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The stimulant drug methylphenidate (MPH) and the non-stimulant drug atomoxetine (ATX) are both widely
used for the treatment of attention deficit/hyperactivity disorder (ADHD), but their differential effects on
human brain function are poorly understood. PET and blood oxygen level dependent (BOLD) fMRI have
been used to study the effects of MPH and BOLD fMRI is beginning to be used to delineate the effects of
MPH and ATX in the context of cognitive tasks. The BOLD signal is a proxy for neuronal activity and is depen-
dent on three physiological parameters: regional cerebral blood flow (rCBF), cerebral metabolic rate of oxy-
gen and cerebral blood volume. To identify areas sensitive to MPH and ATX and assist interpretation of BOLD
studies in healthy volunteers and ADHD patients, it is therefore of interest to characterize the effects of these
drugs on rCBF. In this study, we used arterial spin labeling (ASL) MRI to measure rCBF non-invasively in
healthy volunteers after administration of MPH, ATX or placebo. We employed multi-class pattern recogni-
tion (PR) to discriminate the neuronal effects of the drugs, which accurately discriminated all drug conditions
from one another and provided activity patterns that precisely localized discriminating brain regions. We
showed common and differential effects in cortical and subcortical brain regions. The clearest differential ef-
fects were observed in four regions: (i) in the caudate body where MPH but not ATX increased rCBF, (ii) in
the midbrain/substantia nigra and (iii) thalamus where MPH increased and ATX decreased rCBF plus (iv) a
large region of cerebellar cortex where ATX increased rCBF relative to MPH. Our results demonstrate that
combining ASL and PR yields a sensitive method for detecting the effects of these drugs and provides insights
into the regional distribution of brain networks potentially modulated by these compounds.

© 2012 Elsevier Inc.Open access under CC BY license.
Introduction

Pharmacological agents that increase the extracellular concentra-
tion of the catecholamines noradrenaline (NA) and dopamine (DA)
are commonly prescribed to relieve the symptoms of attention-
deficit hyperactivity disorder (ADHD). Methylphenidate (MPH) is a
stimulant drug that is the treatment of choice in most cases although
the non-stimulant drug atomoxetine (ATX) is also increasingly being
used for ADHD treatment. MPH has a greater clinical efficacy than
ATX (Faraone et al., 2005; Kemner et al., 2005; Michelson et al.,
2001; Newcorn et al., 2008; Spencer et al., 1998; Starr and Kemner,
2005), but ATX offers several advantages over MPH. Most important-
ly, ATX provides an alternative treatment for patients who do not
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respond to stimulants, it has a reduced abuse liability and a reduced
risk of motor side effects (Biederman et al., 2004; Newcorn et al.,
2008). Both drugs exert their primary effects by blocking catechol-
amine reuptake but they differ in that MPH inhibits both DA and NA
transporters (DAT and NAT respectively; Seeman and Madras, 1998;
Han and Gu, 2006) whereas ATX is a selective inhibitor of NAT
(Bolden-Watson and Richelson, 1993; Wong et al., 1982).

To date, the effects of MPH, but not ATX, have been examined
using PET markers of glucose utilization and regional cerebral blood
flow (rCBF). These studies have demonstrated consistent increases
in relative cerebellar activity (Mehta et al., 2000; Udo de Haes et al.,
2007; Volkow et al., 1997) and differential effects on rCBF in the tem-
poral poles (Mehta et al., 2000; Udo de Haes et al., 2007). Udo de Haes
et al. (2007) also showed increased rCBF in the anterior cingulate cor-
tex and supplementary motor area and decreases in the superior tem-
poral gyrus, middle frontal gyrus and inferior parietal cortex while
Mehta et al. (2000) showed decreased rCBF in middle temporal
gyrus, occipital gyrus and the frontal pole. These studies demonstrate
that MPH influences blood flow across widespread brain regions
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which may be due to localized effects of MPH at catecholamine trans-
porter sites or consequent effects on connected brain regions. The rel-
atively small sample sizes of these studies or variations in
administered dose of MPH may have contributed to the differences
in reported findings. The differences may also reflect a limitation of
the univariate analysis approach combined with a fixed significance
threshold, which might control the false positive rate, but is not sen-
sitive to similarities in spatially distributed patterns of activity. There-
fore, the use of a fixed threshold may have contributed to different
features of similar underlying patterns being reported in different
studies. In addition to directly characterizing the consistent spatially
distributed effects of MPH and ATX on rCBF, the use of analysis
methods sensitive to spatially distributed patterns may also be bene-
ficial for discriminating the neuronal effects of MPH, ATX and placebo
(PLC), providing a drug condition prediction for each subject and ses-
sion. In this study, we employed a multi-class pattern recognition
(PR) approach for these purposes that enabled simultaneous discrim-
ination of all three drug conditions from one another and provided a
parsimonious representation of the differential activity patterns for
MPH and ATX (Krishnapuram et al., 2005; Ryali et al., 2010).

