48 5 3 243 0.302871 (−2.7553) 12.3 0.0056 0.0271 0.7833 −0.0298 0.0582 116.2
4 102 5 3 243 0.301352 (−2.7897) 12.1 0.0057 0.0237 0.8170 – 0.0532 ∗

5 201 5 3 243 0.300992 (−2.7549) 12.0 0.0061 0.0326 0.7833 – 0.4063 ∗

6 48 7 3 2187 0.774745 (−3.4149) 1015.4 0.0274 0.0902 1.2904 −0.1291 0.0033 ∗

7 201 7 3 2187 0.760866 (−3.5557) 1010.5 0.0019 0.0243 1.4561 – 0.2444 ∗

8 1002 7 3 2187 0.759480 (−3.6064) 1024.4 0.0042 0.0140 1.4977 – 0.1138 ∗

9 36 3 4 64 0.056460 (−2.3990) 4.3 0.0012 0.0184 0.4757 −0.0107 0.0456 0.4
10 36 4 4 256 0.101575 (−2.7944) 55.4 0.0000 0.0509 0.7775 −0.0146 0.0789 3.4
11 100 4 4 256 0.100141 (−2.8317) 55.3 0.0001 0.0420 0.8194 – 0.0702 395.7
12 200 4 4 256 0.099960 (−2.8544) 55.4 0.0383 0.0793 0.8479 – 0.1901 2776.5
13 36 5 4 1024 0.172340 (−3.1839) 147.1 0.0259 0.0951 1.0993 −0.0384 0.1008 31.6
14 200 5 4 1024 0.167471 (−3.2793) 150.7 0.0028 0.0330 1.1962 – 0.0843 ∗

15 500 5 4 1024 0.167245 (−3.3043) 152.1 0.0180 0.0300 1.2017 – 0.1120 ∗

16 55 3 5 125 0.035994 (−2.5761) 30.8 0.0054 0.0218 0.6494 −0.0146 0.0345 0.3
17 100 4 5 625 0.064121 (−3.0392) 86.9 0.0024 0.0267 1.0084 – 0.0389 395.0
18 500 4 5 625 0.063705 (−3.0476) 89.3 0.0010 0.0162 1.0160 – 0.1149 ∗

19 200 5 5 3125 0.106927 (−3.5258) 1336.4 0.0026 0.0226 1.4146 – 0.0147 ∗

20 1000 5 5 3125 0.106440 (−3.6025) 1326.6 0.0006 0.0067 1.4828 – 0.0065 ∗

21 60 3 6 216 0.025030 (−2.7025) 68.5 0.0062 0.0421 0.7520 −0.0233 0.0362 1.5
22 204 4 6 1296 0.044286 (−3.2200) 334.0 0.0062 0.0205 1.1598 – 0.0270 ∗

23 504 4 6 1296 0.044158 (−3.2295) 333.0 0.0043 0.0121 1.1942 – 0.0188 ∗

The notation ‘‘–’’ in 8th column means the corresponding design does not exist on web yet.
The notation ‘‘∗’’ in last column means the design is constructed by the pglp method.

For comparing performance of Algorithm 1 with other constructing methods, such as the glp
method or its modifications [8] and Threshold-Accepting algorithm [7,20], as a benchmark we
also consider the mean and standard deviation of WDs of the designs constructed by the random
generating method (RGM). The procedure of RGM is as follows: first randomly generate zero–one
vector y ∈ {0, 1}m, where the number of element 1 in the vector is equal to n, and this y corresponds
to a design with the number of runs n according to the lexicographical order of the m runs. Secondly
we calculate WD of this design. Repeat this procedure N times; we obtain N WD values, their mean
(Mrgm), standard deviation (stdrgm), and 0.1% percentile of the WD values, which is denoted as WD
value by RGM (WDrgm). In this work we take N = 107.

