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ABSTRACT 

A problem of inversion of a real symmetric matrix meromorphically depending on 
a parameter is discussed. Such a matrix arises in a problem of perturbation of a positive 
semidefinite operator by an operator of finite rank. A number of modal synthesis methods 
deal with such matrices, referred to as characteristic matrices, in problems of investigating 
complex conservative systems. It is shown that instead of numerical inversion of the 
matrix at each given value of the parameter one can calculate the inverse matrix by using 
an explicit formula similar to that for the matrix itself. To diminish the truncation error in 
practical calculations, the representation of the inverse matrix via a series with accelerated 
convergence is obtained. 

1. INTRODUCTION 

A problem of inversion of a real symmetric meromorphic matrix of the form 

r fOkf$ O” fkfk’ 
x(h)=z-C-++- 

k=l ’ k=l Ak --A 
A, hk > 0, fOk, fk E Rn, (1) 

is discussed. Such matrices occur in many applied problems. For example, a 
problem of perturbation of an operator having nonnegative discrete spectrum by a 
positive semidefinite operator of a finite rank can be reduced to the problem of in- 
vestigating a matrix of the form (1) [l] (intermediate problems of the second kind). 
In structural dynamics some modal synthesis methods give rise to such matrices 
in problems of investigating complex conservative structures consisting of sub- 
structures whose dynamic characteristics are known [2-6]. Some of methods for 
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calculating dynamic characteristics of modified structures, namely, the reanalysis 
methods based on local modifications, deal with such matrices [2,7]. 

Note that sometimes (1) can be transformed to an equivalent form which con- 
tains a series with accelerated convergence ( [3,5, 81 and Section 5 of the paper). 
As in practice the series in (1) is approximated by a finite sum, such formulas 
result in less truncation error. 

In some problems (e.g., problems of forced vibrations of complex or modified 
structures, problems of inverting perturbed operators) one needs the inverse of a 
matrix of the form (1). If the order of the matrix is large and the inverse matrix 
has to be calculated for many values of the parameter h, it is desirable to have 
formulas for quick inversion of the matrix. Besides, the explicit formulas may be 
very useful in analytical calculations. 

The subject of the investigation in this paper is matrices of the form (1) such 
that the inverse matrices can also be represented in a form analogous to (l), i.e., 
the inverse matrix is also a meromorphic function of h with poles of the first order. 
We will not establish necessary conditions that guarantee that the inverse matrix 
may be presented in such a form. Instead of this, we will consider in the next 
section a class of matrices, so-called characteristic matrices, important from the 
standpoint of their applications. We will show that under some conditions both 
the characteristic matrix and its inverse can be represented in the form (1). So the 
aim of Section 2 is to demonstrate that the class of matrices under investigation is 

not empty. 
The main results of the paper are established in Sections 3 and 4. In Section 3 

an explicit formula for the inverse matrix, similar to that of (I), is obtained, the 
right side of the formula being represented in terms of some numbers and vectors 
related to the matrix x(A). An equivalent representation for the inverse matrix via 
a series with accelerated convergence is given in Section 4. 

2. CHARACTERISTIC MATRIX AND ITS INVERSE FOR A PROBLEM OF 
PERTURBATION OF A POSITIVE SEMIDEFINITE OPERATOR BY AN 
OPERATOR OF FINITE RANK 

Let us define a real symmetric operator-valued function, associated with the 
operator function A(k), by the formula 

x(k) = I + @A-‘(h)@* , (2) 

where Q, is an operator of finite rank n, @* is its adjoint, Z is an identity matrix of 
order n, and 

A(IL)=H-rLM 

with H positive semidefinite and M positive definite. It will be shown in this 
section that under some conditions the matrix (2) and its inverse can be written 
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in the form (1). To substantiate the necessity of investigating matrices (2) and to 
obtain the representation (1) for them, consider the following problem. (As the 

subject of the paper is inversion of matrices of the form (1) and to save room, the 
folIotving discussion in this section will be given without rigorous treatment. Other 
examples of the occurrence of matrices (2) associated with mechanical problems 
may be found in References 13-51.) 