In addition to the PET studies noted above, functional neuroimag-
ing has been used to study the effects of MPH and ATX on task net-
works associated with response inhibition (Chamberlain et al.,
2009; Vaidya et al., 1998), error monitoring (Graf et al., 2011; Rubia
et al., 2011), reversal learning (Dodds et al., 2008) and working mem-
ory (Mehta et al., 2000; Schweitzer et al., 2004). In a previous report,
we directly compared the effects of MPH and ATX in the same partic-
ipants included in the present manuscript while they performed a
rewarded working memory task. We reported: (i) that both MPH
and ATX attenuate BOLD activity in working memory networks and
enhance task-related deactivations during rewarded working memo-
ry trials and (ii) that MPH and ATX have opposing effects on activated
and deactivated networks during the delay component of rewarded
trials (Marquand et al., 2011).

While functional imaging with blood oxygen level-dependent
(BOLD) fMRI is appropriate to study relative signal changes between
task conditions, it cannot provide specific information about the
physiological mechanisms that drive the BOLD response. This is im-
portant because changes in local deoxyhaemoglobin concentration
(on which the BOLD signal depends directly) are determined by
changes in rCBF, regional cerebral metabolic rate of oxygen
(rCMRO2) and cerebral blood volume (rCBV). Thus, the magnitude
of the BOLD response in functional imaging studies depends not
only on the baseline changes in rCBF but also other parameters
(Buxton, 2010; Buxton et al., 2004). In contrast, arterial spin labeling
(ASL; Detre et al., 1992; Williams et al., 1992) is an emerging imaging
technique that can measure rCBF quantitatively and non-invasively.
In this study, we aimed to characterize the effects of ATX and MPH
on rCBF using ASL and PR. These results will be useful to assist inter-
pretation of BOLD findings since they define the pattern of regional
rCBF changes produced by MPH and ATX, and to provide insights
into the regional distribution of the brain networks potentially mod-
ulated by these compounds.

Based on earlier neuroimaging studies we hypothesized that we
would be able to accurately discriminate MPH from PLC based on
rCBF changes in a network of regions including the cerebellum and
temporal poles. Additionally, a rodent microdialysis study has shown
differential effects of MPH and ATX on striatal DA levels (Bymaster
et al., 2002), thus we also expected the striatum to be an important
region for discriminating the two compounds. No studies to date
have examined the effects of ATX on brain metabolism or blood flow
but the high density of NAT in the locus coeruleus (LC), thalamus,
hypothalamus, cerebellum, paracentral lobule and supplementary
motor area (Hannestad et al., 2010; Schou et al., 2005; Tejani-Butt,
1992) provides a network of regions thatwe hypothesizedwould con-
tribute to the accurate discrimination of ATX from PLC.
Methods

Participant recruitment and study design

Fifteen healthy, right-handed male participants (aged 20–39)
were recruited by local advertisement and each scanned on three oc-
casions. Exclusion criteria have been described previously (Marquand
et al., 2011), but in brief they included any current illnesses, smoking
>5cigarettes per day, consuming >5cups of coffee per day and any
history of psychiatric, neurological problems or substance abuse in
addition to conventional MRI exclusion criteria. Participants provided
written informed consent and the study was approved by the South
London Research Ethics Committee. Participants were asked to re-
frain from consuming alcohol or caffeine containing products 24 h
prior to dosing and on each scanning day participants were screened
for drugs of abuse and alcohol. Each participant then received an oral
dose of MPH (30 mg), ATX (60 mg), or a PLC according to a random-
ized, double-blind Latin square design. Doses of MPH and ATX were
chosen to approximately match doses commonly used in clinical
practice, and doses reported in the literature (e.g. Gilbert et al.,
2006). Based on existing human catecholamine transporter occupan-
cy studies, we estimated that 30 mg of oral MPH resulted in approxi-
mately 65% DAT occupancy in the striatum and approximately 50%
NAT occupancy in the thalamus (Hannestad et al., 2010; Volkow et
al., 1998). We did not estimate transporter occupancy for ATX as we
are not aware of any studies investigating the relationship between
ATX dose and transporter occupancy in humans.

MRI data acquisition and preprocessing

Scanning was performed on a General Electric Signa HDx 3T scan-
ner and was timed to coincide with the peak plasma concentration for
MPH and ATX (Sauer et al., 2005; Wargin et al., 1983). Between 90
and 135 minutes post-dose, subjects rested quietly in the scanner
while six whole-brain rCBF maps were acquired using a pulsed-
continuous ASL sequence (pCASL; Dai et al., 2008). In this method,
blood from the neck and base of the brain is labeled using a train of
Hanning-shaped radio frequency (RF) pulses of 500 μs duration, and
a time gap of 1000 μs between each Hanning pulse. The total duration
of the pulse train is 1.5 s (s). A sequence of gradient pulses of similar
duration and repetition rate was employed to obtain flow-driven adi-
abatic inversion. The highest gradient amplitude under the Hanning
pulses and the average gradient intensity over the RF train duration,
were 9 mT/m and 1 mT/m, respectively. These values were originally
chosen to ensure that the adiabatic condition for inversion and the
exclusion of the first aliased labeling plane away from the excitation
bandwidth of the Hanning pulse, were both met (Dai et al., 2008).
In the control phase, the sign of alternate Hanning pulses was re-
versed, and the amplitudes of the gradient pulses were adjusted so
that the net RF and gradient amplitudes over the 1.5 s irradiation
were both zero. Thus, the magnetization transfer effect is compensat-
ed while achieving no inversion of arterial spins.