Table 1 shows comparisons among the three methods: SA-IPM, glp and RGM in terms of the
computational time and WD-values for different n, s, q and m. Denote by WDsa,WDglp,WDrgm and
WD0 the WD of design obtained by SA-IPM, glp, RGM and the WD of existing design on web,
respectively. Column 6 stands for WD-value of WDsa and WDstand = (WDsa − Mrgm)/stdrgm. Column
7 denotes the running time of SA-IPM with 30 repeated times. Moreover, since the procedure of SA-
IPM is repeated several times, the percentiles of their WD-values are considered to compare with
many existing methods. Let WDp be the pth percentile and Cp = (WDp − WDsa)/stdrgm. Then,
columns 8 and 9 show C5 and C95, respectively. And columns 10–12 give respective values of Lrgm =

(WDrgm − WDsa)/stdrgm, L0 = (WD0 − WDsa)/stdrgm and Lglp = (WDglp − WDsa)/stdrgm. The last
column denotes the running time of the glp method.

From Table 1, several conclusions can be drawn as follows:
(1) When m = 27, the SA-IPM can deliver a design with lowest WD as well as the existing design

on web, where C95 = 0 means that almost every procedure of SA-IPM can obtain a design with
lowest WD.

(2) Uniformity of the design constructed by SA-IPM is, in general, better than the corresponding
design constructed by the RGM and glp method, since all the values of Lglp and Lrgm are positive.

(3) C5-value is smaller than Lglp in each case except for case 6, and C95-value is smaller than Lglp
except for cases 6, 19, 20, 21. Moreover, the Lrgm-value is larger than C5, C95 and Lglp in every case.

Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237 231

Table 2
The number of iterations and running time of SA-IPMwhen the resulted designs come as close a 2% to the best known solution.

Case 1 2 3 6 9 10 13 16 21

Iterations 19634.1 1902.4 12320.1 95681.3 5146.2 26170.9 908134.4 15102.5 35398.1
Close rate 0.0000 0.0046 0.0070 0.0152 0.0080 0.0127 0.0168 0.0088 0.0134
Running time 0.2155 0.0213 0.2145 7.9584 0.0622 0.4667 39.4091 0.2102 0.5947

Therefore, the RGM is the worst one among the four methods and the SA-IPM has robustness in a
certain sense.

(4) Except for the first two cases, the uniformity of the delivered designs obtained by SA-IPM is
worse than that of the corresponding existing designs on web. A possible reason is that the
number of iterations in SA-IPM is not enough. In many practical situations, the user often
urgently needs a design that can meet the request. The running time for obtaining a required
design is an important issue. The uniform designs under WD on the web are usually constructed
by the Threshold-Accepting (TA) algorithm (see [7,20]). Due to the computational complexity
the number of runs in these designs is limited to 60. When n > 200, the TA algorithm is almost
unaffordable. If SA-IPM can deliver a design that is very close to the ‘best’ one in the sense of WD
with a significant shorter time, it will be much helpful in practice. How to measure close to the
‘best’? Let WD0 be the WD of the ‘best’ design and WD be the WD of a design generated by a
fact algorithm. The ratio WDratio = (WD − WD0)/WD0 can be used to measure the closeness.
Most designs in Table 1 have WDratio < 0.04. For example, for case 6 WD0 = 0.768411 and its
WDratio = (0.774745 − 0.768411)/0.768411 = 0.0082.

For a further study, consider cases 1, 2, 3, 6, 9, 10, 13, 16 and 21 and fix the values of parameters
in SA-IPM as that in Table 1. We choose different number of iterations and the corresponding
running time so that the delivered design generated by SA-IPM has WDratio < 0.02. Table 2 lists
the number of iterations and the corresponding running time. Since SA-IPM is a stochastic
algorithm, we repeat 100 times and calculate the mean of the number of iterations and running
times for these cases. It is shown that the designs obtained by SA-IPM can quickly get close to the
best known design.

(5) When fixed the parameters in the procedure of SA-IPM, its running time mainly depends on the
parameter m = qs and does not much depend on the number of runs n. For example, in cases 13,
14, and 15,m = 1024 and n varies from 36 to 500, the running times of SA-IPM are all near 150 s.
On the other hand, the running time of the glpmethod ismuch depend on n and is very longwhen
n ≥ 200 and s ≥ 5. Therefore, when m < 3200 and n ≥ 200, the SA-IPM is a better method to
construct uniform designs.

Nowwe consider the effect of three parameters: the number of repeating times, K , and the number
of iterations that are determined by I and J in SA-IPM. The larger the parameters I and J in SA-IPM are,
the larger the number of iterations has. Cases 5, 18 and 22 in Table 1 are selected for testing.

