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a b s t r a c t 

A financial market is a complex, dynamic system with an underlying governing manifold. This study in- 

troduces an early warning method for financial markets based on manifold learning. First, we restructure 

the phase space of a financial system using financial time series data. Then, we propose an information 

metric-based manifold learning (IMML) algorithm to extract the intrinsic manifold of a dynamic financial 

system. Early warning ranges for critical transitions of financial markets can be detected from the under- 

lying manifold. We deduce the intrinsic geometric properties of the manifold to detect impending crises. 

Experimental results show that our IMML algorithm accurately describes the attractor manifold of the 

financial dynamic system, and contributes to inform investors about the state of financial markets. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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1. Introduction 

Scholars and practitioners have developed increasingly elab-

orate techniques intended to forecast the approach of financial

crises. As a complex, dynamic system, financial markets can exhibit

tipping points at which abrupt transitions to a contrasting dynamic

regime may occur ( Scheffer et al., 2009 ). This shift is called a criti-

cal transition in financial markets, and it is exemplified by systemic

market crashes or global crises ( Ang & Timmermann, 2012 ). It is

difficult to predict reliably when critical thresholds approach be-

cause markets might show little change before reaching the critical

point ( Scheffer et al., 2009 ). In addition, shifts in financial markets

are usually triggered by stochastic and unpredictable externalities

( Sugihara et al., 2012; Battiston et al., 2016 ). However, investors

need adequate warning that an impending crisis is highly proba-

ble and reduce potential losses. 

The intrinsic complexity and nonlinearity of financial markets

make it hard to construct an integral mathematical model to char-

acterize the financial system, and thus the corresponding early

warning model is unable to be constructed ( Christofides, Eicher, &

Papageorgiou, 2016; Kou et al., 2014 ). However, financial time se-

ries are comprehensive reflections of market operations and pro-

vide a database for market analysis ( Ausín, Galeano, & Ghosh,

2014 ). In practice, observations about the state of dynamic sys-
∗ Corresponding author. 
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ems are often one-dimensional time series data. Through Phase

pace Reconstruction (PSR), time series data can be reconstructed

n a space in which the topology is equivalent to the original

ynamic system ( Richard, Michael, Andrew, & Ye, 2004 ). PSR de-

cribes the trajectory of the dynamic system in the reconstructed

igh-dimensional space ( He, Liu, Long, & Wang, 2012 ). Takens’ em-

edding theorem shows that the N-dimensional dynamic system

as a low-dimensional structure because the system state is con-

ned to an attractor ( M) of dimension d(d < N) in the state space

 Han & Christopher, 2011 ). 

An underlying manifold governs dynamic systems and reveals

heir dynamic nature ( Sugihara et al., 2012 ). Therefore, extract-

ng the intrinsic manifold structure is a primary objective of mar-

et research. Manifold learning is a hot topic in the fields of data

ining and machine learning, which seek to find the intrinsic

ow-dimensional embedding structures within high-dimensional

ata. Our study proposes a manifold learning approach to extract

he structure of the manifold underlying high-dimensional phase

paces, explore early warning ranges for critical transitions in mar-

ets, and discover further intrinsic structural properties. 

Numerous manifold learning methods have been developed, in-

luding Isometric Feature Mapping (ISOMAP) ( Tenenbaum, Sivlar,

 Langford, 20 0 0 ), Locally Linear Embedding (LLE) ( Roweis & Saul,

0 0 0 ), and Local Tangent Space Alignment (LTSA) ( Zhang & Zha,

004 ). These methods have successfully discovered the embed-

ed low-dimensional manifold. However, classical manifold learn-

ng algorithms are concerned with space geometric characteristics.

n financial analysis, data information characteristics—i.e., prob-

bility distributions—are important ( Huang & Kou, 2014 ). When
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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robability density functions (PDFs) are restricted to form an in-

rinsic manifold of high-dimensional data, geodesic distance no

onger accurately describes the manifold distance ( Carter, Raich,

inn, & Hero, 2011 ). 

We selected stock market composite indices as observed in fi-

ancial time series data. Each data point represents a financial sys-

em state, and the distance between them indicates the degree

f difference between system states. If the difference is character-

zed only by the geometric space between data points, the result

ay not fit the practical significance of the financial analysis but

ather cause errors in subsequent analyses. Therefore, this study

roposes an IMML algorithm to discover the structure embedded

n the high-dimensional phase space, which is reconstructed by the

bserved financial time series range. 

Our study is conducted in three steps. First, we reconstruct an

bserved financial time series as a high-dimensional phase space.

econd, we propose the IMML algorithm and employ it to ex-

ract the manifold embedded in the high-dimensional phase space.

hird, we use the underlying manifold to detect early warning

anges for critical transitions in markets. In addition to the crisis

iagnosis, we implement market prognosis from the perspective of

he inherent geometric properties in the manifold. 

This study is organized as follows. Section 2 reviews related

heory and methods. Section 3 describes our manifold learning

ethod. Section 4 reports the experimental study. Section 5 con-

ludes the paper. 