Let H be a positive semidefinite (in the general case unbounded) opera- 
tor with a domain dense in a Hilbert space. Let r be a dimension of the null 

space of H, and pot . . . ,por be an orthonormal basis in Ker H: Hq,, =E 0, 

(PZ~PO~ f (Voi$ hook) = ‘ik* ‘7 k = 1, ‘. 9 r. Here 6ik is the Kronecker delta, and 
the parentheses denote an inner product. Let hk and q+ be nonzero eigenvalues 
arid corresponding eigenfunctions of H: Hcpk = h,@$, k = 1, . . . (00. Denote 
by Eii the restriction of H to the subspace of its domain orthogonal to the null 
space of H. It is evident that eigenvalues and eigenfunctions of HI are nonzero 
eigenvalues k_k and corresponding eigenfunctions pk of H, and that in contrast to 
H, the operator HI is invertible. 

Denote by Ki the inverse operator: Kt = HI-‘. It is well known (e.g., [l]) that 
the eigenfunctions of Kt are those of H1 and its eigenvalues are the reciprocals of 

Kick = $k, k= l,...,oo. 

Let us suppose that KI is a positive definite completely continuous operator. Then 
[ 11 all eigenvalues & can be ordered in a nondecreasing fashion: 0 < )\I 5 k2 5 
. -+ co; the eigenfunctions pk form a complete orthonormal basis in the domain 

of Kl: q$cpk = 6ik; and the operator K1 and resolvent operator (HI - AZ)-’ can 
be represented in the form 

(H1 _ AZ)-’ = 2 ??..!t . 
i=l Ai -1 

(3) 

To obtain a formula for the resolvent operator (H-M-’ one has to extend the 
operator (HI - rLZ)-’ to all of the Hilbert space. Consider a function f belonging 
to Ker H: f = C'= 1 poi (cpoi, f). Taking into account that HP,, = 0, one obtains 

(H-hl)f=(H-hZ)~~ui(~~i.f)=-‘~rPgi(’POi.f)=-hf 
i=l i=l 
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It follows from the last formula that 

(H _ k_~)-lf = _kf = _ 2 ‘pOi(IBhoi’ j) 
i=l 

+pp)f. 

Summarizing, one arrives at the formula 

(4) 

It is not difficult to show that the bilinear representation (4) is also valid for the 
weighted resolvent operator (H - AM)-‘, with M positive definite. In this case 
ki and vi must satisfy the equation Hopi = hi Mq, and the orthogonality and nor- 
malization conditions (vi, Mpk) = 8ik, (voioi Mpok) = 8ik. Note that the results 
established do not depend on whether the weighted eigenvalue problem is consid- 
ered or not, as that does not influence the general properties of the characteristic 
matrix (2). So in the following discussions one can consider the operator M as an 
identity operator. 

Consider now a perturbation of the operator H by a positive semidefinite 
operator of finite rank, 

fi= H+@*@, (5) 

where @ is defined on the domain of H and its range is n-dimensional space (i.e., 
for any function (p belonging to the domain of H one has @~JJ E R”), and where @* 
is the adjoint of Q. It is known that if the resolvent operator (I! - AM)-’ can be 
efficiently calculated, the problem of finding the spectrum of H can be reduced to 
the problem of investigating some n-dimensional symmetric characteristic matrix. 
Examples of such reduction may be found, e.g., in [ 11. To define the characteristic 
matrix here we will take advantage of the results of [3], which are presented below 
without proof. 

Let I, CX, and /l be linear operators (to save room we omit here discussions 
concerning ranges and domains of the operators) and r be invertible. Then the 
perturbed operator F = r +a,5 is invertible if and only if the characteristic operator 

x =z+/Yr-la 

is invertible. If ? is invertible then 

(6) 

F-1 = r-1 _ r-lax-ljfjr-l . (7) 

Otherwise the dimensions of the null spaces of F and x are equal and there exists 
a one-to-one relationship between vectors from the null spaces: 
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The formulas (6) and (7) are well known in matrix analysis - they are used to 
calculate the inverse of an invertible matrix perturbed by a matrix of small rank 
[9, Section 0.71. If the operator r is perturbed by a finite-rank operator, as in the 
above problem discussed, the characteristic operator is a matrix. 