Let us increase the number of repeating times K from 30 to 570 and keep other parameters
unchanged. For each case and for a given number of repeating times K , the design with the lowest
WD-value among K output designs is considered as the delivered design. The quantity WDstand =

(WDsa − Mrgm)/stdrgm is used for comparisons.
For the three cases 5, 18 and 22 Fig. 1(a) shows WDstand when the number of repeating times is

increased. Fig. 1(b) shows WDstand under different values of J with I = 2, and Fig. 1(c) shows WDstand
under different values of I with J = 10. Fig. 1(b) and (c) show that the increase of the value of J and I do
not improve the result, while the number of iterations increases very much. Therefore, the choice of
the values of parameters in Table 1 is reasonable and larger number of iterations does not necessarily
to obtain better designs.

Last, an interesting result of these cases in Table 1 is that all of these designs constructed by SA-IPM
are U-type designs.

232 Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237

a b c

Fig. 1. WDstand of the delivered design obtained by SA-IPM, when (a) the repeated times K is increased from 30 to 570, (b) the
parameter J is increased from 5 to 40, and (c) the parameter I is increased from 2 to 30. ‘‘–∗’’, ‘‘–�’’, ‘‘–♦’’ stand for case 5, 18
and 22, respectively.

3.3. The enumeration method

Sometimes the number of runs n < m = q1 · · · qs and
m

n

is not too large. In this case the

Nn =
m

n

frequency vectors y = (y1, . . . , ym)′ can be enumerated. We can find a design with the

minimumWD-value, denoted by D0, among these
m

n

designs. Obviously, D0 may be or may not be a

U-type design. On the other hand, it is known that the number of U-type designs in U(n; q1, . . . , qs)
is Nu =

s
i=1

n

n/qi

n−n/qi
n/qi

· · ·

2n/qi
n/qi

. Therefore, the cardinality of the candidate sets by using

the enumeration method may be much smaller than Nu. For example, for constructing a uniform
design U60(43), the enumeration method needs to compare Nn =

64
60

= 635 376 designs, while

the number of all the U-type designs is Nu ≈ 2.3042 × 10100, which is too large for using some
stochastic optimization algorithm directly. In this case, the enumeration method is a better choice.

Using the enumeration method, we can easily construct the uniform designs U3(32),U6(32),
U4(42),U8(42),U12(42),U5(52),U20(52),U6(33),U21(33),U24(33),U4(43),U60(43) andU78(34), which
have the same WD as the existing designs, and the computational speed of every case is very fast
(several seconds). It is interesting that all of these resulted design are U-type designs, which means
the U-type constraint is reasonable for constructing uniform designs by some stochastic optimization
methods.

4. Algorithm for the case of n > m

It is known from Section 2 that a full factorial design is a uniform design when n = tm and t is a
positive integer. In this section, we consider some construction methods of the uniform design when
the number of runs n > m = q1 · · · qs and m is not a divisor of n. Denote n = n0 + tm, where
1 ≤ n0 < m and t ≥ 1.

4.1. Combined method

Let y = y1 + y2, where 1′
my1 = n0, 1′

my2 = tm. The objective function in problem (OP) can be
rewritten as

y ′Qy = (y1 + y2)′Q (y1 + y2) = y ′

1Qy1 + 2y ′

1Qy2 + y ′

2Qy2, (16)

with the constraint 1′
my = n, and the objective function (16) can be thought as a multivariate

quadratic integer programming problem. Let f5(y) = y ′

1Qy1 and f6(y) = 2y∗

1Qy2 + y ′

2Qy2, where
y∗

1 is the optimizer of f5(y) with the constraint 1′
my1 = n0. Suppose the minimum of f5(y) and f6(y)

under the constraint 1′
my1 = n0, 1′

my2 = tm are respectively M5 and M6, then we know that the

Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237 233

minimum of y ′Qy should be less than or equal to M5 + M6. However, it is difficult to directly solve
the multivariate quadratic integer programming problem (16) due to its computational complexity.
Then, the procedure of solving the optimization problem (OP) can be divided into the following two
parts

