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We study the decoupling limit of a superheavy sgoldstino field in spontaneously broken N = 1 super-
gravity. Our approach is based on Kähler superspace, which, among others, allows direct formulation of
N = 1 supergravity in the Einstein frame and correct identifications of mass parameters. Allowing for a
non-renormalizable Kähler potential in the hidden sector, the decoupling limit of a superheavy sgoldstino
is identified with an infinite negative Kähler curvature. Constraints that lead to non-linear realizations of
supersymmetry emerge as consequence of the equations of motion of the goldstino superfield when con-
sidering the decoupling limit. Finally, by employing superspace Bianchi identities, we identify the real
chiral superfield, which will be the superconformal symmetry breaking chiral superfield that enters the
conservation of the Ferrara–Zumino multiplet in the field theory limit of N = 1 supergravity.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Supersymmetry is one of the most appealing candidates for
new physics. It has not been observed so far and thus, it should
be broken at some high energy scale if it is realized at all. How-
ever, supersymmetry breaking is not an easy task. In the MSSM
for example, supersymmetry breaking is employed by introducing
soft breaking terms. These terms are ad hoc masses for the super-
partners of the SM particles, which nevertheless do not spoil the
UV properties of the theory. In fact the MSSM includes all these
soft breaking terms and one has to fit them into the observa-
tions. From a more theoretical point of view, the origin of these
soft terms should be explored. The common lore is that super-
symmetry should be broken in a sector of the theory, not directly
connected to the SM particles, the hidden sector. For a review on
soft terms, and other supersymmetry breaking mediation scenarios
we refer to [1–3].

Whatever the nature of the mediation, the hidden sector should
be studied on its own right. If it is a chiral multiplet that breaks
supersymmetry, its highest component F will acquire a non-
vanishing vev. There is a number of different scenarios for the
origin of the supersymmetry breaking [1,3]. Let us note that higher
derivative operators [4–7] may play an important role in hidden
sector supersymmetry breaking. One of the most efficient methods
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for studying the phenomenology of the hidden sector is through
the dynamics of the goldstino [8–23]. The latter is the fermionic
component of the superfield that breaks supersymmetry. If the su-
persymmetry breaking scale is low, goldstino dynamics become
increasingly important for low energy phenomenology [24–35]. In
fact, if the SUSY breaking scale

√
f is low with respect to Planck

mass M P (
√

f � M P ) as in gauge mediation, transverse gravitino
couplings are of order M−1

P and therefore are suppressed with re-
spect to longitudinal gravitino couplings, which are of order f −1/2.
In this case, in the gravity decoupling limit, only the longitudi-
nal gravitino component, i.e., the goldstino survives. Moreover, the
highest component of the superfield to which the goldstino be-
longs, acquires a vev and breaks spontaneous the supersymme-
try giving also mass to the sgoldstino (goldstino’s superpartner).
Therefore, at low energies, supersymmetry is spontaneous broken
and after decoupling the sgoldstino (by making the latter super-
heavy) we are left with only the goldstino in the spectrum and a
non-linear realized SUSY. In the case of local supersymmetry, non-
linear realizations are less studied in the supergravity context [11,
42,43].

Recently new methods have been proposed in order to study
goldstino couplings, and MSSM extensions that incorporate them
have been constructed [32–39]. All this framework is based on the
idea of constrained superfields [10,11,14] that introduce a non-
linear supersymmetry representation for the goldstino when its
massive scalar superpartner is heavy and can be integrated out.
Moreover, when one studies physics much lower than the MSSM
soft masses scale, non-linear supersymmetry is realized on the SM
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particles as well, via the appropriate constraints. The constraint
that enforces a non-linear supersymmetry realization for the gold-
stino reads

Φ2
NL = 0. (1.1)

In addition, it has been proven in [32] that in fact ΦNL is propor-
tional in the IR limit to the chiral superfield X that sources the
violation of the conservation of the Ferrara–Zumino supercurrent
Jαα̇ [40,41]

D̄α̇ Jαα̇ = Dα X . (1.2)

We extend this to the case of N = 1 supergravity by identifying
the superfield, which turns out to be the chiral superfield X of
(1.2) in the gravity decoupling limit. Here, the conservation of the
Ferrara–Zumino multiplet Jαα̇ in (1.2) is replaced by the consis-
tency conditions of the Bianchi identities [45]

Xα = DαR− D̄α̇Gαα̇ (1.3)

where Gαα̇ and R are the usual supergravity superfields and Xα =
− 1

8 (D̄2 − 8R)Dα K is the matter sector contribution.

