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Absteact. A syst~m of gencralized language equations over an alphabet 4 is a set of n equations in
n variables: ;= Gi(Xy,...,X,), i=1,...,n, where the G; are functions from [P(A*)]" into
P(AY), i=1,...,n, P(AY) denoting the set of all languages over A. Furthermore the G; are
expressible i terms of set-operations, concatenations, and stars which involve the variables X as
well as certain iixed languages. In this note we investigate existence and uniqueness of solutions of a
certain subclass of generalized language equations. Furthermore we show that a soiution is regular
if all fixed languages are regular.

1. Notation

If A is an alphabet, then A* denotes the set of words over A. The length |w| of a
word w is the number of elements of A in w; note that the length of the empty word A
is 0. A language (over A) is any subset of A*. If L, and L, are languages, so are

LyuL,, LinL, L,L, L, L%,

denoting the union, intersection, concatenation of L, and L,, the complement of L,
with respect to A*, and the star of L, respectively.

A finite automaton A is a quintuple A = (A, Q, M, qo, F), where A is the input
alphabet, Q the finite nonempty set of states, go € Q the initial state, F < Q the set of
final states, and M the transition function, M : Q X A - P(Q), where P(Q) derotes
the powerset of Q. If M(q, a) consists of one element for all e Q, e c A the
automaton A is called deterministic. The transition function M is extended to
P(Q)x A* as usual. A word we A* is accepted by A iff M(qo, w)nF #0. The
language L(A) of words accepted by the automaton A is regular. A finite automaton
A is called nonreturning; iff M(qy, x) N{go} =9 for all xe AA*. Clearly, to each
automaton A there exists a nonreturning autematon A' such that L(4)=L(A").

* This research was done while the authcr was at the University of Waterloo; it was supported by the
National Research Council of Canada under grant No. A-1617.



64 © E. Leiss

A boolean automaton B is a generalization of a finite automaton which will be
needed in the last section [2]: B = (A, Q, M, qo, F), where A, Q, g,, and i¥ have the
same meaning as for finite automata, and the transition function M .s defined as
follows: M : Q X A - Bo, Where Bo (or X if Q is understood) is the set « f all boolean
functions in the variables {qq, . . . , ¢.} = Q. Thus Q is considered as the s=t of states of
48 on the one hand and on the other hand as the set of variables of Bo. We ¢ssume
that the variables take the values 0 and 1. Operations are denoted by the cor-
responding set-operations, i.e. U for (bcoleart) union, N for intersection, etc. The
transition function M is extended to Bo X A* as follows: M(f, A)=ffor all fe &; if
f=fqo,...,qn)€B, then M(f, a)=f(Miqo,a),..., (g, a)) for all acA;
M(f, wa)=M(M(f, w),a) for all fe B, we A*, a = A. Furthermore we definie a
relation =g on %, called evaluation under F: If f =f(F; Q—F), then f =fa iff
fa,...,1;, 0,...,0)=a, ac{0,1}. A word weA* is accepted by B iff
M (qo, w) =F 1. The set of words accepted by B is denoted by L(B). Given a boolean
automaton B = (A, Q, M, q,, F) we construct the derived deteir:inistic automaton
Agp, Ag=(A, P, N, qo, G), where P={fc B|f=Mi(qo, x) for sonie xe A*}, G =
{feP|f=r1},and N(f,a)=M({}, a) for all fe P, a € A. Since B, is finite =0 is P,
thus Ap is a finite automaton. Furthermore one shows L{B) = L(Ag) [2]. Interpret-
ing set theoretical unicn as boolean additior: we can consider finite automata as a
special case of boolean automata: a subset P of the set Q of states corresp onds to the

boolean union of all elements p € P and the empty state @ corresponds to the constant
function O € A.