(OP1)

min f5(y) = y ′

1Qy1
s.t. 1′

my1 = n0, y1 ∈ Zm
n0 ,

and

(OP2)

min f6(y) = 2y∗

1Qy2 + y ′

2Qy2
s.t. 1′

my2 = tm, y ∈ Zm
tm,

where y∗

1 is the minimizer of problem (OP1). Here, y∗

1 can be obtained by the SA-IPM proposed in the
last section and it satisfies 1′

my
∗

1 = n0. Assume y∗

2 be the minimizer of problem (OP2), then the final
solution is ŷ = y∗

1 + y∗

2 . Although the final solution ŷ may not reach the real minimizer of problem
(OP), but this partition can reduce the computational complex significantly. In next subsection, we
will show that this two-step method for constructing uniform designs is better than many existing
construction methods.

Now,we consider theminimizer of problem (OP2) based on the known y∗

1 . Similarly, problem (OP2)
can be relaxed as following problem:

(SDP2)

min f (y) = y ′

2Qy2 + 2y∗

1Qy2
s.t. 1′

my2 = tm.

In fact, problem (SDP2) is a standard form of semidefinite program of the parameter y2 and we have
the following theorem which provides the solution.

Theorem 2. The minimizer of problem (SDP2) is

y∗

2 =

n0

qs
1m − y∗

1

+ t1m, (17)

where y∗

1 is the optimal vector in problem (OP1).

The proof of Theorem 2 is similar to that of Theorem 1, and we omit it. In problem (OP1), y∗

1 is an
integer-vector. If this constraint is relaxed to real-vector, then from the result in Theorems 1 and 2
indicates that y∗

2 = t1m. Therefore, it is reasonable to take y∗

2 = t1m.

Remark 4. It is possible that theWDunder different frequency vectors y1
1 and y2

1 have the same value.
For example, when n = 6, q = 3, s = 2, the designswith respect to y1

1 = (1, 1, 0, 0, 1, 1, 1, 0, 1)′ and
y2
1 = (1, 1, 0, 1, 0, 1, 0, 1, 1)′ have the same WD2

= 0.0525, and both designs are uniform design
U6(32).

The following theorem gives some related property.

Theorem 3. Let designs D1,D2 ∈ U(n0; q1, . . . , qs) have the same WD2 values WD0 and denote their
frequency vectors by y1

1 and y2
1 , respectively. Then the designs U1,U2 ∈ U(n; q1, . . . , qs)whose frequency

vectors are respectively y1
1 + t1m and y2

1 + t1m, also have the same WD value,

WD2(U1) = WD2(U2)

=

n2
0

n2
− 1

4
3

s

+
1
n2

n0WD0 + (2tn0 + t2m)

s
k=1

4qk
3

+
1
6qk

where t is a positive integer and n = n0 + tm, 1 ≤ n0 ≤ m.

By Theorem 2 and the properties of Q in (4), the proof of Theorem 3 is straightforward. If n0 = m,
from Theorem 1, the optimal frequency vector y1

1 = y2
1 = 1m and the result in Theorem 3 is same as

234 Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237

the result in Corollary 1, i.e., WD2(U1) = WD0. Moreover, based on Theorems 2 and 3, we propose
Algorithm 2 below, called the combination method (CM), to construct uniform designs with a large
number of runs.

Algorithm 2 Combination method for constructing uniform design with n = n0 + tm
(1) Use some algorithms to find the minimizer of the problem (OP1), denoted as y∗

1 ;
(2) Choose y2 = t1m, where m = q1 · · · qs;
(3) the frequency vector of final design is y∗

= y∗

1 + t1m.

From Remark 4, the optimal vector of y∗

1 may not be unique and we can choose any one of y∗

1 in
Step (1) of Algorithm2. Algorithm2 shows that for constructing a uniformdesignUn(q1, . . . , qs)when
n > m, one first constructs the design Un0(q1, . . . , qs) where 1 ≤ n0 < m and n0 = n− tm, then uses
the Algorithm 2 to obtain the final design. Therefore, it is possible to construct the uniform designs
even when n is very large. Next, we use some examples to show the efficiency of the combination
method.