Denote A(k) = H - AA4 and z(k) = I? - hM. It follows from (5) that 

x(i) = H + @*a - hM = A(k) + @*a. 

Applying (6) to the operators A(h) and x(A), one obtains the formula (2) for 
the characteristic matrix x (h), where A-‘(h) = (H - AM)-’ is given by (4). 
Substituting (4) into (2), we see that the characteristic matrix has the form (l), 
where fuk = @pok, fk = Cpfp,. Properties of the characteristic-matrix eigenvalues, 
including those that describe their behavior in a neighborhood of the matrix poles, 
are discussed in [4]. 

It can be seen from (7) that to calculate the operator A’-‘(h) one needs the 
matrix x-‘(k). We obtain now a general representation for the inverse of the 
characteristic matrix (2). We will see that the inverse matrix can also be written in 
a form similar to that of (1). 

We have arrived at the characteristic matrix (2) by considering a perturbation 
of an operator, whose spectrum and eigenfunctions are known (or can be easily 
found), by a positive semidefinite operator of finite rank. Let us consider a problem 
inverse, in-some setrse, to the above problem. Namely, starting with the perturbed 
operator A(h) (or H), consider an operator defined by the formula 

That is, we consider now a problem of perturbation of the operator x(I) by the 
negative semidefinite operator - @* 0. Applying (6), one obtains the characteristic 
matrix z(h) of this problem: 

Z(k) = z - @z-‘(h)@* 63) 

LEMMA 1. Ifthe operators A(k) and x(h) are invertible at given h, then 

x-‘(A) = F(A). 

Prooj Take advantage of (7) to calculate x-’ (h): 

x-‘(A) = A-‘(k) - A-‘(~)@*x-‘(~)@A-‘(Q . 

Substituting the last formula into (8) and using (2), one obtains 
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@A-‘(h)@*x-‘@)@A-‘(A)@* 

= z - [X(h) -II + [x(h) - zlx-‘(h)[x@) - II = x-‘(h). 

Note now that the operator fi also has nonnegative spectrum, as it is obtained by 
adding thelositive semidefinite operator @*@ to the operator H, and its resolvent 
operator (H - 1M)-’ can-also be represented in the form of a bilinear series (4). 
Taking into account that A-‘(k) = (Z? - AM)-‘, we obtain 

(9) 

where the eigenvalues Xi and eigenfunctions I&, Fi satisfy equations fi@ui = 0, 

gqi = xiMgi and conditions @&&& = Sjk, i$M@Tk = &ik, and where P is the 

dimension of the null space of H. Substituting (9) into (8) and using Lemma 1, 
one arrives at the formula 

’ h&h: O” hihT 
x-l(h)=z+C_-C&- 

i=l i=l hi - rL 
(10) 

where hoi = @@oi and hi = CD& are n-dimensional vectors. 

Thus we have obtained the general form of the inverse matrix analogous to 
that of the characteristic matrix itself. The right side of (10) isgiven in terms of 
the eigenvalues and eigenfunctions of the perturbed operator H. Our aim now is 
to represent it in terms of some numbers and vectors related to x(h). 

3. FORMULA FOR THE INVERSE MATRIX 

Up to this point we have addressed ourselves to the problem of investigation 
of the perturbed operator to obtain the form (1) for the characteristic matrix (2) 
and the general form (10) of its inverse. We have established that there exists a 
class of matrices of the form (1) for which it is known that their inverses can be 
represented in the form (10) where Li > 0 and hi, hoi are unknown numbers and 
vectors to be found. Our aim is to specify (10) and to give the way to find the 
numbers Xi and vectors hi. From this point on, to establish and to prove the main 
results we will need only the formula (1) and the representation (10). 