. Preliminaries 

.1. Phase Space Reconstruction 

The theoretical basis of PSR originates in Takens’ embedding

heorem ( Takens, 1981 , chap. 21). The theorem shows that com-

lete information about the hidden state of dynamic systems can

e preserved in observed time series data. The phase space is a

ime-delay reconstruction using time-delayed versions of a time

eries as coordinates for the space. Specifically, given a time se-

ies x = x n , n = 1 , . . . , N, a reconstructed phase space matrix X of

imension m and time lag τ is defined by its row vectors: 

 = [ x n −(m −1) τ , . . . , x n −τ , x n ] , (1)

here n = (1 + (m − 1) τ ) · · · N and a row vector x n is a point in

he reconstructed phase space. 

A proper time lag can reduce the required RPS dimension. A

ommon heuristic for selecting time lag is to use the first mini-

um of the automutual information function ( Richard et al., 2004 ).

he automutual information function is defined as 

 n ( X 0 , X 1 , . . . , X n ) = 

∑ 

j 

(H( x j ) − H( X 0 , X 1 , . . . , X n )) , (2)

here H( x j ) is the entropy and H( X 0 , X 1 , . . . , X n ) is the joint en-

ropy of the time series data points. τ is at the first local minimum

f mutual information. 

Embedding dimension m is another vital parameter for PSR,

hich is not previously known. Many methods seek to deter-

ine the dimension parameter, including the global false nearest-

eighbor technique and the Cao method ( Cao, 1997 ). We adopt

he Cao method for its robust handling of noise and because it

resents no need to set threshold values manually. The related pro-

ess of calculating m is as follows ( Cao, 1997 ): 

 i (m ) = ( x i , x i + τ , . . . , x i +(m −1) τ ) , i = 1 , 2 , . . . , N − (m − 1) τ, 

(3) 

here m is the embedding dimension, τ is the time lag, and Y i (m )

enotes the i th reconstruction vector with embedding dimension
 . Moreover, let 

 (i, m ) = 

∥∥Y i (m + 1) − Y n (i,m ) (m + 1) 
∥∥∥∥Y i ( m ) − Y n (i,m ) (m ) 

∥∥ i = 1 , 2 , . . . , N − mτ, 

(4) 

here ‖ Y k (m ) − Y l (m ) ‖ = max 
0 ≤ j≤m −1 

| x k + jτ − x l+ jτ | and a (i, m ) (1 ≤
 (i, m ) ≤ N − mτ ) is an integer such that Y n (i,m ) (m ) is the nearest

eighbor of Y i (m ) in the m -dimensional reconstructed phase space.

.2. Manifold Learning 

A manifold can be viewed as a nonlinear object that is locally

inear ( Jamshidi, Kirby, & Broomhead, 2011 ). For high-dimensional

eal world data, a perceptually meaningful structure has few de-

rees of freedom. In other words, high-dimensional data points can

e mapped into a surrogate low-dimensional space ( Seung & Lee,

0 0 0 ). Hence, it is possible to construct a mapping that obeys spe-

ific properties of the manifold and obtains low-dimensional rep-

esentation of high-dimensional data while preserving the intrinsic

tructure underlying the data ( Lin & Zha, 2008 ). 

Of the many manifold learning methods, ISOMAP and LLE are

he earliest. The key idea of the ISOMAP algorithm is to maintain

eodesic distance among points on the manifold and embedded

ata into low-dimensional space through multidimensional scaling.

LE calculates the reconstruction weights of each point and mini-

izes embedding cost by solving an eigenvalue problem to pre-

erve the proximity relationship among data. LTSA constructs local

inear approximations of the manifold by using a collection of over-

apping approximate tangent spaces at each data point and aligns

hese tangent spaces to obtain a global parameterization of the

anifold ( Zhang & Zha, 2004 ). LTSA maps the high-dimensional

ata points on a manifold to points in a lower-dimension Euclidean

pace. This mapping is isometric if the manifold is isometric to its

arameter space. Local Multidimensional Scaling (LMDS) is a data

mbedding method based on the alignment of overlapping locally

caled patches, and its inputs are local distances ( Yang, 2008 ). A

ubset of overlapping patches is chosen by a greedy approximation

lgorithm of minimum set cover. The patches are aligned to derive

lobal coordinates and minimize a residual measure. LMDS is lo-

ally isometric and scales with the number of patches rather than

he number of data points. LMDS produces less deformed embed-

ing results than LLE. Also a common nonlinear method for dimen-

ion reduction, Kernel Principal Component Analysis (KPCA) is a

ernel extension of PCA and a special manifold learning algorithm.

PCA conducts traditional PCA in a kernel feature space, which is

onlinearly related to the input space ( Jenssen, 2010 ). 

These manifold learning algorithms use a geodesic distance

etric or weight measurement to calculate similarities among data

oints. In financial practice, considering only the geometric struc-

ure of a data space disguises essential characteristics of the data

nd destroys the proximity relations (topology) of the original data

pace. 

.3. Information distance metric 

The theoretical basis of information distance originates in Shan-

on information theory and Kolmogorov complexity theory. It is

ramed as the universal cognitive similarity distance that measures

he essential relationship between things ( Kolmogorov, 1965 ). Ow-

ng to its parameter-free, feature-free, and alignment-free charac-

eristics, it can be used to manage unstructured and incompre-

ensible data. The information distance metric ( Bennett, Gács, Li,

itányi, & Zurek, 1998 ) is the Riemannian metric between PDFs p 
1 
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and p 2 . Various pseudo-metrics approximate the information dis-

tance, including Kullback–Leibler (KL) divergence, mutual informa-

tion, and Fisher information distance. In fact, the mutual informa-

tion between two random variables is equal to the KL divergence

( Holger & Sławomir, 2006 ). Moreover, because the pair of densi-

ties approaches each other, the KL divergence is an optimum ap-

proximation of the Fisher information distance ( Carter et al., 2011 ).