Example 1. Many uniform design tables in the UD website were constructed by different methods
such as number theoretic methods, stochastic optimization and so on. When the number of factors
is small, these existing designs can be checked whether their WD-values attain the minimum or not
under the U-type constraint. In fact, many existing designs can be constructed by CM. For example,
when q = 3, s = 2, it can be shown that the frequency vector of different number of runs are as
follows

y(U15(32)) = (2, 2, 1, 2, 1, 2, 1, 2, 2)′ = (1, 1, 0, 0, 1, 1, 1, 0, 1)′ + 1m = y1
1 + 1m,

y(U24(32)) = (3, 3, 2, 3, 2, 3, 2, 3, 3)′ = (1, 1, 0, 1, 0, 1, 0, 1, 1)′ + 21m = y2
1 + 21m,

y(U33(32)) = (3, 4, 4, 4, 4, 3, 4, 3, 4)′ = (0, 1, 1, 1, 1, 0, 1, 0, 1)′ + 31m = y3
1 + 31m,

y(U42(32)) = (5, 5, 4, 4, 5, 5, 5, 4, 5)′ = (1, 1, 0, 0, 1, 1, 1, 0, 1)′ + 41m = y1
1 + 41m,

y(U51(32)) = (6, 5, 6, 6, 6, 5, 5, 6, 6)′ = (1, 0, 1, 1, 1, 0, 0, 1, 1)′ + 51m = y4
1 + 51m.

It is easily shown that the designs with the frequency vectors y1
1 , y

2
1 , y

3
1 , y

4
1 have the same WD-

value, which means CM can be used to construct these five designs in the same way. Similarly, we
can check the existing designs U12(32),U21(32),U30(32),U39(32),U48(32) also can be constructed
by CM, and the same is true for the groups {U8(42),U24(42),U40(42)}, {U12(42),U28(42),U44(42)},
{U20(42),U36(42),U52(42)}, {U10(52),U35(52)}, {U15(52),U40(52)}, {U20(52),U45(52)}, {U30(52),
U55(52)}, {U12(62),U48(62)}, {U18(62),U54(62)} and {U24(62),U60(62)}. For q = 3, s = 3, the groups
{U9(33),U36(33)}, {U12(33),U39(33)}, {U15(33),U42(33)}, {U18(33),U45(33)}, {U21(33),U48(33)} and
{U24(33),U51(33)} also can be constructed by CM.

Example 2. In a similar way to Example 1, we can construct U9(33),U63(33),U90(33),U117(33) by the
frequency vectors of y1, y1 + 21m, y1 + 31m, y1 + 41m, respectively, where

y1 = (0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0)′

is the frequency vectors of U9(33) and the latter is from the UD website. Therefore, the frequency
vector y1 can be used to construct the design Un(33) with any n = 9 + 27t, t ≥ 1. In such a way we
can construct many uniform design tables which do not exist in the UD website.

4.2. Empirical study

In this subsection, we compare the uniformity of the design constructed by CM and other methods
such as the random permuting method (RPM) and some number theoretic methods including the glp
method and the pglpmethod. Both the symmetrical designs and asymmetrical designs are considered.
The procedure of RPM is as follows: to generate a U-type designs U(n; ns) whose elements of every
column are the random permutation of {1, . . . , n}, then to transform U(n; ns) into U(n; q1, . . . , qs)

Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237 235

Fig. 2. Comparisons among the RPM, the pglp method, CM-1 and CM-2 for the two cases.

and to calculate the corresponding WD. Repeat this procedure R times and we obtain R WD values,
their mean (Mrpm), standard deviation (stdrpm), and 0.1% percentile of WD values (WDrpm), the latter
is denoted as the WD-value of the resulted design from RPM. We take R = 107 in the simulation.

Let Rrpm = (WDc − Mrpm)/Stdrpm, where WDc stands for the WD of any design. Therefore, a
design X ∈ U(n; q1, . . . , qs) with lower Rrpm is more uniform. For studying the robustness of CM, we
consider the following two method of CM: CM-1 means the original frequency vector y∗

1 is calculated
from existing design on UD website or the design constructed by SA-IPM; CM-2 means that the y∗

1 is
calculated from the design from RPM.