Image acquisition was performed using a 3D interleaved spiral fast
spin echo (FSE) readout (Dai et al., 2008) with parameters: TR=4 s,
TE=32 ms, ETL=64, 8 interleaves, spatial resolution=1×1×3 mm.
Three ‘control-labeled’ pairs were collected to produce the ‘perfusion
weighted’ difference image.

To quantify rCBF using this difference image, the sensitivity of the
acquisition was calibrated to water at each voxel (Alsop and Detre,
1996; Buxton et al., 1998; Williams et al., 1992). This is complicated
by the spatial non-uniform sensitivity of the 8-channel coil employed
for this work. The underlying tissue signal is used as an indicator of
water sensitivity, and a water density in each voxel, or partition coef-
ficient, is assumed. In the original methodology (Dai et al., 2008), it
was observed that the signal intensity in an inversion-prepared
fluid-suppressed image was relatively constant for different tissues.
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This is likely because more complete recovery occurs for shorter T1
tissues, which tend to have lower water density. Using a neighbor-
hood maximum algorithm to avoid regions with partial volume of
suppressed fluid, a low resolution sensitivity map was created. This
map was calibrated for water sensitivity by assuming the tissue was
white matter with a water concentration of 0.735 g/ml (Herscovitch
and Raichle, 1985) and a T1 of 900 ms, and using the equations for in-
version recovery signal attenuation. By assuming that gray matter has
a water concentration of 0.88 g/ml and a T1 of 1150 there was only a
5% calibration difference. This calibration produced a sensitivity map,
C, equal to the fully relaxed MRI signal intensity produced by 1 g of
water per milliliter of brain. With this co-registered sensitivity map
C, we calculated cerebral blood flow (CBF) using the equation:

CBF ¼ ρb Sc−Slð Þ
2αCωaT1a exp − δ

T1a

� �
1− exp − tl

T1a

� �h i

where ρb is 1.05 g/ml (the density of brain tissue; Herscovitch and
Raichle, 1985), α is the labeling efficiency (assumed to be 95% for la-
beling times 75% for background suppression; (Garcia et al., 2005), δ
is 1.5 s (the post labeling delay; Alsop and Detre, 1996) tl is 500 ms
(the labeling duration), T1a is 1.4 ms (the T1 of arterial blood which
was slightly lower than the value of Lu et al. (2004)), ωa is
0.85 g/ml (the density of water in blood; Herscovitch and Raichle,
1985), Sl and Sc are the signal intensities in the labeled and control
images, respectively. As is common in the ASL literature, this equation
assumes that the labeled blood remains in the arterioles and capil-
laries and does not reach the tissue. The CBF quantification process
does not alter the qualitative appearance of the images obtained by
subtracting the label from the control image. The whole ASL pulse se-
quence, including the acquisition of calibration images, was per-
formed in 6:08 min. After the acquisition of the pCASL scans,
subjects performed a rewarded working memory task, which has
been reported separately (Marquand et al., 2011). For each subject,
a high-resolution T2-weighted FSE structural image was also acquired
to assist registration of the pCASL scans to a common reference space
with parameters: TR=4.4 s, TE=65 ms, FA=90°, 36×4 mm thick
oblique axial slices, in-plane resolution=0.46×0.46 mm.

Images were preprocessed using tools from the Statistical Para-
metric Mapping 5 (SPM5; www.fil.ion.ucl.ac.uk) and Functional Soft-
ware Library (FSL; www.fmrib.ox.ac.uk/fsl/) software packages. A
three step procedure was employed to ensure maximally accurate
registration of the pCASL image to a common reference image. First,
extra-cerebral signal from the T2 structural scan was removed using
the brain extraction tool included in FSL (BET; Smith, 2002) and the
skull-stripped T2 image and its corresponding binary mask were co-
registered to each pCASL image using SPM5. Second, the brain mask
derived from the T2 image was applied to each pCASL image and
the resulting skull stripped images were then co-registered back to
the original T2 image (again with SPM5). Finally, the high resolution
T2 image was used to compute SPM5 normalization parameters nec-
essary to warp the image to the T2 MNI template provided with SPM5
and the resulting parameters were applied to the co-registered pCASL
images in addition to the T2 image. Following normalization, each
whole-brain pCASL image was spatially smoothed with an 8 mm iso-
tropic Gaussian kernel and an average image was estimated for each
subject and drug condition based on all scans. Since basal rCBF values
are potentially different between participants, each image was then
mean-centered within participants. In other words, a mean image
was computed for each participant based on all images for that partic-
ipant included in the classification problem and the mean was sub-
tracted voxel-wise from each of the smoothed and averaged pCASL
images. These mean-centered images were then reshaped into vec-
tors and used as input to the classifiers.
Sparse multinomial logistic regression classifiers

Sparse multinomial logistic regression (SMLR; Krishnapuram et
al., 2005; Ryali et al., 2010) is the primary data analysis approach
employed in this study. Like other multivariate PR techniques, SMLR
holds two advantages over conventional mass-univariate techniques:
(i) it is more sensitive for the detection of spatially distributed effects
and (ii) it can make predictions at the level of individual subjects
based on the pattern within the data. Another important feature of
SMLR is that it is inherently formulated on a multi-class basis and
can therefore discriminate between more than two classes simulta-
neously. Thus, it is more appropriate for the three-way classification
problem posed in this study than a binary classification approach. In
contrast, many alternative classification algorithms such as the sup-
port vector machine classifier (SVM; Scholkopf and Smola, 2002)
are fundamentally limited to binary classification and only support
multi-class classification via ad-hoc methods (e.g. decomposing the
classification problem into binary sub-problems). In this study, we
first applied a three-class classifier to discriminate the effect of
MPH, ATX and PLC on rCBF. Then, to further investigate the differen-
tial effects of MPH and ATX, we trained a second binary classifier to
directly discriminate between MPH and ATX.