Hence, we adopted the KL divergence to estimate the information

distance between financial system state points. 

The KL divergence between two probability mass functions oc-

curs naturally in information theory, statistics, and physics ( Holger

& Sławomir, 2006 ). The definition of the KL divergence, or rela-

tive entropy, can be generalized to non-negative vectors (discrete

measures) as follows: for any two vectors u ≥ 0 with ‖ u ‖ 1 = 1 and

v ≥ 0 , v � = 0 , the KL divergence between u and v is given by 

D (u | v ) = 

K ∑ 

l=1 

u l log 
u l 

v l 
. (5)

In this correspondence, u ≥ 0 and v ≥ 0 are either both positive

vectors or u l = 0 if v l = 0 . In that case the lth addend is 0. KL di-

vergence is important in information theory, where it is commonly

called the relative entropy of one PDF to another. 

3. Manifold learning for financial dynamic system 

This section extracts the underlying manifold in dynamic finan-

cial systems. First, via PSR, we reconstruct the observed financial

time series as a high-dimensional phase space. Second, we pro-

pose our IMML algorithm, which we use to extract the manifold

embedded in the reconstructed phase space. 

3.1. Phase Space Reconstruction from financial time series 

As discussed in Section 2.1 , time lag τ is calculated using the

first minimum of the automutual information function. The recon-

structed phase space dimension m is calculated by the Cao method.

Through PSR, financial time series can be reconstructed as

phase point vectors { X m 

i 
} after determining the embedding dimen-

sion ( m ) and time lag ( τ ). These vectors form an n × m matrix in

the phase space as follows: ⎡ 

⎢ ⎣ 

X 

m 

1 

X 

m 

2 

· · ·
X 

m 

n 

⎤ 

⎥ ⎦ 

T 

= 

⎡ 

⎢ ⎣ 

x 1 x 2 · · · x m 

x 2 x 3 · · · x m +1 

· · · · · · · · · · · ·
x n x n +1 · · · x N 

⎤ 

⎥ ⎦ 

T 

= 

⎡ 

⎢ ⎣ 

P S 1 x 

P S 2 x 

· · ·
P S m 

x 

⎤ 

⎥ ⎦ 

. (6)

In ( 7 ), aligning the vectors { X m 

i 
| i = 1 , 2 , . . . , n } in order of

time produces m vectors P S 
j 
x ∈ R n , j = 1 , 2 , . . . , m , whose element

indices correspond to time. The time series vectors { P S j x | j =
1 , 2 , . . . , m } can be considered m -dimensional signals and are de-

noted by P S m 

x (t) for convenience. 

According to Takens’ theorem, the reconstructed phase space

of a dynamic system can be mapped one-to-one into a low-

dimensional attractor from the system state space ( Richard et al.,

2004 ), which preserves the dynamic properties of the system.

Thus, the above reconstructed phase space R m would converge to a

d-dimensional attractor S by the linear map F : R m → R d , in which

F is an isometric map preserving the distances between points in

the dynamic system. Whitney (1936) shows that an attractor of

a dynamic system will be embedded in a manifold. We discover

the attractor manifold of the financial dynamic system through

manifold learning. Classical manifold learning methods obtain the

attractor manifolds by preserving the geodesic distances between

points in the state space. In financial practice, data points lie in a
robabilistic space; the Euclidean distance metric is not appropri-

ted ( De Angelis & Dias, 2014 ). Thus, we propose an information-

etric based manifold learning method to extract the attractor

anifold embedded in the reconstructed phase space. 

.2. Information-metric based manifold learning algorithm (IMML) 

.2.1. State space modeling 

Through PSR, we obtain n reconstructed vectors

(X 
1 
, X 

2 
, . . . , X n ) . Each X i has m embedding dimensions

(X 1 
i 
, X 2 

i 
, ..., X m 

i 
) . Each vector X i is a dataset consisting of m -

imensional vectors, which is X i = (X 1 
i 
, X 2 

i 
, ..., X m 

i 
) . Assume each

ata set X i has an underlying probability distribution function p i 
etermined by m -dimensional vector components and the param-

ters are unknown. Then we can obtain a collection of Probability

ensity Functions P = { p 1 , ..., p n } , which lie on manifold S. Each

lement in manifold S is a probability distribution ( p i ). We try to

xtract S in the space of probability densities using the available

nformation in P ; i.e., to find an embedding map F : p(x ) → y ,

here y ∈ R d , d < m . Unlike the traditional manifold learning

lgorithm in Euclidean space, our proposed algorithm discovers

ow-dimensional embedding in the density space (i.e., a manifold

f probability distributions). 