2. Supergravity in Einstein frame

In the standard N = 1 superspace formulation of supergrav-
ity, one is forced to perform a Weyl rescaling to the action in
order to write the theory in the Einstein frame. Here, we should
write the superspace action directly in the Einstein frame since
we want to correctly identify the masses to be send to infinity.
This will provide the superfield equations of motion in the correct
frame as well. The appropriate framework for this is the Kähler
superspace formalism which we will briefly present below. For a
detailed description, one may consult for example [45–47]. An al-
ternative method would be a super-Weyl invariant reformulation
of the old minimal formulation for N = 1 SUGRA [48].

In the conventional superspace approach to supergravity, the
Lagrangian describing gravity coupled to matter would be (ignor-
ing superpotential for the moment)

LF =
∫

d2Θ 2E
{

3

8
(D̄D̄ − 8R)e− 1

3 K (Φ,Φ̄)

}
+ h.c. (2.1)

where 2E is the superspace chiral density and the new Θ variables
span only the chiral superspace. An equivalent way to write the
action (2.1) is

LD = −3
∫

d4θ Ee− 1
3 K (Φ,Φ̄), (2.2)

where now E is the full superspace density and θ are to be inte-
grated over the full superspace. Both actions (2.1), (2.2) can equiv-
alently be used in order to build invariant theories in superspace.
Note that E and E , both have the vierbein determinant in their
lowest component. As usual R represents the supergravity chiral
superfield which contains the Ricci scalar in its highest compo-
nent. Direct calculation of (2.2) in component form shows that the
theory is actually expressed in an unconventional Jordan frame. Of
course a Weyl rescaling may be performed in order to bring the
theory in the standard Einstein frame. Nevertheless, it is possible
to perform this rescaling at the superspace level by considering

E ′
M

a = e− 1
6 K (Φ,Φ̄)Ea

M ,

E ′
M

α = e− 1
12 K (Φ,Φ̄)

[
E M

α − i

12
Eb

M(εσb)
α

α̇D̄α̇ K (Φ, Φ̄)

]
,

E ′
Mα̇ = e− 1

12 K (Φ,Φ̄)

[
E Mα̇ − i

Eb
M(εσ̄b)α̇

αDα K (Φ, Φ̄)

]

12
where E M
A is the superspace frame, containing the gravitino and

the vierbein in the appropriate lowest components. This redefini-
tion will change the structure of the whole superspace including
the Bianchi identity solutions and the superspace derivatives. Most
importantly, the superspace geometry will receive contributions at
the same time from the matter and supergravity fields in a uni-
fied way. The Lagrangian (2.2) now becomes in the new superspace
frame (erasing the primes for convenience)

LD new = −3
∫

d4θ E. (2.3)

This form now contains the properly normalized supergravity ac-
tion coupled to matter. The interested reader should consult an
extensive review on the subject [45]. Since we also wish to in-
clude a superpotential, the appropriate contribution will be given
by adding to (2.3) the appropriately rescaled superpotential W so
that the full Lagrangian will be given by

Lsuperpotential = −3
∫

d4θ E +
{∫

d4θ
E

2R
eK/2W + h.c.

}
. (2.4)

In this new framework, Kähler transformations, generated by holo-
morphic functions F , are expressed as field dependent transfor-
mations gauged by a composite U K (1) vector B A . The respective
charge now is referred to as “chiral weight” and a superfield Φ of
chiral weight w(Φ) transforms as

Φ → Φe− i
2 w(Φ) Im F . (2.5)

Gauge covariant superspace derivatives are defined as

DAΦ = E A
M∂MΦ + w(Φ)B AΦ (2.6)

where the composite connection superfields are

Bα = 1

4
Dα K , B̄α̇ = −1

4
D̄α̇ K ,

Ba = 1

4
(∂i K )DaΦ

i − 1

4
(∂ j̄ K )DaΦ̄

j̄ + 3i

2
Ga

+ i

8
gi j̄σ̄

α̇α
(
DαΦ i)D̄α̇Φ̄ j̄.

All component fields are understood to be defined appropriately
via projection as usual but now with the use of these Kähler
superspace derivatives. It turns out that the invariant Lagrangian
containing both (2.3) and (2.4) depends only on the generalized
Kähler potential

eG = eK (Φ,Φ̄)W (Φ)W̄ (Φ̄). (2.7)

By taking into account the chiral weights of the gravity sector and
performing a Kähler transformation with parameter F = ln W , we
find that the final expression for the most general coupling of mat-
ter to supergravity is

L =
∫

d4θ E

[
−3 + 1

2R
e

G
2 + 1

2R̄
e

G
2

]
. (2.8)

It should be stressed that this form of the action is completely
equivalent to the standard N = 1 superspace formulation (2.1) to
which is related by appropriate redefinitions of the superspace
frames.