A primary goal of this application is to find discriminating patterns
of brain regions that permit accurate discrimination of each of the
classes. To characterize these patterns as accurately as possible, it is
important to restrict them to a parsimonious set of brain regions,
which helps to prevent inferring that a brain region is necessary to
discriminate classes when in fact it is not. In other words, we seek a
sparse representation for the discriminating pattern. In a neuroimag-
ing context, there are several approaches to achieve this, but two of
the most common are feature selection approaches such as recursive
feature elimination (RFE; Guyon et al., 2002; Hanson and Halchenko,
2008) and models employing regularization penalties that enforce
sparsity (e.g. Carroll et al., 2009; Ryali et al., 2010; Yamashita et al.,
2008). We adopt the latter approach in this paper, and following
Ryali et al. (2010), we employ the elastic net penalty that combines
an L1 penalty that enforces sparsity over the voxel coefficients with
an L2 penalty that permits correlated voxels to be included. Inclusion
of correlated voxels is important for neuroimaging data because (i)
neuroimaging data are characterized by a high degree of spatial cor-
relation and (ii) the spatial geometry of discriminating clusters is in-
formative about the involvement of the underlying brain regions. In
contrast, models that only employ L1 regularization penalties result
in extremely sparse voxel sets that are not informative about the spa-
tial geometry of discriminating clusters (Yamashita et al., 2008) and
can yield classifiers that generalize poorly (Marquand et al., 2010).
In contrast, for binary classification, SMLR with an elastic net penalty
is known to more accurately identify discriminating voxels relative to
SVM with RFE while producing equivalent classification accuracy
(Ryali et al., 2010).

We provide a brief description of SMLR here and refer the reader
elsewhere for a detailed treatment (Krishnapuram et al., 2005; Ryali
et al., 2010). We denote the training dataset by D={X,Y}, where X
is an n×d matrix with the d-dimensional data vectors (xi) stacked
in rows and Y is an n×m matrix that describes the labels for the m
classes. We adopt a ‘one-of-m’ coding scheme where yij=1 if sample
i belongs to class j and zero otherwise. The starting point for classifi-
cation is a multinomial likelihood function which models the proba-
bility of assigning a data sample to each class using a softmax
transformation. Thus, the probability of data sample xi belonging to
class j is given by:

p yij ¼ 1jxi

� �
¼ πij ¼

exp wT
j xi

� �

∑m
k¼1 exp wT

kxi

� �
:

ð1Þ
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Here, wj denotes a d-dimensional vector of voxel weights predic-
tive of class j and to keep the notation concise, we concatenate the
weight vectors for all classes into a dm-dimensional weight vector
w. This formulation leads to a convenient form for the log-
likelihood of the entire dataset, i.e.:

L wð Þ ¼ log∏
n

i¼1
∏
m

j¼1
π yij
ij ¼

Xn

i¼1

Xm

j¼1

yij logπij

¼
Xn

i¼1

Xm

j¼1

yijw
T
j xi−

Xn

i¼1

log
Xm

j¼1

exp wT
j xi

� �
:

ð2Þ

We then apply the elastic net regularization penalty to Eq. (2)
which enforces sparsity over voxels and helps prevent overfitting by
constraining the magnitude of the weights. Thus, the objective func-
tion we need to maximize is:

J wð Þ ¼ L wð Þ−λ1jjwj 1−λ2j jjwj 2j ð3Þ

where λ1 and λ2 are parameters that respectively control the degree
of L1 and L2 regularization. In this paper, we employ an efficient
component-wise update algorithm to optimize Eq. (3), which has
been described in detail elsewhere (Krishnapuram et al., 2005). We
employed nested cross-validation with a grid search to find optimal
values for the regularization parameters as described in the next sec-
tion. Once the optimal weight vectors have computed, we make pre-
dictions by applying Eq. (1) to the scans derived from the test subject.
This yields a probabilistic prediction for each class, which can be con-
verted to categorical predictions by simply choosing the class having
the highest probability.