.2.2. Information distance metric for financial data points 

To obtain the low-dimensional embedding from the high-

imensional datasets, pair wise sample distance, which mea-

ures the informational change between data points, should be

aintained. There is a corresponding KL divergence KL (P, Q ) be-

ween any two probability distributions P and Q , where KL (P, Q ) =
[ log f (x ) 

g(x ) 
] = 

´
f (x ) log f (x ) 

g(x ) 
dx and P and Q are described by den-

ity functions f (x ) and g(x ) , respectively. Divergence is an approx-

mate distance function that meets the non-negative distance def-

nition but does not satisfy symmetry. Since KL divergence is rela-

ive Rényi entropy, Rényi quadratic entropy ( Jenssen, 2010 ) is given

y h (p) = − log 
´

p 2 (x ) dx, where p(x ) is the Probability Density

unction generating the dataset or sample X = x 1 , x 2 , . . . , x n . For

 vectors, each vector has m vector components, and the following

nformation metric model can be formulated. 

Suppose P i = (p 1 
i 
, p 2 

i 
, ..., p m 

i 
) , (i = 1 , 2 , .., n ) is the probability

istribution vector of the i th vector. 

p j 
i 
≥ 0 , 

m ∑ 

j=1 

p j 
i 
= 1 , (i = 1 , 2 , ..., n ) (7)

The information distance between any two vectors is 

 ( P i , P j ) = 

m ∑ 

t=1 

p t i log 
p t 

i 

p t 
j 

. (8)

Since h ( P i , P j ) � = h ( P j , P i ) , the cross entropy does not satisfy

ymmetry and can be transformed using the following formula: 

et h ( P i , P j ) = h ( P i , P j ) + h ( P j , P i ) = 

m ∑ 

t=1 

p t i log 
p t 

i 

p t 
j 

+ 

m ∑ 

t=1 

p t j log 
p t 

j 

p t 
i 

= 

m ∑ 

t=1 

p t i log p t i + 

m ∑ 

t=1 

p t j log p t j −
m ∑ 

t=1 

p t i log p t j −
m ∑ 

t=1 

p t j log p t i (9)

p i and p j can be obtained by kernel density estimators. A

ernel density estimator is a nonparametric PDF model that

onsists in a linear combination of kernel functions centered

pon the data ( Leiva-Murillo & Artés-Rodríguez, 2012 ). Given

y 
∧ 

p(x ) ∞ 

1 
N 

∑ N 
i =1 k (x − x i , σ ) , wher e x ∈ R D and k (x − x i , σ ) =

xp ( −‖ x − x i ‖ 2 / σ 2 ) , k (x − x i , σ ) is the kernel function with a given

andwidth σ . 
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Table 1 

Manifold learning for a financial dynamic system. 

Input: Financial Time Series Data X n ×1 

Output: low-dimensional coordinates Y . 

Procedure: 

1. Financial time series data X n ×1 are reconstructed into an m -dimensional phase space X ′ n ×m . 

(Time lag τ is obtained by automutual information, and initial embedding dimension m results from Cao method.) 

2. Extract the Attractor Manifold via IMML 

(1) Compute information distance metric h i j by ( 10 ) and obtain the relationship matrix H . 

(2) Compute the smallest d (d << m ) non-zero Eigenvalue of matrix (I − H) (I − H) T and the corresponding Eigenvectors Y by ( 12 ). 

3
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Fig. 1. Simulation stock market. 
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.2.3. Low-embedding manifold of financial dynamic system 

In the classical LLE method, the local linear structure between

eighbors remains unchanged even after dimensionality reduction.

or financial time series data points, the concept and scope of

eighbors would be extended. Unlike image data sets, the adja-

ency relationships of financial data points do not entirely de-

end on the geometric relationships of data points. We assume

very data point and its neighbors are located on the same lin-

ar manifold. When reproducing a low-dimensional manifold, the

orresponding data points in the intrinsic low-dimensional space

aintain the same global neighbor relationship. To obtain the low-

imensional representation of datasets, our algorithm constructs

n extended local linear structure while retaining the global topo-

ogical characteristics in the inherent low-dimensional manifold. As

entioned, the relationship metric h i j = h ( P i , P j ) reflects the es-

ential relationships between vectors in the financial time series.

herefore, we can obtain the global relationship metric matrix H =
 

 

 

h 11 h 12 ... h 1 n 
... ... ... ... 

h i 1 h i 2 ... h in 
h n 1 h n 2 ... h nn 

⎞ 

⎟ ⎠ 

, which is the reconstruction weight ma-

rix and may be mapped to the low-dimensional embedding man-

fold. Similar to the LLE method, we obtain the low-dimensional

mbedding by solving the following optimization problem: 

in �(Y ) = 

n ∑ 

i =1 

∥∥∥∥∥Y i −
n ∑ 

j=1 

h i j Y j 

∥∥∥∥∥
2 

. (10)

The low-dimensional embedding Y reflects the corresponding 

econstruction weight relationship of the sample points in the

igh-dimensional input space. To eliminate the coordinate transla-

ion, rotation, and scaling factors of the low-dimensional embed-

ing, we add two constraints: 
∑ n 

i =1 Y i = 0 and 

1 
n −1 

∑ n 
i =1 Y i Y 

T 
i 

= I ,

here I is the identity matrix. Furthermore, ( 11 ) can be written

s 

(Y ) = 

n ∑ 

i =1 

∥∥∥∥∥Y i −
n ∑ 

j=1 

h i j Y j 

∥∥∥∥∥
2 

= 

∥∥(I − H) 
T 
Y T 

∥∥2 = tr(Y M Y T ) , (11)

here M = ( I − H ) T ( I − H ) is the n × n matrix. To minimize the

ost function, low-dimensional embedding Y should be taken

s the corresponding eigenvectors v 1 , . . . , v d to the bottom d

onzero eigenvalue of the matrix M, i.e., Y = [ v 1 , . . . , v d ] . We

dopt the Renyi information dimension ( Renyi, 1959 ) to determine

he intrinsic dimension d. Information dimension D was defined

s follows: 

 = − lim 

ε→ 0 

N ∑ 

i =1 

P i log P i 

log ε 
(12) 

here P i denotes the probability of a point falling into the i th

nit; here it denotes the probability distribution of the i th vector

btained above. ε is the standard body, and N is the number of

oints. Thus, we can obtain the intrinsic dimension by information

imension d . 
The proposed manifold learning-based method for a financial

ynamic system is summarized as Table 1. 