3. Sgoldstino decoupling

We are interested in those classes of models where the sgold-
stino may become superheavy and decouples from the spectrum.
In this case, it plays no role in the low energy effective theory,
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and its dynamics can be integrated out by its equations of mo-
tion. Essentially, in order to be able to decouple consistently the
sgoldstino degrees of freedom, one has to

1. consider the sgoldstino mass as the heavier scale in the prob-
lem, and

2. find consistent solutions for the equations of motion in that
limit.

This is equivalent to taking the limit of infinitely heavy sgoldstino
and integrate its equations of motion, if possible, in this limit. This
work has been done in component form earlier [14] and extended
recently [36,37]. We will implement the above procedure in super-
space, where as we will see it is quite straightforward.

To study sgoldstino decoupling in supergravity, it is helpful to
consider the corresponding decoupling in global supersymmetry.

3.1. Sgoldstino decoupling in global supersymmetry

The most general single chiral globally supersymmetric super-
field Lagrangian is given by

L =
∫

d4θ K (Φ, Φ̄) +
{∫

d2θ W (Φ) + h.c.

}
(3.1)

where, K (Φ, Φ̄) is the Kähler potential, a hermitian function of
the chiral superfield, and W (Φ) is the superpotential, a holomor-
phic function of the chiral superfield. From the above action, the
superspace equations of motion

−1

4
D̄ D̄ KΦ + WΦ = 0, (3.2)

with KΦ = ∂Φ K , WΦ = ∂Φ W easily follow. For a general, non-
renormalizable supersymmetric model where supersymmetry is
spontaneously broken, the supertrace mass formula reads [43]

Str M2 =
∑

J

(−1)2 J (2 J + 1)M2
J = −2R A Ā f f̄ (3.3)

where f = 〈F 〉 and R A Ā (= g A Ā R A Ā A Ā ) is the Ricci tensor of the
scalar Kähler manifold evaluated at the vacuum expectation values
of the scalars. Eq. (3.3) describes the mass splitting between the
components of the supermultiplet. In the case of a single chiral
superfield we are discussing, since the goldstino is always mass-
less, the supertrace of the goldstino multiplet is just the square of
the sgoldstino mass

M2
sg = −R A Ā f f̄ (3.4)

We see that necessarily the scalar manifold should be a space of
negative curvature in order to have non-tachyonic scalar excita-
tions. In addition, the limit of the infinitely heavy sgoldstino

2M2
sg = Str M2 → ∞ or R A Ā A Ā → −∞. (3.5)

Since

R A Ā A Ā = ∂ Ā∂A∂ Ā∂A K − ∂ Ā∂A∂ Ā K∂A∂A∂ A K , (3.6)

in normal coordinates for the Kähler space in which g A Ā = δA Ā
and ∂i∂ j∂k K = 0 (for any i, j = A, Ā), we have that the infinitely
heavy sgoldstino is obtained in the limit

−∂ Ā∂A∂ Ā∂A K → ∞. (3.7)

By assuming that the vacuum expectation value of A = Φ| van-
ishes,1 the general form of the Kähler potential

1 if not we may shift appropriately A so that 〈A〉 = 0
K (Φ, Φ̄) =
∑
mn

cmnΦ
mΦ̄n (3.8)

will have the following expansion in normal coordinates

K (Φ, Φ̄) = ΦΦ̄ + c22Φ̄
2Φ2 + · · · . (3.9)

It is easy to see that in fact

c22 = 1

4
R A Ā A Ā = 1

4
R A Ā (3.10)

in normal coordinates. By using then (3.3), (3.5), we get that the
Kähler potential may be expressed in terms of the sgoldstino mass
as

K (Φ, Φ̄) = ΦΦ̄ − M2
sg

4| f |2 Φ̄2Φ2 + · · · (3.11)

where the dots stands for Msg-independent terms and f = 〈F 〉
is the vev of the auxiliary field in the chiral multiplet. From the
superspace equations of motion (3.2), one can easily isolate the
contribution proportional to M2

sg. Indeed, (3.2) is written as

M2
sg

4| f |2 Φ D̄ D̄Φ̄2 + (Msg-independent terms) = 0. (3.12)

Therefore, in the Msg → ∞ limit, the Msg-dependent part of the
field equations is turned into the superspace constraint

Φ D̄ D̄Φ̄2 = 0. (3.13)

To explicitly solve (3.13), we note that it leads to three compo-
nent equations

Φ D̄ D̄Φ̄2
∣∣ = 0, Dα

(
Φ D̄ D̄Φ̄2)∣∣ = 0, D D

(
Φ D̄ D̄Φ̄2)∣∣ = 0.