Clearly the set of poles in (10) must contain all those values of h for which 
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x (1) exists and is singular. In the general case some pole hi of x (h) may also be 
a pole of x-‘(h). The latter case needs special treatment, as x (hi) does not exist. 

Let rk be the number of terms in (1) having pole &. Rewrite (1) in a neigh- 
borhood of hk, separating out those terms that have pole hk : 

X(h) = Xreg(V + 
[fkl ifkIT 

. *k _  * (11) 

Here and in what follows, [ fk ] denotes the II XQ matrix formed by the vectors fk, 
and the matrix xreg(h) exists at h = hk. Note that we can always consider only 
the case where the rank of [ fk ] is equal to rk and rk 5 n. Indeed, let the rank 4 of 
[ fk ] be less than lk. As c = [ fk ] [ fk IT is a positive semidefinite matrix of rank 
q, it can be factorized in the form [9, Section 7.21 C = [ _fk ] [ ff IT where [ fk ] is 
an II xq matrix and q 5 n. Thus, if q < rk we can replace the matrix [ fk ] [ fk IT 

in (11) by [ fk ] [ fk IT, the rank of [ fk ] being equal to the number of its columns. 
The following lemma allows one to determine if any pole of x(k) is a pole of 

x-l@). 

LEMMA 2. A pole hk of x (A.) is a pole of x-‘(h) if and only if matrix 

Xk = h&k) [ fk 1 
[fklT 0 1 

of order n + rk is singular: The number ?k of terms in the right side of (IO) having 
pole hk is equal to dim Ker Xk. 

ProoJ Denote by Vi (1) and yi (h) the eigenvalues and orthonormal eigenvectors 
of the matrix x(h): 

XCh)Yi(h) = h(h.)Yi(h), i = 1,. . ,II, h#kj, j=l,..., 00. (13) 

It is proved in [4] that when h tends to hk, there exist limits yp()Lk) of all eigen- 
vectors of x(A) and that lk eigenvalues have infinite discontinuities while the 
others have removable singularities, It is not difficult to prove that in addition 
to this, all eigenvectors and the eigenvalues that have removable singularities are 
differentiable functions of h at hk. 

It is well known that x(h) and x-’ (k) can be presented in the form 

Clearly x-’ (h) has pole hk if and only if some of eigenvalues Vi (1) have zero 
limits when h tends to hk, and the number of terms in (10) having pole ik is equal 
to the number of eigenvalues Vi(h) having zero limits. 
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Let liml_,Ak up(X) = 0 for some number p. Then 

lim X(h)yp(h) = 0 . 
k’hk 

Substituting (11) in the last formula, one obtains 

lim x@)y,@) = ~~&k)~~@k) + lim 
.&+hk 

[fklM41TYp(~) =. 
h+kk hk -h 

In order for the last limit to exist we must have 

[fkh’p@k) =o. 

Applying L’Hospital’s rule, one obtains 

lim X@)Yp@) = Xreg@k)Yp@k) - [ fk I[ fk lTYL(hk) = 0 , 
A+& 

where yL(hk) = lim~.+h, y;(h). Summarizing and denoting h, = yp(hk), ,+ = 

-[ fk lTYh(hk), one aITiVeS at the conclusion that the system of equations with 
respect to vectors hp E R” and z,, E R’k given by 

Xre&& + [ fk 1 Zp = 0, (15) 

[fdThp=O (16) 
has nontrivial solutions, and hence the matrix (12) is singular. 

If ?k eigenvalues have zero limits, the corresponding limit eigenvectors h, are 
linearly independent and hence the corresponding solutions of the system (15)- 
(16) are linearly independent vectors in (n + rk)-dimensional space. Hence we 
obtain the inequality 

?k 5 dim Ker Xk. (17) 

Now we prove the sufficiency of the statement of the lemma. Let the ma- 
trix (12) be singular. Then there exist vectors h, E R” and zp E Rrk satisfying 
Equations (15)-( 16). Define the vector up(h) by the formula 

JJp@) = h, + @k - A)[ fk I([ fk lT[ fk I)-‘$. (18) 