. Experiments 

This section applies our proposed methodology to the early

arning for critical transitions in financial markets. Our empirical

tudies would be conducted on artificial and real datasets, respec-

ively. 

.1. Data descriptions 

.1.1. Artificial time series generated by Monte Carlo simulation 

Considering the features of market motion, we employ a Monte

arlo simulation of Stochastic Differential Equations to model stock

arkets and generate the time series. The simulation market

odel is: 

 X t = μX t dt + D ( X t ) σd W t , (13) 

here X t is a state vector of market motion process variables to

imulate, μ is a diagonal matrix of expected index returns, D is a

iagonal matrix with X t along the diagonal, σ is a diagonal matrix

f standard deviations of index returns, and W t is a Wiener process

ector. The initial values of parameters are { μ = 0 . 25 , σ = 0 . 2 } ,
imulating 250 trading days. Results are shown in Fig. 1 . Tradition-

lly, conditional variance is often used as an early warning indica-

or in financial time series. Previous studies show that the condi-

ional variance generally exhibits violent oscillations prior to crit-

cal transitions in a system ( Brock & Carpenter, 2012 ). Using non-

arametric regression, the values of conditional variance would be

btained as also shown in Fig. 1. 
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Fig. 2. Simulation stock market with random noises. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

PM values in Fig. 4. 

Time series IMML LTSA LMDS ISOMAP LLE KPCA 

Simulation data 0.0053 0.0079 0.0086 0.0085 0.0091 0.0083 

CSI800 0.0015 0.0058 0.0057 0.0137 0.0396 0.0072 

S&P500 0.0037 0.0066 0.0061 0.0118 0.0104 0.0085 
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In the period spanning 0.6–0.9, the oscillation in conditional

variance intensifies, indicating the market is approaching a tran-

sition point ( Brock & Carpenter, 2012 ). A crisis warning is issued

during this period. 

In practice, however, financial markets are disturbed by indis-

criminate noise, so that the market index deviates from its real

state. Therefore, the simulation should consider noise disturbance.

The multiple random noises would be added to the original time

series. Results appear in Fig. 2. 

As Fig. 2 reveals, noise disturbance renders the original time

series unable to reflect the market’s actual situation. Moreover, the

corresponding conditional variance has lost its early warning effect

( Faranda, Emanuele Pons, Giachino, Vaienti, & Dubrulle, 2015 ). The

artificial time series with random noise would be selected in our

experiments. 

4.1.2. Real datasets 

We selected the daily closing prices of CSI 800 and the S&P 500

Index during the period 2005–2015 selected as experimental time

series data. The CSI 800 index describes the overall trend of the

China A-share market. It offers an overview and running status of

price changes in China’s securities market. The S&P 500 is a com-

monly followed US equity index based on the market capitaliza-

tions of 500 large companies. It is recognized as one of the best

representations of the U.S. stock market and an indicator for the

U.S. economy. 

4.2. Experimental design 

The experiments were conducted as follows: 

(1) Phase Space Reconstruction. Using PSR, we constructed the

high-dimensional dynamic systems from one-dimensional

time series. 

(2) Manifold Learning of Financial Dynamic System. Using our

proposed IMML method, we discovered the intrinsic attrac-

tor manifolds from the reconstructed high-dimensional dy-

namic flows obtained in step 1. 

(3) Early Warning for Critical Transitions in Financial Markets.

We adopted the Hidden Markov Model (HMM) on the at-

tractor manifolds to detect early warning signals for critical
market transitions. i  
In addition, in the empirical study of real datasets, we further

erived differential curvatures for the underlying manifold to diag-

ose the prognosis for a market crisis. The perspective on intrinsic

eometric properties in the dataset provides a new tool for diag-

osing the robustness of financial markets. 

.3. PSR from financial time series 

Let { x t } t=1 , 2 , ... ,n be the observed time series. Per Takens’ the-

rem, we can reconstruct the vector time series { x t } t=1 , 2 , ... ,n of n

oints with X t = ( x t , x t−1 , x t−2 , ... , x t−(m −1) τ ) . We adopt the mu-

ual information method and the Cao method to estimate the time

ag τ and initial dimension m , respectively. When m and τ are

ppropriate, the evolution of X t is topologically equivalent to the

nderlying dynamic flow. In this experiment, the initial parame-

ers of artificial datasets are { m = 8 , τ = 3 } ; the two real datasets

re { m CSI800 = 10 , τ = 15 } and { m S& P500 = 8 , τ = 23 } , respectively.

alculation results appear in Fig. 3: 

I(τ ) describe how the information content of a signal decreases

ver prediction range τ . Escalating information loss is related to

eclining predictability and rising complexity of the signal. The

inimum value of I(τ ) indicates the maximum likelihood of no

orrelation between x i and x i + τ . Thus, we use the first minimum

f I(τ ) as the optimal time lag. Cao defined the evaluation func-

ion E1(d) to determine the embedding dimension d, in which the

est estimate corresponds to the first minimum of E1(d) . 