(A) Symmetrical designs: The following two cases are considered: (i) the number of levels q = 3, the
number of factors s = 3, 5 and n0 = 9, 24; (ii) q = 6, s = 2, 3, n0 = 12, 30. For every combination in
the two cases, we consider the number of runs n = n0 + tqs, t = 0, 1, . . . , 9. The comparisons among
the RPM, the glp method, CM-1 and CM-2 for the two cases are shown in Fig. 2, where the Rrpm-values
of different methods are calculated. It is shown that the design constructed by CM-1 has the least WD
for every t , and with the increase of t , CM-2 is better than the RPM and the pglp method. Moreover, as
t increases, the WD-values of the designs constructed by CM-1 and CM-2 decrease, which means the
importance of the uniformity of U(n0; qs) decreases when the number of runs increases. Usually, the
design constructed by the pglpmethod has lessWD than that by RPM, but from Fig. 2(A) it is seen that
this is not true in some cases. Therefore, the CM has some robustness of the uniformity of the design
Un0(q

s), where 0 ≤ n0 < m and n0 = n (mod m).
(B) Asymmetrical designs: The following four cases are considered: (iii) s = 3, q1 = q2 = 3, q3 = 4;

(iv) s = 3, q1 = q2 = 3, q3 = 6; (v) s = 4, q1 = q2 = 3, q3 = q4 = 4; (vi) s = 4, q1 = q2 = 3, q3 =

4, q4 = 6. In every case, we choose the number of runs n = 24 + tm, t = 0, 1, . . . , 9, m = q1 · · · qs.
Similarly, we compare the property of the RPM, the pglp method, CM-1 and CM-2. Since the designs
in these cases do not exist in the UD website, the y∗

1 in CM-1 is obtained by SA-IPM. The comparisons
among these methods are shown in Fig. 3, from which it is seen that CM-1 is the best one in every
case and CM-2 is also better than the RPM and the pglp method when t ≥ 1. As the number of runs
increases, the pglp method is better than RPM. Usually, the property of the pglp method is affected by
n, and the Rrpm of the pglp method is unstable as n increases, whereas the Rrpm of CM-1 and CM-2 are
stable, which also means the CM is robust in some sense.

5. Conclusion

In this paper, we reformulate the WD of asymmetrical design as a quadratic form of the fre-
quency vector y. The problem of constructing a uniform design under WD then becomes a quadratic

236 Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237

Fig. 3. The comparison of the RPM, the pglp method, CM-1 and CM-2 for asymmetrical designs. Here, ‘‘– ◦’’, ‘‘– ·’’, ‘‘– �’’, ‘‘– ∗’’
respectively represent the RPM, the pglp method, CM-1 and CM-2.

optimization problem, i.e., the main objective is to find the minimizer of frequency vector. Some the-
oretic results are obtained. Furthermore, for n < m, a heuristic algorithm, SA-IPM, which is based on
the simulated annealing, is proposed; for n > m, the so-called combinationmethod (CM) is proposed.
Our empirical study shows that when m < 3200, these algorithms can obtain designs with lower
computational complexity and lowerWD value compared with many existing construction methods.
Therefore, SA-IPM is suitable to construct designs with a large number of runs and the total number
of level-combinations to be below several thousands, e.g. n > 200 and m < 3200. As the value of m
increases, the computational complexity of SA-IPM increases exponentially. In the case of the number
of runs n > m, our empirical study shows that the CM is better than many existing methods.

An interesting result of the algorithm SA-IPM is that the resulted designs are all U-type designs
in our empirical tests. Moreover, we also discuss the cases of

m
n

being not too large, and find that

the uniform design among the lattice designs may be a U-type design. This gives additional evidence
of using the U-type constraint for construction of UDs. Finally, based on the relationship between
constructing uniform designs and the quadratic integer programming, more fast heuristics may be
proposed in the future, especially whenm is very large.

Acknowledgments

The authors would like to thank the associate editor and the referees for the valuable comments,
and Prof. Zhu Yunmin and Dr. Song Enbing for their help on convex optimization and Dr. Zhang
Lingyun for his valuable comments. Zhou’s work was partially supported by NSFC (11001186). Fang’s
work was partially supported by the Research Foundation from Academy of Mathematics and System
Sciences, Chinese Academy of Sciences. Ning’s work was partially supported by NSFC (11101173).