As the rank of the matrix [ fk ] is assumed to be equal to the number of its columns, 
rk, the matrix in parentheses is of full rank and hence is invertible. We prove that 
the limit of the vector X (X)t+(k) as h --+ hk is equal to the zero vector. Using the 
formulas (1 l), (18) and Equations (15)-( 16), one obtains 

lirn+A, x@)up@) = limh-+~lr ( 
xre&) + w) 

VP + @k - h)[ fk I([ fk lT[ fk 1)-b,} = xreg@k)hp + [ fk 1 Zp = 0 . 
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It is evident that the equation 

lim x(k)up(h) = 0 
k+.kk 

means that there exists an eigenvalue of the characteristic matrix that has zero limit 
when k -+ hk, the limit of the corresponding eigenvector being equal to h,. 

Let now dim Ker xk = 4 > 1. Then there exist q linearly independent vectors 

(::I > “‘3 (:,U) cRn+rk, hiERa, ZiER’k (19) 

satisfying Equations (15)-( 16). To prove that in this case there exist q eigenvalues 
having zero limits it is sufficient to prove that the vectors h 1,. . . ,h, are also linearly 
independent. Let us suppose that h 1, . . ,h, are linearly dependent. Then there 
existnumbersai,i = l,..., q , which are not all zero, such that 

aihi = 0. (20) 

i=l 

As the vectors (19) are linearly independent, we must have Cy=‘=, oizi # 0 . 
Taking the linear combination of the vectors (19) with coefficients ai, substituting 
the vector obtained into Equations (15)-( 16), and taking into account (20), one 
arrives at the equation [fk] cy=‘=, CXZ~ = 0. This equation cannot be satisfied, as 
the rank of the matrix [ fk ] is equal to the number of its columns. The contradiction 
obtained means that the vectors h 1, . . . ,h, are linearly independent and hence the 
inequality 

q = dimKerxk 5 ?k 

holds. Comparison of (17) and (21) gives ?k = dim Kerxk. 

(21) 

n 

So to determine if a given pole of x (h) is inherited by the inverse matrix, one 
has to investigate the matrix (12). But there is one pole - the zero pole - that 
does not need investigation, as, for any particular matrix (I), it does not belong to 
the set of poles of the inverse matrix. Namely, the following lemma is valid. 

LEMMA 3. The inverse matrix has no pole at h = 0. 

Prooj We prove that for the case of a zero pole of x (h) the matrix (12) is always 
nonsingular. Then according to Lemma 2, )i = 0 is not a pole of the inverse matrix. 

Suppose that it is not true and the matrix (12) is singular. That means that the 
equations 

xres(O)ho + [ fo 1 zo = 0 > (22) 

[folTho =O (23) 
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have a nontrivial solution. Here [ j-0 ] is the n x r matrix formed by vectors j-01, 

. . . . ,for , and 

kj 3 0. (24) 

Note that ho # 0, as the rank of the matrix [ fo ] is equal to the number of its 
columns (see remark before Lemma 2). Taking the inner product of both sides of 
Equation (22) with the vector ho and using Equation (23), one obtains 

On the other hand, substituting (24) into the left side of the last equation gives 

O” (fi3ho>2 (ho, xreg(Wo) = (ho, ho) + c 7 1 (ho, ho) > 0. 
i=l I 

Thus the assumption that the matrix (12) is singular leads to a contradiction. This 
proves the lemma. m 

We proved that the first sum in the right side of (10) must be omitted. We now 
establish properties of the vectors hi in the second suin of the formula. Let & be 
a pole of the inverse matrix. Let, for simplicity, ?k = 1, i.e., only one term in the 
right side of (10) has pole ,&. Rewrite the formula in a neighborhood of xk in the 

form 
h& 

x-‘(A) = --I hk _ h + (X-l(*))reg ’ 

where (x-‘(A))~~~ exists at xk. 

For any h belonging to a neighborhood of &, h # &, we have 

x @>hkh: z = x(qX-l(h) = - Ik _ h + XV) (X-l(qreg . 