Through the auto-mutual information function and Cao’s

ethod, we obtain the original dynamic system. However, the dy-

amic nature of the original system is usually corrupted by irrele-

ant components that can disturb useful intrinsic features. There-

ore, we propose our IMML to extract the inherent structure em-

edded in the original dynamic system, which provides data sup-

orting the subsequent early warning analysis. 

.4. Manifold learning for financial dynamic system 

The high-dimensional phase spaces have been obtained in

ection 4.3 . Therefore, we use our IMML algorithm to extract the

nderlying manifold S from the high-dimensional dynamic data

nd to discover the intrinsic structure of the dynamic system. To

valuate the performance of our proposed algorithm, we compare

he IMML algorithm with classic and contemporary manifold learn-

ng algorithms such as ISOMAP, LLE, KPCA, LMDS, and LTSA. Ex-

erimental results appear in Fig. 4 . We adopt the Procrustes Mea-

ure (PM) to quantify the resulting low-dimensional embedding.

M is a quantitative indicator for nonlinear measurement of good-

ess that analyses the shape distribution of a data set by statisti-

al analysis. Smaller PM values indicate more accurate embedding

 Seber, 2004 ). MATLAB provides a PM function to compute the cor-

esponding PM values. Evaluation results by PM are in Table 2. 

As Table 2 reveals, the IMML method achieves the best re-

ults on the three time series datasets. Since the financial practi-

ioners are constrained to probability distributions, IMML exhibits

uch stronger performance in deciphering practical financial data

han the simulation data. The five comparative analysis algorithms

se Euclidean distances between sample points to conduct the

imensionality reduction algorithm; however, their performance

s unsatisfactory for financial practice, despite their soundness in
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Fig. 3. Respective results from mutual information and the Cao method. 
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ther fields. Thus, we obtain the accurate low-dimensional repre-

entations S embedded in the high-dimensional financial dynamic

ows. The three low-dimensional representations are the attrac-

or manifolds that determine the trajectories of the correspond-

ng financial system. These provide data support for the following

tudy. 

.5. Early warning for critical transitions in financial markets 

As noted, financial markets have critical points at which a sud-

en shift to a contrasting regime may occur. It is difficult to predict

ritical transitions accurately before their tipping points appear

 Scheffer et al., 2009 ). The likelihood of a transition may gradually

ecome evident as a system approaches the point at which a mi-

or trigger can invoke a self-propagating transition to a contrast-

ng state ( Scheffer et al., 2012 ), such as a “flash crash” ( Andersen

 Bondarenko, 2015 ). Since it is hard to predict the tipping point

nd trigger, the gradually increasing likelihoods of such transitions
ecome the practical focus. Therefore, we need to detect points

hat show a high likelihood of indicating the approach of a transi-

ion. Especially, the ranges composed of dense these points should

eceive close attention. Our detection is implemented on the ob-

ained attractor manifolds. 

.5.1. HMM classifier for critical transitions diagnosis 

We adopt the HMM to detect early warning signals for criti-

al transitions in markets. HMMs are effective statistical models

or describing and analyzing financial time series data ( Maheu &

cCurdy, 2009; Rydén, Terasvirta, & Asbrink, 1998 ). Given an ob-

erved time series X = { x 1 , . . . , x T } , the hidden states of the se-

uence are denoted as S = { s 1 , s 2 , . . . , s M 

} where M is the num-

er of hidden states and N in the observation signals for each

tate denoted as V = { V 1 , V 2 , . . . , V N . } . Therefore, an HMM can be

riefly defined as λ = (π, A, B ) and has the following components

 Rabiner, 1989 ): 
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(1) Initial state probability distribution π defined as π = { πi }
where 

πi = P [ s l = i ] , 1 ≤ i ≤ M (14)

(2) State transition matrix A defined as A = { a i j } , 1 ≤ i, j ≤ M,

where 

a i j = P [ x t+1 = s j | x t = s i ] (15)

a i j represents the probability of the transition for state s i at

time t to state s j at time t + 1. 

(3) Observation probability distribution B , (i.e., emission prob-

ability) defined as B = { b i (k ) } , 1 ≤ i ≤ M, 1 ≤ k ≤ N where

b i (k ) = P [ v k | s t = i ] is the probability of observing v k at state

s i at time t . 

The specific steps of detection are as follows. 
Fig. 4. Manifold learning of fin
(1) The first step is to estimate the initial state probability

distribution π . Here, Gaussian Mixture Models (GMMs)

( Figueiredo & Jain, 2002 ) expose the probability distribution

for each point on the manifold. A GMM is defined as 

p(x ) = 

L ∑ 

i =1 

w i p i (x ) = 

L ∑ 

i =1 

w i N 

( 

x ;μi 

∑ 

i 

) 

, (16)

where L is the number of mixtures, N(x ;μi , �i ) is a nor-

mal distribution with mean μi and covariance matrix �i ,

and w i is the mixture weight with the constraint 
∑ 

w i = 1 .