Cross-validation

We employed nested leave-one-subject-out cross-validation
(LOO-CV) to simultaneously evaluate the generalization ability of
the classifier and find optimal values for the regularization parame-
ters λ1 and λ2. In an outer LOO-CV loop, we excluded all scans from
a single subject to form the test set and in an inner LOO-CV loop,
we repeatedly partitioned remaining subjects into a validation set
(1 subject) and training set (13 subjects), excluding each subject
once. This provides a relatively unbiased estimate of generalization
ability derived only from the training set which can be used to find
the optimal parameter settings for the subject held out in the test
set. To achieve this, we varied λ1 and λ2 logarithmically across a
wide range of values (from 10−5 to 105 in steps of 10). We then se-
lected the values for λ1 and λ2 that yielded maximum LOO-CV accura-
cy on the validation set for prediction on the test set. The grid search
yielded well-peaked optimal parameter settings which were also sta-
ble across outer LOO-CV folds (λ1: mean=0.03, SEM=0.01; λ2:
mean=1.82, SEM=0.87). To estimate generalization ability for
each classifier, we measured the predictive accuracy for each class
by counting the number of class labels correctly predicted on the
test set and averaging over all outer loop LOO-CV folds. Finally, we av-
eraged these class accuracies over all classes to derive an overall mea-
sure of classification accuracy.

Multi-class discrimination maps

One of the benefits of employing a multi-class classification ap-
proach is that it provides a spatial representation of the discriminat-
ing pattern for each class. This approach is the multi-class
generalization of discrimination mapping (Mourao-Miranda et al.,
2005), which has to date most commonly been performed in a binary
classification context although an L1-regularized SMLR approach has
been used previously for multi-class discrimination mapping
(Yamashita et al., 2008). Exactly as in the binary context, SMLR
weight vector coefficients encode the contribution of each voxel to
the decision function for each class relative to all the other classes.
Thus, a high positive score in the weight vector for a given class de-
notes a strong positive contribution to a prediction in favor of that
class, while a high negative score for the same class denotes a strong
negative contribution. To explain this more clearly, note that to deter-
mine the predicted label it is necessary to consider the relative inten-
sity of voxel values in addition to the sign and magnitude of the
weights. Thus, voxels with negative weight vector coefficients can
contribute positively to the decision for the weight vector's class if
the voxel intensities of brain images corresponding to that class are
lower than the other classes.

For this application, we are primarily interested in the differential
activity patterns for MPH and ATX with respect to the PLC class,
which can be considered a reference class. To facilitate interpretation
of the weight vectors, it is therefore convenient to visualize the rela-
tive difference between each of the drug classes and PLC instead of
each weight vector independently. This can be achieved by first not-
ing that the multinomial likelihood given in Eq. (1) is redundant be-
cause the class probabilities must sum to one (i.e. Σj=1

m πij=1), thus
without loss of generality an equivalent reparameterisation of the
classification problem can be derived by fixing one of the weight vec-
tors to zero (in this case, the PLC class, which we denote by wm).
Under this reparameterisation, the weight vectors for the other two
classes are given by:

w ′
j ¼ wj−wm: ð4Þ

The discrimination maps presented in this paper for the multi-
class classifier are spatial representations of the weight vectors spec-
ified by Eq. (4).

To aid interpretation of the SMLR discrimination maps, we also
compute conventional statistical parametric maps (SPMs) that quan-
tify the magnitude and indicate the direction of focal effects in each
brain region. This is important for three reasons: (i) the direction of
rCBF changes cannot be directly determined from the weight vector
alone, (ii) as noted above, it is necessary to consider the relative in-
tensity of each class to correctly interpret the weight vector and
(iii) multivariate discrimination maps describe a pattern of changes
potentially distributed across many brain regions and do not describe
regionally specific effects. Thus, in addition to the SMLR weight vec-
tors, we computed a simple unpaired t-statistic for each voxel using
the same data that was used to train the classifier. Note that we
employed an unpaired t-test to most accurately approximate the be-
havior of the classifier, although similar results were obtained using a
paired t-test. Further, we present unthresholded maps since it is nec-
essary to quantify the magnitude of regional changes in all brain re-
gions, not only in those surviving an arbitrary univariate threshold.

Results

Classification accuracy for SMLR classifiers

The multiclass SMLR classifier trained to discriminate between all
drug conditions correctly classified 100.00% of MPH scans, 93.33% of
ATX scans and 60.00% of PLC scans, leading to an overall accuracy of
84.44%, easily exceeding the 33.33% accuracy that would be predicted
by chance (χ2=39.40, p=2.78×10−9). A confusion matrix derived
from this classifier (Fig. 1) indicates that: (i) the only misclassification
from the ATX scans was an erroneous prediction for PLC and (ii) most
misclassifications of the PLC scans were erroneous predictions for
ATX although one PLC scan was erroneously predicted as MPH.

The separate, binary SMLR classifier trained to discriminate be-
tween MPH and ATX correctly classified 93.33% of MPH and 93.33%
of ATX scans, yielding an overall accuracy of 93.33% which again



Fig. 1. Confusion matrix for multiclass classifier contrasting MPH, ATX and PLC. The
color scale indicates proportion of correct predictions and the numerals superimposed
describe the number of correct predictions for each cell (out of a maximum of 15 per
class).
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exceeded the 50% accuracy that would be predicted by chance
(p=2.89×10−8, binomial test).

When the number of pCASL scans used to train the classifier was
varied, the overall classification accuracy increased monotonically
with increasing number of scans (Fig. 2). Note that this effect was
largely restricted to the drug conditions; discrimination accuracy for
PLC remained relatively constant (i.e. 53.33% for the first scan and
60.00% for all six scans). Across all scan numbers the classification ac-
curacy for ATX was consistently lower than MPH with a large differ-
ence in discrimination accuracy with only one scan included (5/15
versus 11/15 correct predictions respectively). This emphasizes the
importance of acquiring multiple pCASL scans because when all six
scans were included, very similar accuracies were obtained for ATX
and MPH (14/15 versus 15/15 correct predictions respectively).