(3.14)

The non-trivial solution to the above equations is [10,32]

ΦNL = χχ

2F
+ √

2θχ + θ2 F (3.15)

which can be easily checked that it satisfies

Φ2
NL = 0. (3.16)

As a result, the sgoldstino can be safely decoupled in the Msg → ∞
limit as long as Φ satisfies (3.13), or equivalently (3.16).

3.2. Sgoldstino decoupling in supergravity

As in the case of global supersymmetry, we are interested in
the equations of motion and the mass supertrace. The superfield
equations of motion as follow from the action (2.8) are [46]

R = 1

2
e

G
2 , (3.17)

Ga + 1

8
GΦΦ̄σ̄ α̇α

a DαΦD̄α̇Φ̄ = 0, (3.18)

(D̄D̄ − 8R)GΦ = 0. (3.19)

On the other hand, for a general supergravity model with only one
chiral multiplet the supertrace is given by [44]

Str M2 = −2R A Ā f f̄ , (3.20)

which means that in the limit of infinite negative Kähler curva-
ture the sgoldstino will become superheavy and can consistently
be integrated out. Indeed, (3.20) is explicitly written as
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M2
sg = 2m2

3/2 − R A Ā f f̄ . (3.21)

Therefore, for finite gravitino mass m3/2, the infinite curvature
limit

R A Ā A Ā → −∞ (3.22)

is equivalent to superheavy sgoldstinos. Again, in normal coordi-
nates

R A Ā A Ā = ∂ Ā∂A∂ Ā∂A K = ∂ Ā∂A∂ Ā∂A G (3.23)

and therefore with

G ⊃ 2m2
3/2 − M2

sg

4| f |2 Φ2Φ̄2 + · · · (3.24)

the decoupling limit we are after is again M2
sg → ∞. Taking into

account that the Kähler curvature M2
sg/4| f |2 will dominate the

equations of motion and following the same reasoning as in the
global supersymmetric case, we get from (3.19)

Φ(D̄D̄ − 8R)Φ̄2 = 0. (3.25)

This constraint is the curved superspace analogue of (3.13). In or-
der to solve it, we take into account that Φ(D̄D̄ − 8R)Φ̄2 is a
chiral superfield, and we will once again start from its lowest com-
ponent, namely

Φ(D̄D̄ − 8R)Φ̄2
∣∣ = 0. (3.26)

This is written, for

Φ = A + √
2Θχ + ΘΘ F , R| = −1

6
M (3.27)

as

AM Ā2 − 24A Ā F̄ + 12Aχ̄ χ̄ = 0. (3.28)

This equation has three solutions

A0 = 0, A1 = χχ

2F
, A2 = 24F

M
− χχ

2F
. (3.29)

The first solution A0 is the trivial and we will not consider it.
The second solution A1 is the Φ2 = 0 we already encounter in
the global SUSY case. The third solution A3 corresponds to Φ2 �= 0
and can only be realized as long as the auxiliary field of super-
gravity M is non vanishing (M �= 0). However, from Eq. (3.17) we
get

R = 1

2
e

G
2 = 1

2
e
− M2

sg
8| f |2 Φ2Φ̄2+···

, (3.30)

where only the dominant term was explicitly written in the expo-
nent in the right hand side. Now, in the M2

sg → ∞ limit, the right

hand side goes to zero exponentially fast so that for Φ2 �= 0

R = 0 for M2
sg → ∞. (3.31)

Therefore also M = −6R| = 0 and the third solution (A2) cannot
consistently be realized. As a result, the only solution to the con-
straint (3.25) is the A1 = χχ

2F , or in other words the familiar

Φ2 = 0. (3.32)

This constraint leads to

e
M2

sg
8| f |2 Φ2Φ̄2 ∣∣

2 = 1 (3.33)

Φ =0
and thus, the divergent part of (3.17) completely decouples! More-
over, Φ2 = 0 also satisfies

DαΦD̄α̇Φ̄2 = 0 (3.34)

which is the field equation (3.18) in the M2
sg → ∞ limit. As a re-

sult, we have again arrived to the constraint (3.32) as the only
viable and consistent condition for the decoupling of the sgold-
stino.