Parameters for the GMM are estimated by the well-known

expectation–maximization algorithm ( Moon, 1996 ). This iter-

ative method yields a maximum likelihood estimate via the
ancial dynamic system. 
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Fig. 4. Continued 

Fig. 5. Initial probability distributions by GMMs. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

4

 

i  

3  

p  

b  

5  

7  

p  

t

 

T  

s

a  

s  

w  

t  

d  

p  

f  

m

 

w  

p  

g  

i

estimation formulae: 

μ′ 
i = 

∑ n 
t=1 p i ( x t ) x t ∑ n 

t=1 p i ( x t ) 
, 

′ ∑ 

i 

= 

∑ n 
t=1 p i ( x t ) ( x t − μi ) 

T 
( x t − μi ) ∑ n 

t=1 p i ( x t ) 
,

w 

′ 
i = 

∑ n 
t=1 p i ( x t ) ∑ n 

t=1 

∑ L 
i =1 p i ( x t ) 

. (17)

(2) The second step is to construct the state transition matrix

A . We obtain the state transition probability distribution by

the relationship matrix H based on information divergence

in Section 3 . With the relationship matrix H , we have 

a i j = P 
[
x t+1 = s j | x t = s i 

]
= 

P ( x t+1 , x t ) 

P ( x t ) 
= 

h 

(
P j , P i 

)
h ( P i ) 

= 

h i j 

h ii 

. 

(18) 

(3) The third step is posterior inference by emission probability.

The posterior probability P (S| x (t)) for each class S: is 

P ( S| x ( t ) ) = 

S c ∑ 

c=1 

P S c ( t ) ∑ S 
S ′ =1 

∑ S c ′ 
c ′ =1 

P S 
′ 

c ′ ( t ) 
, (19) 

where P S c (1) = π S 
c b 

S 
c ( x (1) ) , P S c (t) = 

∑ S c 
c=1 

P S 
c ′ ( t − 1 ) a c c ′ ,

b S c ( x ( t) ) ( 1 ≤ t ≤ T ) , and b S c ( x ( t) ) can be derived by

expectation–maximization algorithm. The classification of 

each point would be identified by the highest posterior
probability. 
.5.2. Detection results 

We assume that observation sequences are independent and

dentically distributed random variables. Thus, according to the

 σ criterion of the central limit theorem, the effect-thresholds for

osterior probabilities, namely three early warning states, would

e defined as follows: the blue warning state (S1) indicates a

0% ∼ 70 % probability of crisis , a yellow warning state (S2) a

0% ∼ 90% probability, and a red warning state (S3) a 90% ∼ 100%

robability. Red warning ranges warrant special attention because

hey indicate “in crisis or on the verge of crisis.”

Through GMM, the initial state distributions appear in Fig. 5 .

rajectory densities of the data points would be built in the recon-

tructed phase spaces. 

Fig. 5 shows two initial states, respectively defined as “normal”

nd “crisis.” For each data point, the greater the risk, the closer the

tate approaches red. For the market simulation, the number of red

arning data points exceeds the number of blue points, indicating

hat the market is at high risk during this period; for the two real

atasets, we can roughly see that the number of red warning data

oints for CSI800 exceeds that for the S&P500. Accordingly, we in-

er that there was much more risk in the Chinese than in the U.S.

arket during the past few years. 

As mentioned in Section 4.5.1 , the state transition probability

ould be obtained by the relationship matrix H in Section 3 . The

osterior probabilities for each class would be estimated by EM al-

orithm. According to the highest posterior probability, the warn-

ng states for the data points are determined as shown in Fig. 6. 
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Fig. 6. Early warning signals for critical transitions in financial markets. (For interpretation of the references to color in this figure, the reader is referred to the web version 

of this article.) 
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As Fig. 6 (a) shows, during the simulated trading days the stock

market is threatened by growing crises. Red warning points are

concentrated at [0.1, 0.3] and [0.6, 0.9]. Especially in [0.6, 0.9],

nearly all warning points are red, indicating the stock market has

suffered a crisis. Com pared with Fig. 1 , our method generates early

warning signals consistent with the market’s actual situation as re-

flected by the original data. In addition, our method provides more
etailed warning information. Therefore, our method provides re-

iable early warnings when serious noise disturbances prevent tra-

itional indicators from doing so. 

As shown in Fig. 6 (b), the warning states indicated by the data

oints gradually changed from blue to red in 20 06–20 08, indi-

ating an approaching crisis. In 2006, China’s stock market index

ose rapidly, reaching an all-time high in 2007, while the yellow
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Fig. 7. Manifold surface and curvature. 
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arning signals reveal the crisis contained within that prosperity.

ffected by the US financial crisis, many Chinese enterprises closed

r collapsed in 2008, and investors suffered heavy losses. Since

011 the blue warning states have gradually diminished, yellow

arning states have gradually increased and red warning states

ave begun to appear, indicating China faces a financial crisis. In

014 and especially in 2015, a large number of red warning states

ppeared, showing China on the verge of crisis or having entered

 crisis. 