References

[1] M.M. Amini, B. Alidaee, G.A. Kochenberger, A scatter search approach to unconstrained quadratic binary programs,
in: D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas in Optimization, McGraw-Hill, 1999, pp. 317–329.

[2] J.E. Beasley, Heuristic algorithms for the unconstrained binary quadratic programming problem, Technical Report,
Management School, Imperial College, London, UK, 1998.

[3] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[4] W. Chen, L.S. Zhang, Global optimality conditions for quadratic 0–1 optimization problems, Journal of Global Optimization

46 (2010) 191–206.

Y.-D. Zhou et al. / Journal of Complexity 28 (2012) 224–237 237

[5] K.T. Fang, R.Z. Li, A. Sudjianto, Design and Modeling for Computer Experiments, Chapman and Hall, CRC, New York, 2006.
[6] K.T. Fang, C.X. Ma, Wrap-around L2-discrepancy of random sampling, Latin hypercube and uniform designs, Journal of

Complexity 17 (2001) 408–424.
[7] K.T. Fang, Y. Tang, J.X. Yin, Lower bounds for wrap-around L2-discrepancy and constructions of symmetrical uniform

designs, Journal of Complexity 21 (2005) 757–771.
[8] K.T. Fang, Y. Wang, Number-Theoretic Methods in Statistics, Chapman and Hall, London, 1994.
[9] M. Gilli, P. Winker, Heuristic optimization methods in econometrics, in: D. Belsley, E. Kontoghiorghes (Eds.), Handbook of

Computational Econometrics, Wiley, Chichester, 2009, pp. 81–119.
[10] F.J. Hickernell, A generalized discrepancy and quadrature error bound, Mathematics of Computation 67 (1998) 299–322.
[11] F.J. Hickernell, Lattice rules: howwell do theymeasure up? in: P. Hellekalek, G. Larcher (Eds.), Random and Quasi-Random

Point Sets, in: Lecture Notes in Statistics, vol. 138, Springer, New York, 1998, pp. 109–166.
[12] R. Horst, P.M. Pardalos, N.V. Thoai, Introduction to Global Optimization, Kluwer, Dordrecht, 1995.
[13] L.D. Iasemidis, P. Pardalos, J.C. Sackellares, D.-S. Shiau, Quadratic binary programming and dynamical system approach to

determine the predictability of epileptic seizures, Journal of Combinatorial Optimization 5 (2001) 9–26.
[14] K. Katayama, H. Narihisa, Performance of simulated annealing-based heuristic for the unconstrained binary quadratic

programming problem, European Journal of Operational Research 134 (1) (2001) 103–119.
[15] P. Merz, B. Freisleben, Genetic algorithms for binary quadratic programming, in: Proceedings of the 1999 Genetic and

Evolutionary Computation Conference, vol. 1, 1999, pp. 417–424.
[16] P. Merz, B. Freisleben, Greedy and local search heuristics for unconstrained binary quadratic programming, Journal of

Heuristics 8 (2002) 197–213.
[17] P. Merz, K. Katayama, Memetic algorithms for the unconstrained binary quadratic programming problem, BioSystems 78

(2004) 99–118.
[18] H. Niederreiter, Random number generaion and quasi-Mente Carlo methods, in: SIAM CBMS-NSF Regional Conference

Series in Applied Mathematics, Philadelphia, 1992.
[19] G. Palubeckis, Multistart tabu search strategies for the unconstrained binary quadratic optimization problem, Annals of

Operations Research 131 (2004) 259–282.
[20] P.Winker, K.T. Fang, Application of threshold-accepting to the evaluation of the discrepancy of a set of points, SIAM Journal

on Numerical Analysis 34 (1997) 2028–2042.
[21] Y.D. Zhou, J.H. Ning, Lower bounds of the wrap-around L2-discrepancy and relationships between MLHD and uniform

design with a large size, Journal of Statistical Planning and Inference 138 (2008) 2330–2339.

	Constructing uniform designs: A heuristic integer programming method
	Introduction
	Quadratic form of WD
	Algorithm for the case of n <m
	Simulated annealing-based heuristic
	Computational results
	The enumeration method

	Algorithm for the case of n >m
	Combined method
	Empirical study

	Conclusion
	Acknowledgments
	References