Taking limits of the left and right sides of (25) when h tends to xk, one obtains 

Z = lim 
x Wkh,T 

- Xk _ * + X(h) (X-i@))reg . 
h+k.n 

Consider the two possible cases. 
(1) x (&) exists. For the limit of the iight side to exist we must have 

(26) 

X(Xk)hk = 0 , (27) 
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i.e., hk E KerX&). Premultiplying both sides of Equation (26) by hl and 
applying L’Hospital’s rule, one obtains 

h; = (hk, x’(&#k)h,T + h:X(Xk) (X-l(~k)),,g . 

It follows from Equation (27) that the second term in the right side of the last 
equation is equal to zero, and we conclude that the equation holds if and only if 

(hk, X’(xk)hk) = 1 (28) 

Equation (27) and the normalization condition (28) uniquely define the vector hk. 
(2) X (Xk) does notexist, i.e., Xk kapok? ofX (h). Then according to Lemma 2 

there exists a vector Zk such that hk and Zk satisfy Equations (15)-( 16). Premultiply 
the left and right sides of Equation (25) by u:(h), where 

uk@_) = hk + (ilk - h)t fk I([ fk lT[ fk I)-‘Zk > (29) 

and take limits of both sides when h -+ ik. We have 

lim v:(k) = lim 
{X(~)uk(X)}%h; 

- 
1-t& A-+X,, I Xk -h 

+ {X@L>uk(~>)T (X-‘@)),es . 

I 
(30) 

As lim*,X, X (k)uk(h) = 0 (see the proof of Lemma 2), the limit of the right side 
of the equation exists, with the second term being equal to zero. Apply L’Hospital’s 
rule and (11) to calculate the first term in the right side of Equation (30): 

lim - 
I 

{x@)uk(~)~%h[ 

%k - h 1 

= lim 
A+& A-+& 

u~(A)X’(A.)hkh~+ 

{u;@)}Tx@)hkh~) = liq ~[@)x&@)hkh: + 
$(A>[ fk 1 [ fk lThkh; 

L+?Q I 
(ik - A)2 

+{u;(WTxres@.)hkh; + 
b’##.[ fk 1 [ fk lThkh; 

xk - h 

In view of Equation (16), the second and the fourth terms in the right side of the 
formula are equal to zero. Using the formula (29) and Equation (15), one obtains 

{X(~)uk@)l=hkh; 

xk - h 

z;([ fk ITI fk I>-‘[ fk IrXrt&k)hk} h; = { h,TX&(b)hk+ 
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Z;([ fk I*[ fk I)-‘[ fk lT[ fk IZk] h; = ((hka X:&k)hk) + (zk, zk)] hi . 

Substituting this and (29) into Equation (30), one obtains 

This equation holds if and only if 

(hk, X;,&k>hk) + (Zk> zk) = 1 . (31) 

Equations (15)-( 16) and the normalization condition (3 1) uniquely define the vec- 
tor hk. 

The case of multiple terms having pole xk (?k > 1) involves no additional 
difficulties. Following exactly the same procedure, one obtains that vectors hk 
corresponding to the same pole & must be orthogonal to each other and satisfy a 
normalization condition (28) or (31). 

The results of this section are summed up in the following theorem. 

THEOREM 1. The inverse of the matrix (1) can be represented in the form 

O” hihT 
x-‘@)=I-CA- 

i=l Ai - h ’ 
(32) 

withpositivepoles Xi ordered in a nondecreasing fashion: 0 < ill 5 xz 5 . . . + 
00. The set of the poles consists of those values Xi for which x (Xi) exists and is 

singular and of those poles of ,y (h) f or which matrix (12) is sing&al: 

If x (xk) exists, then hk E Ker x &) and sati@es the condition 

(hk, X’(xk)hk) = 1 . 

If & is a pole of x (h) and rk is the number of terms in (1) that have pole &, then 
there exists a vector zk E Rrk such that the vectors hk and zk satisfy Equations (IS)- 

(16) and the condition 

(hk, x:&k)hk) + (ZkJk) = 1 . 