As Fig. 6 (c) shows, the red early warning ranges are mainly con-

entrated between 20 07 and 20 09. The global financial crisis start-

ng in 2007 began with an initially well-defined flashpoint focused

n mortgage-backed securities and cascaded into a global eco-

omic collapse, the increasing severity and uncertain duration of

hich generated massive losses and damage for billions of people

 Sornette & Woodard, 2010 , chap. 6). Its outbreak came as a blow

ith a long-term build-up during the economic bubble. In the U.S.

etween 2005 and 2006, rapid expansion of the real estate bubble

ed to an accompanying bubble of subprime mortgage-backed se-

urities and complex packages of associated financial derivatives

 Yuliya & Iftekhar, 2010 ). These spilled over into the stock mar-

et, and the bubble appeared as super-exponential growth. At that

ime, the financial crisis could have been triggered at any moment.

ur method detects numerous yellow warning data points during

he period. 

Investors would not need early warnings as soon as the bubble

conomy appeared, for the bubble was inevitable. Nor would they

eed them at the moment of critical transition, as whatever trig-

ers the crisis would be unpredictable. However, when the prob-

bility of the crisis breaking out has accumulated to a discernible

xtent, there is a need to warn investors, to give them time to pre-

are for its arrival. Our method provides an effective early warning

ignal for that purpose. 

All of the results above constitute a crisis diagnosis obtained by

ur method. As shown in Fig. 6 (b), red or yellow warning ranges

ppear during 2014–2016. In the face of high risk, our method sig-

als an approaching systemic financial crisis, especially for China. 
.6. Crisis prognosis 

Our IMML algorithm detects informational geometric structures

n the reconstructed phase space of the financial time series, as

hown in Fig. 7 (a) and (b). In differential geometry, mean curva-

ure represents the degree of a curved surface, its intrinsic prop-

rty. According to the differential manifold definition, a manifold

s a generalization of the Euclidean space; every local manifold

an be seen as Euclidean space, and the various local manifolds

re “bonded” properly. Therefore, we can calculate the mean cur-

ature of the minimal surface of each point; then, through the

ntegral method, all mean curvatures of the minimal surface can

e bonded to obtain the total curvature of the surface. Let c rep-

esent the mean curvature of the minimal surface and C the to-

al curvature. Then C = 

‚
	 cdσ , where dσ is the minimal surface

nd 	 the observed surface. In our experiment, for the two man-

fold surfaces, C CSI 800 = 6 . 7175 > C S& P500 = 2 . 9954 . The significance

f the curvature is shown in Fig. 7 (c) and (d). 

According to Fig. 7 , the curvature of the manifold surface for

SI800 is higher than for the S&P500. As seen in Fig. 7 (c) and (d),

hen a small ball falls on a “high curvature” or “low curvature”

urface, the same force is applied to the ball on the different sur-

aces. The ball that falls on the high-curvature surface will have

ifficulty falling to another place, whereas the ball on the low-

urvature surface can easily fall elsewhere. In other words, the ball

n the high-curvature surface is less susceptible to external distur-

ance and alterations in its state. Thus, we can say, to some extent,

he robustness and resistance to disturbance of the Chinese market

re higher than those of the U.S. market. 

CSI800 reflects the overall situation of the Chinese stock mar-

et, which offers a glimpse into the Chinese economy. Examining

his more closely reveals, first, that the Chinese government has

trong macroeconomic regulations and market control. Macroeco-

omic policies are a prerequisite for financial stability ( Schaller &

an Norden, 1997 ); therefore, they subjectively enhance the re-

ilience of the economic system and improve the curvature of its

ntrinsic manifold. Second, through reform and the opening up of
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the system, especially after the 2008 financial crisis, the Chinese

government has vigorously adjusted and optimized the economic

structure. Its actions make the system more reasonable and objec-

tively increase its capacity to handle external disturbances and ac-

cept risks. 

July 2015 brought great volatility to China’s stock market. Al-

though its fluctuations greatly affected Chinese financial markets

and investors, their impact was far from resembling a systemic fi-

nancial crisis ( Sevim, Oztekin, Bali, Gumus, & Guresen, 2014 ). The

Chinese government has acted to deter financial crimes and cor-

ruption and to rectify and standardize market order. These actions

purify the market environment. With continuous improvement in

the macro environment, China’s stock market has gradually stabi-

lized since September 2015 even though short-term high volatility

has appeared because of the circuit breaker mechanism in January

2016. Therefore, since the Chinese economy is characterized by

strong macroeconomic regulations despite its high financial risks,

the Chinese government can find a way to release its potential,

and the country’s long-term economic expectations encourage con-

fidence. 

No matter the outcome, the early warning signal remains an

important decision tool for investors, one that would help avoid

crises or limit their negative effects ( Lang & Schmidt, 2016; Kou &

Lin, 2014; Kou & Ergu, 2014 ). 

5. Conclusion 

This study has proposed an information metric-based mani-

fold learning (IMML) algorithm to discover the attractor manifold

of a dynamic financial system. In contrast to traditional manifold

learning methods, IMML employs its information metric to mea-

sure relationships between financial vectors in the reconstructed

phase space and yields a reasonable and accurate low-dimensional

embedding manifold. Our method identifies the periods indicat-

ing critical market transitions and provides reliable early warnings

for practitioners. We further deduce the differential curvature of

the financial system through the attractor manifold and find that

China’s financial system is highly resilient. In the future, we will

extend this analysis to other fields, such as mechanical engineer-

ing and biometrics, and investigate a more flexible algorithm to

discover underlying manifold structures. 
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