3.3. Supercurrent and sgoldstino decoupling

In order to discuss the relation of supersymmetry breaking to
conservation laws, let us explore the decoupling limit of the su-
pergravity sector. The supergravity equations of motion (3.17) and
(3.18) in superspace, after restoring dimensions with compensating
powers of M P and returning to the Kähler frame where everything
is expressed in terms of K and W , are written as

R = 1

M2
P

1

2
W e

K
2M2

P , (3.35)

Ga + 1

M2
P

1

8
gi j̄σ̄

α̇α
a DαΦ iD̄α̇Φ̄ j̄ = 0. (3.36)

Gravity decouples in the limit M P → ∞, and from (3.35) and
(3.36) we have

R → 0, Ga → 0. (3.37)

We note that this is the limit even when W /M P = finite, which
is another possible limit [42] for gauge mediated SUSY breaking
scenarios. The fact that these supergravity superfields should van-
ish can be also understood from the algebra of supergravity when
compared to supersymmetry. For example, the global commutation
relation (for w(Φ i) = 0)

[D̄α̇ , Da]Φ i = 0, (3.38)

in supergravity becomes

[D̄α̇ ,Da]Φ i = −iRσαα̇DαΦ i (3.39)

thus in order to recover the global supersymmetry algebra the su-
perfield R should vanish.

Let us now derive the analog of the conservation equation of
the Ferrara–Zumino multiplet (1.2) in curved superspace. By using
the consistency conditions of the Bianchi identities [45]

Xα = M2
PDαR− M2

P D̄α̇Gαα̇ (3.40)

with

Xα = −1

8

(
D̄2 − 8R

)
Dα K (3.41)

and the equations of motion, we find

D̄α̇Jαα̇ = DαX − 16

3
RDα K + 2

3
Gαα̇D̄α̇ K (3.42)

with

Jαα̇ = 2gi j̄DαΦ iD̄α̇Φ̄ j̄ − 2

3
[Dα, D̄α̇]K ,

X = 4W e
K

2M2
P − 1

3
D̄D̄K . (3.43)

The extra terms compared to (1.2) arise due to commutation re-
lations like (3.39), and should vanish when supergravity is decou-
pled.
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Now we take the decoupling limit of supergravity (M P → ∞)
with (R → 0, Ga → 0) and find exactly the same formula as the
global case. As a final comment let us note that now, after the
decoupling of supergravity, the superfield X is

X → X = 4W − 1

3
D̄ D̄ K . (3.44)

4. Conclusions

In this work we explored the decoupling limit of sgoldstinos
in spontaneously broken SUSY theories. This decoupling was im-
plemented by considering large mass values for the sgoldstino (in
fact the infinite mass limit). We used superspace techniques as
they allowed for a unified treatment of the spontaneous breaking
of SUSY both in local and global supersymmetric cases. The mo-
tivation of this study was twofold: first to check if the constraint
superfield formalism employed in the global supersymmetry still
works in supergravity as well and second, to correctly identify in
supergravity the chiral superfield that enters in the conservation of
the Ferrara–Zumino multiplet and which accommodates the gold-
stino in global supersymmetry.

The way to approach these targets was to reformulate the gold-
stino dynamics in global supersymmetry but now in a language
appropriate for supergravity. First we have identified the sgoldstino
mass in both cases, and found the decoupling limit (supermassive
sgoldstino) to be the limit of infinite negative Kähler curvature.
Then we impose this limit to the superfield equations of mo-
tion and in the case of supersymmetry we found the constraint
(Φ D̄2Φ̄2 = 0) which is solved by Φ2 = 0 as expected. In the case
of supergravity, the super-covariant form of the more general con-
straint emerges, but again with the same single consistent solution.
Thus, the superspace constraint Φ2 = 0 for the goldstino, when the
sgoldstino is supermassive, holds for supergravity as well. How-
ever, we should mention a potential problem here. Namely, the
expansion of the Kähler potential in (3.11) is written in powers
of Msg/ f , from where it follows that actually Msg ∼ f /Λ where
Λ is the effective cutoff of the theory. The infinite sgoldstino mass
seems therefore to be in conflict with the removal of the cutoff
(Λ → ∞), which is needed to identify the goldstino superfield
with the infrared limit of the superconformal symmetry break-
ing superfield that enters the Ferrara–Zumino current conservation.
This issue is further complicated by the presence of extra light
fields. The problem has been pointed out in [38] where condi-
tions for the effective expansion of the supersymmetric Lagrangian
in terms of the inverse cutoff to not be in conflict with a small
sgoldstino mass ∼ f /Λ were given. Note that we have not faced
this problem, as we have taken the formal infinite large sgoldstino
mass limit.
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