Discrimination maps for multiclass SMLR classifier

Spatial representations of the SMLR weight vectors derived from
the multi-class classifier are presented in Fig. 3 (top two panels). To
assist interpretation, weight vectors are presented for MPH and ATX
only, using the PLC class as a reference (see Methods). As noted,
SMLR weight vector coefficients encode the contribution of each
voxel to the decision function for each class, thus they may be inter-
preted as spatially distributed patterns of brain regions with predic-
tive value for each drug with respect to PLC. For example, high
positive weights for MPH in a given brain region have predictive
Fig. 2. Classification accuracy plotted as a function of the number of pCASL scans used
to train the classifier.
value for MPH with respect to PLC, while high negative weights indi-
cate predictive value for PLC with respect to MPH. To assist visualiza-
tion, a map showing the overlap between voxels having non-zero
coefficients in the MPH and ATX weight vectors is also presented in
Fig. 3 (bottom panel).

The predictive patterns for MPH and ATX were both moderately
sparse. The predictive pattern for MPH contained clusters of positive
coefficients encompassing cortical and subcortical brain regions in-
cluding bilateral caudate body, thalamus, midbrain/substantia nigra
(SN), ventromedial prefrontal cortex (vmPFC), temporal poles, left
superior parietal lobe and right cerebellum. Negative coefficients
were mostly cortical with clusters in right lateral frontal, mid-
cingulate and sensorimotor cortex, amygdala, parahippocampal
gyrus and in multiple regions of occipital, temporal cortex. In addi-
tion, relatively large clusters of negative coefficients were found in
the pedunculo–medulla boundary and midbrain/hypothalamus.

The predictive pattern for ATX also encompassed widespread
brain regions and its most notable feature was a large cluster of neg-
ative coefficients centered in the midbrain, in the region of the SN and
hypothalamus, extending dorsally to the right thalamus. Clusters of
negative coefficients were also found in sensorimotor cortex, mid-
cingulate, amygdala, parahippocampal gyrus, pedunculo–medulla
boundary and small regions of occipital and temporal cortex. Clusters
of positive coefficients were found in vmPFC, right temporal pole, left
superior parietal lobe, left cerebellum and regions of right temporal
cortex.

Discrimination map for binary SMLR classifier contrasting MPH and ATX

A spatial representation of the SMLR weight vector derived from
the binary classifier contrasting MPH and ATX is presented in Fig. 4.
In this case, positive coefficients denote regions having predictive
value for MPH and negative coefficients denote regions having pre-
dictive value for ATX. This pattern showed a good overall correspon-
dence with those derived from the multiclass classifier in that:
(i) clusters of coefficients predictive for MPH included bilateral cau-
date body, midbrain/SN, thalamus, vmPFC, cingulate cortex, insula
and temporal poles as well as small regions in the inferior frontal
gyrus, middle and inferior temporal gyri and cerebellum (ii) clusters
of coefficients predictive for ATXwere mainly localized to cerebellum,
parahippocampal gyrus, posterior insula, middle and inferior frontal
gyri, sensorimotor cortex, middle temporal gyrus and small regions
of occipital cortex.

Univariate statistical parametric maps

Univariate statistical parametric maps (SPMs) were computed for
each binary contrast and are presented in Fig. 5. All SPMs show a good
correspondence with the discrimination maps described above in
that: (i) most regions with high magnitude weight vector coefficients
also have a high magnitude t-statistics (positive or negative) and
(ii) the direction of weight vector coefficients and t-statistic agrees
in nearly all regions.

Discussion

In this study, we employed pCASL and multi-class pattern recogni-
tion to accurately discriminate the effects of single acute doses of
MPH, ATX and PLC on rCBF in healthy human volunteers. We demon-
strated that drug discrimination accuracy increased monotonically
with increasing number of pCASL scans, suggesting that pharmaco-
logical studies that utilize a single pCASL scan may be suboptimal.
We also presented discriminative activity patterns for each drug rela-
tive to PLC and a pattern that directly discriminated between MPH
and ATX, which collectively identified their differential effects across
widespread brain regions. This study extends existing MPH studies by
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Fig. 3. SMLR weight vector discrimination maps for the multi-class classifier discriminating between all drug conditions. Top panel: weight vector for MPH, middle panel: weight
vector for ATX, bottom panel: overlapping voxels. For the top two panels, positive coefficients (red color scale) indicate a positive contribution to the prediction for each class and
negative coefficients (blue color scale) indicate a negative contribution. For the bottom panel, red indicates voxels with non-zero coefficients in the MPH weight vector, blue in-
dicates voxels with non-zero coefficients in the ATX weight vector and yellow indicates voxels with non-zero coefficients in both weight vectors. Note that the weight vector
for PLC is fixed to zero and that the scale for weight vector coefficients is arbitrary. The right hand side of each image corresponds to the participants' right side and numerals in
white text indicate Z-coordinates in Talairach space.