If ?k members of the series in the right side of (32) have the same pole &, then the 
& corresponding vectors hk are orthogonal to each other: 

Thus we have obtained the desired bilinear formula for the matrix x-‘(k). 
The formula (32) may be very useful in analytical calculations, but in practice 
one usually has a limited number of eigenvalues xk and corresponding vectors 
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hk. Therefore the series in (32) is approximated by a finite sum. To diminish the 
truncation error it is desirable to have another representation for x -’ (h) with more 
quickly converging series. 

4. CALCULATION OF THE INVERSE MATRIX BY MEANS OF SERIES 
WITH ACCELERATED CONVERGENCE 

It follows from (32) that x-‘(O) exists and 

x-l(o)=z-g~ 
I 

(33) 

Let us denote for brevity Q = x -’ (0). Suppose we have calculated Q exactly in 
some way or another without using (33). Adding Q to the right side of (32) and 
subtracting the right side of (33) from it, one obtains 

O3 hihr 
x-‘(A) = Z-Cd- 

i=l hi - 1 
-(z-gq)+e 

=Q_& h_ihT 
i=l hi(hi - ~) ’ (34) 

It is evident that the series in the right side of (34) converges more quickly than 
that in (32) and hence the truncation error of the last formula is less than that of 
(32) under the condition that the same number of terms of the series is used in both 
formulas. To take advantage of (34) we need a formula for Q different from (33). 

We take advantage of the spectral representation (14) for the inverse matrix. 
It follows from the results of [4] that when k tends to zero, r eigenvalues of the 
matrix (1) tend to -00, while the limits of the others are finite. Let the eigenvalues 
uk(k) be ordered as follows: vr (A) > u2(h) 1 . . > v,(k). Then when h -+ 0 
the first m = n - r eigenvalues have finite limits. Denote these limits by vi, and’ 

the limits of the corresponding eigenvectors by yi, k = 1, . . . , m. It follows from 
(14) that 

Q E x-‘(O) = lim x-‘(h) = lim 2 yi’~~~~(h) 
.A-+0 A~’ i=l I 

=g*. (35) 

‘i 

This formula gives us a way of calculating the matrix Q, different from that of 
(33), by finding limit eigenvalues and eigenvectors. Moreover, it turns out that to 
obtain Q there is no need to calculate the limits of vi (h) and yi (h). 
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Let us consider the m-dimensional subspace of R” orthogonal to the vectors 

f01,. . ,for, and let 211,. . . ,u, be an orthonormal basis in this subspace. Denote 
by V the nxm matrix V = [VI,. . , urn]. Evidently, VTV = I, where Z is an 
identity matrix of order m. 

THEOREM 2. The inverse of the matrix (I) can be calculated by the formula 

m VUj(VUi)T 
x-W = c I-L’ 

_-hF h_ihT 

i=l I i=l b(hi - 1) ’ 
(36) 

where Fi and ui are the eigenvalues and eigenvectors of the positive definite matrix 

D = V*xregW, (37) 

and xreg(h) is given by (24). 

Proo$ Taking into account (34) and (35), we must prove that the limit eigenval- 
ues VP are equal to the eigenvalues pi of the matrix D and that the corresponding 

limit eigenvectors yla and eigenvectors ui of D are related by the formula y: = Vui . 

Representing the matrix (1) in a neighborhood of h = 0 in the form (the 
notation used was introduced in Lemma 3) 

x(k) = Xr& - 
[fol [folT 

h , 

and substituting the formula into the equations (13), one obtains 

Xreg@)Yi (A) - 
[fOl[fOITYi(k) = v,ck.>y,ck.) 

A 
1 I . 

Taking limits of both sides of the equation when h tends to zero for i = 1, . . . , m 
and taking into account that the first m limit eigenvalues are finite, we have 

x 
Wz 

(ojyfl_ lim [fo1[f03Tyi(h.) = ,!I,0 
I 

A-t0 A. 
1 I ’ i = l,...,m. 