Fig. 4. SMLR weight vector discrimination map for the binary classifier contrasting MPH and ATX. Positive coefficients (red color scale) indicate a positive contribution to the pre-
diction of MPH and negative coefficients (blue color scale) indicate a positive contribution to prediction of ATX. The scale for the weight vector coefficients is arbitrary and the right
hand side of each image corresponds to the participants' right side and numerals in white text indicate Z-coordinates in Talairach space.
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Fig. 5. Univariate t-statistic statistical parametric maps for each binary contrast. Note that maps are not thresholded to facilitate interpretation of SMLR weight vector maps. The
right hand side of each image corresponds to the participants' right side and numerals in white text indicate Z-coordinates in Talairach space.
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providing evidence that pCASL is sufficiently sensitive to detect simi-
lar drug effects to those observed in existing H2[O15] and [18F]DG PET
studies and to our knowledge, represents the first attempt to charac-
terize the effects of ATX on human rCBF at rest. More generally, our
results provide insight into the regional distribution of the brain net-
works potentially modulated by these compounds.

Several features of the predictive pattern we derived for MPH cor-
respond with effects of MPH identified by previous PET studies. It is
important to note however, that the scope of comparison with exist-
ing studies is constrained by the different analysis methods
employed. That is, the use of univariate approaches in the existing lit-
erature is limited to reporting local changes exceeding a predefined
statistical threshold, whereas the multivariate approach used in this
study finds a pattern of regions that optimally discriminates between
drug classes. The most consistently reported regions modulated by
MPH in existing H2[O15] and [18F]DG PET studies were the cerebellum
and temporal poles (Mehta et al., 2000; Udo de Haes et al., 2007;
Volkow et al., 1997), although as noted, the direction of rCBF changes
in the temporal poles varies between studies. Despite the limitations
of comparison we have highlighted it is noteworthy that these were
prominent features of the predictive pattern for MPH in our analysis.
Another prominent feature was increased rCBF in the caudate body,
congruent with multiple lines of evidence showing that MPH in-
creases striatal DA concentrations (e.g. Bymaster et al., 2002;
Volkow et al., 1994), although the striatum was not observed follow-
ing methylphenidate challenge in human H2[O15] PET studies (Mehta
et al., 2000; Udo de Haes et al., 2007). Indeed, there is emerging evi-
dence that H2[O15] PET may show sensitivity only for larger rCBF
changes in the striatum (Borghammer et al., 2009) and that subcorti-
cal effects show greater variability in H2[O15] and [18F]DG PET studies
relative to cortical effects (Ma et al., 2009).

Many, but not all features of the pattern of rCBF changes we ob-
served following MPH can be related to catecholamine transporter
distribution: in humans and other primates, the caudate and thala-
mus have high DAT density (Ciliax et al., 1999; Garcia-Cabezas et al.,
2007; Sanchez-Gonzalez et al., 2005), the cerebellar vermis has mod-
erate DAT density (Melchitzky and Lewis, 2000) and virtually the en-
tire cerebellum receives a rich noradrenergic innervation (Powers et
al., 1989). Relative to other brain regions, cocaine shows high levels
of binding in human temporal pole, indicating relatively high mona-
mine transporter density (Telang et al., 1999). In addition, it is
known that NAT has a more prominent role in DA uptake in the pre-
frontal cortex relative to DAT (Kaenmaki et al., 2010; Moron et al.,
2002) and thus the medial prefrontal cortex rCBF changes for MPH,
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as well as ATX, align with the functional role of NAT in DA clearance in
this region. It is difficult to definitively assign clusters in the midbrain
and brainstem to specific nuclei owing to the small size of such nuclei
relative to the resolution of the pCASL images acquired, but the pat-
tern predictive of MPH contains clusters of positive coefficients that
are relatively well localized to the SN bilaterally. Clusters of negative
coefficients reflecting decreased perfusion in the pedunculo–medulla
boundary, hypothalamus and amygdala are also consistent with a
population of noradrenergic cells in the nucleus of the solitary tract
(NST) that projects to the hypothalamus, amygdala and other limbic
structures via the ventral noradrenergic bundle (Cunningham and
Sawchenko, 1988; Moore and Bloom, 1979).

The slightly lower predictive accuracy for ATX relative to MPH
combined with the moderately high rate of erroneous predictions of
PLC scans for ATX suggests that the neuronal effects of ATX were
slightly weaker than those of MPH at the doses administered, al-
though the class accuracies for both ATX and PLC remained well
above chance level. Similar to MPH, the predictive pattern we derived
for ATX included several regions having high NAT density including
the thalamus, cerebellum and sensorimotor cortex (Ghose et al.,
2005; Hannestad et al., 2010; Powers et al., 1989; Schou et al., 2005;
Tejani-Butt, 1992). The pattern for ATX also included clusters of neg-
ative coefficients in the midbrain/hypothalamus, amygdala, and ped-
unculo–medulla boundary overlapping those observed following
MPH, suggesting that ATX also influenced noradrenergic projections
emerging from the NST.