For the limit in the left side of the equation to exist the equations 

[f~]~yo=O, i = l,...,m (38) 

must hold. Applying L’Hospital’s rule, one obtains 

xreg(0)Y~-[fol[folTy((O)=~~~y~, i=l,...,m. (39) 
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It follows from the equations (38) that yf = Vui where ui E R”‘. Premultiplying 

both sides of the equations (39) by VT, one obtains 

VTxreg(0)Vz4i = uoVTVui, i = 1,. . . , m . 

Taking into account (37) and that VT V = I, one obtains 

Dui = v:Ui, i = 1,. . . , m , 

i.e., $ and ui are eigenvalues and eigenvectors of the matrix D. n 

5. SOME REMARKS ON USING FORMULAS WITH ACCELERATED CON- 
VERGENCE 

To apply Theorem 2 in practice one needs a formula for calculating the matrix 
xres(0) different from that of (24), as the latter contains infinite series and, thus, 
does not allow one to calculate xreg(0) with the necessary accuracy. It seems likely 
that one cannot obtain such a formula considering only the matrix (1) but must 
turn back to the original problem which led to (1). Consider again the problem of 
perturbation of an operator discussed in Section 2. We will show what is needed 
to obtain the desired formula and at the same time will obtain an accelerated 
representation for the characteristic matrix itself. 

Let the unperturbed operator H be simple enough so that its restriction Hi 
can be inverted immediately, either analytically or by means of some numerical 
procedure, i.e., one can calculate the operator K1 without using the bilinear repre- 
sentation (3). Adding the operator K1 to the right side of (4) and subtracting the 
right side of (3) from it, one obtains 

A-‘(h) 3 (H _ AZ)-’ = K1 _ g F _ 2 ?_!?f?& + 2 (Oi(OT 
I i=l 

(some other representations for A-‘(h) are given in [5]). Substituting this into 
(2), one arrives at the formula for the characteristic matrix with a more quickly 
converging series: 

x(~)=Z+~K~~*-~~++~ fifiT r fOi j-0: 
i=l 4 (ki - A-> ’ 

(40) 
i=l 

The right sides of (1) and (40) are equal, but the latter provides less truncation 
error if the same number of terms of the series is used to approximate x(h). It 
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follows from (40) that 

X&O) = I+ QKlcP* . 

We see that if one has an opportunity to calculate operator K1 one can use the 
series with accelerated convergence to calculate both the characteristic matrix and 
its inverse. 

In mechanical problems the operator K1 is referred to as the generalized static 
Green operator. For some not very complicated systems it can be calculated by 
means of explicit formulas. For example, suppose one is investigating vibrations 
of a system consisting of a finite number of beams and/or rods interacting at a 
finite number of points. This problem can be formulated in terms of the problem 
of perturbation of a positive semidefinite operator by an operator of finite rank 
[5], the unperturbed operator being defined by differential operators governing 
vibrations of the isolated subsystems. To take advantage of the formula (40) for 
calculating the characteristic matrix and the formula (36) for its inverse, one needs 
the generalized static Green operators of the isolated subsystems. For the case of 
free-free beams (rods) they are integral operators the kernels of which are the 
generalized static Green functions. Explicit formulas for generalized static Green 
functions of nonuniform free-free rods and Euler-Bernoulli beams are given in 
[5]. The more complicated case is considered in [lo], where explicit formulas 
for the generalized static Green operator of a free-free 3D nonuniform beam with 

oscillators are obtained. 

6. CONCLUSION 

The problem of inversion of a real symmetric meromorphic matrix of the 
form (1) has been investigated. It is assumed that the inverse matrix is also mero- 
morphic and its poles are of the first order. Such a matrix arises in many applied 
problems. One such problem-the problem of inverting a perturbed operator-is 
considered in Section 2. 

Representations of the inverse matrix in the form of bilinear series are obtained. 
The formulas allow one to calculate the inverse matrix without using numerical 
inversion. The main results of the paper are formulated in Theorems 1 and 2. The 
former specifies the bilinear formula for the inverse matrix in terms of some num- 
bers and vectors related to the matrix itself. The latter gives another representation 
with more quickly converging series that allows one to diminish the truncation 
error in numerical calculations. 
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