The pattern discriminating between MPH and ATX and the SPM
derived from the same contrast showed that the clearest differential
effects of MPH and ATX were in the caudate body, thalamus, mid-
brain/SN and cerebellum although the overall pattern was distributed
across widespread brain regions congruent with the effects noted
above. The SPM indicates that discriminative clusters in the caudate
body reflect increased rCBF for MPH relative to ATX and are thus con-
sistent with rodent microdialysis results that show that MPH but not
ATX increases extracellular DA concentration in the striatum
(Bymaster et al., 2002). Similarly, the SPM indicates that discrimina-
tive clusters in the thalamus and midbrain/SN reflect opposing effects
of MPH and ATX, where in both regions, MPH increases rCBF while
ATX decreases it. Further, the rCBF decreases in the midbrain/SN pro-
duced by ATX are amongst the strongest focal effects of the drug in
any brain region. Overall, these effects are consistent with several
lines of evidence from studies with experimental animals indicating
that noradrenergic mechanisms influence nigrostriatal DA release
(e.g. Grenhoff et al., 1993; Lategan et al., 1990, 1992; Marien et al.,
2004), but a paucity of evidence for direct projections from noradren-
ergic cell populations to the SN suggests that such effects are likely to
be mediated indirectly (Marien et al., 2004; Swanson and Hartman,
1975). Our data suggest the thalamus as a candidate region for medi-
ating this effect. In the cerebellum, the spatial distribution of rCBF
changes was clearly different for the two drugs, where ATX decreased
rCBF across widespread regions of cerebellar cortex relative to MPH.
This suggests that striato-cerebellar circuitry may be differentially af-
fected by MPH and ATX and makes the prediction that cognitive and
behavioral functions subserved by the striato-cerebellar network may
be particularly sensitive to the differential effects of MPH and ATX.

Despite the correspondence of many components of the predictive
patterns for MPH and ATX with the regional distribution of catechol-
amine transporters, it is important to emphasize that the overall dis-
tribution of each pattern would have been difficult to predict solely
on the basis of regional transporter density. For example, the predic-
tive pattern for ATX did not include the LC despite the LC having the
highest NAT density in the brain (Schou et al., 2005; Tejani-Butt,
1992). Thus, the functional consequences of increased catecholamin-
ergic neurotransmission are not only expressed in regions of high
transporter density but also in connected brain areas. This suggests
that the effects of increased noradrenergic transmission in the LC
are probably expressed distally (e.g. in the thalamus), while those
of other noradrenergic cell populations (e.g. that of the NST) are
expressed more proximally.

An advantage of ASL is that it allows direct comparison of the un-
derlying regional perfusion across multiple visits, which is not possi-
ble using BOLD fMRI because the BOLD signal is not quantitative.
Further, and as noted above, the BOLD signal depends on rCMRO2

and rCBV in addition to rCBF, which complicates the interpretation
of studies that have employed BOLD fMRI to investigate the effects
of MPH and ATX on brain activation during cognitive tasks in healthy
volunteers (e.g. Chamberlain et al., 2009; Dodds et al., 2008; Graf et
al., 2011; Marquand et al., 2011) and patients with ADHD (e.g.
Rubia et al., 2011; Schweitzer et al., 2004; Vaidya et al., 1998). Our re-
sults show that ASL can accurately describe the pattern of baseline
rCBF changes for MPH as well as ATX, which is useful to identify the
contribution of rCBF changes to the BOLD response in different
brain regions and will therefore provide a more precise neurophysio-
logical understanding of how these drugs modulate brain function. In
addition, the sensitivity of BOLD to signal drop-out and/or cardiac-
pulse-induced artifacts in many of the brain regions observed to be
differentially affected by MPH and ATX (e.g. temporal pole and brain-
stem) implies that ASL may be better suited than BOLD fMRI to detect
the effects of these drugs in these regions. Finally, it is important to
consider that DA and NA are both vasoconstrictive agents (Krimer
et al., 1998; Mulligan and MacVicar, 2004; Raichle et al., 1975), mean-
ing that we cannot quantify the degree to which vascular effects con-
tributed to the pattern of changes we report for MPH and ATX.

A limitation of this study is that only a single dose of each drug
was administered so we cannot exclude dose effects explaining
some aspects of the differential rCBF pattern for MPH and ATX, al-
though this would appear to be unlikely for three reasons: first, ad-
ministered doses were matched according to doses commonly used
in clinical practice. Second, motor evoked potentials and task-
related activations and deactivations are altered to a similar extent
for both drugs using identical doses to those administered here
(Gilbert et al., 2006; Marquand et al., 2011). Third and most impor-
tantly, opposing effects of MPH and ATX in overlapping brain regions
(e.g. the midbrain/SN) are difficult to explain by a simple dose effect.

In conclusion, we have demonstrated common and differential ef-
fects of MPH and ATX on rCBF in healthy volunteers at rest using
multi-class pattern recognition. This methodology differs from classi-
cal univariate analyses in that the latter would only show areas where
the amplitude of rCBF change was large between drug conditions,
rather than spatially distributed activity patterns. Our results show
that the effects of MPH and ATX overlapped in multiple, distributed
brain regions and had clearly differential effects in striato-cerebellar
circuits, the thalamus and in the midbrain/SN. Further, we showed
the sensitivity of pattern recognition methods in detecting an acute
dose of MPH and ATX which illustrates the feasibility of predicting
the effects of such medications (e.g. treatment response) at the
level of individual subjects.
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