Example 1: An example of a boolean automaton is B = ({a, b}, {q0, 91}, M, gon
41, ), waere * is given by the following table:

a b

qo | ¢ Goqu
qi qo\Y q1 qoNq

The corresponding derived deterministic automaton Ap is given in the following

diagram with qo N g, being the initial state and {Go G, Jo'uq, 1} the set of final
states of Ap:

a b =F
GoN gy dondq:  qdovuqy O
Gond 0 0 1
doV qi Govqr qGongr 1
0 0 0 0
GoVqy 1 1 0
i 1 1 1

A system of generalized language equations is a set of n equations in n variables

X'izGi(le--‘an)a i""l,...,"l
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together with an initialization X,. The G; are functions from n-tuples of languages to
languages, i.e. G; :[P(A™*)]" > P(A*), while X, is 2 regular expression over the
alphabet X, ..., X,. Furthermore it is assumed that the G; can be expressed in
terms of set-operations, concatenations, and stars, involving as operands the X; and
certain fixed languages which can be considered as constants but may be quite
arbitrary. For example consider the foliowing system of generalized fanguage
equations over the alphabet A = {a, b}:

Xi=(UiXinViX)*X,u Yy,
X2=E3(—1u Vz)zz * Y(——T’Y,
Xo=X1X2n XX,
where U, ={a}, Us=ba*, Vi={a"b" |n =1}, Vo={b}, Yi={A}.

2. Introduction

Certain classes of equations have been studied quite axtensively in the theory of
formal languages. For iastance it is known [1] that derivative equations uniquely
determine a regular language; these are equations of the form X; =(U,c 4 aXia U S,
i=1,...,n,tobe solved for X,,, where X,,, X;,€{X,,..., X.,}, 6;€{{r}, 0}. These
equations immediately yield a deterministic finite automaton A = (A, {X,, ..., X..},
M, X, {Xi|6: ={A}}), where M(X; a)=X,, for all ie{l,...,n},acA. Then
L(A) = X,,. If we consider these derivative equations as a special case of generalized
language equations, we observe that the fixed languages are @, A}, and {a} fora € A.
It is quite natural to allow more complicated fixed languages U, Y; thus arriving at
equations of the form X; =|_Jj-; U, X; u Y.. However, this is somewhat problematic
since now a solution of such a sysiem of equations need not be unique any ionger. For
instance consider the equation X =(a UA)X UA over the alphabet A ={a, b}.
Clearly {a}* is a solution, but {a, b}* is also cne. However, if we assume A £ U, ; for all
i, j we regain uniqueness of solutions; in the case of equations in one variable
X =UX u Y we have the unique solution X = U*Y. Similar results are known for
systems of the form X; =|_Jj-1 X;U,; U 7. These results can be found in [5]; [3] and
[4] also deal with such equations but their approaches are slightiy different.

Recalling the definition of generalized language equations we so far dealt with
functions G; which could be expressed as unions of terms of the form U, ;X (or
X;U,,) as ‘variables’ and the fixed languages Y;; furthermore the U;; and Y; arc
assumed to be reguiar languages. For the following we will remove some of
these restrictions, in particular we will allow arbitrary set-functions (intersections,
complements, etc.) rather than only unions, and at least in the beginning the U, ; and
Y; can be arbitrary languages. Furthermore we also ailow terms of the form U;, X; as
‘variables’. For the greater part of this note we will consider systems of one equation
in one variable only, however it is quite easy to obtain analogous results for aroiirary
systems. This straightforward ge. ralization is usually left to the reader.
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3. Uniqueness

If we have equations of the form X; =_j-1 U,; X v Y}, we can ensus € uniqueness
of a solution by assuming A € U;; for all i, j. Such a condition will alsc turn out to be
sufficient for the uniqueness of a solution of the more general systems considered
below.

We will deal with one equation in one variable

X =G(X), 3.1)
where G is a function from languages to languages expressible as follows:
G(X)=g(UX,...,UX; ViX,...,ViX; Y:,..., Yx), (3.2)

g being an (I +J + K)-ary set-function, and U,, V}, Y} are arbitrary languages such
that AU, A€V, ie{l,..., I}, je{l,...,JL kell,...,K}

For example, let Uy =ca*, Up={a*|i=0}, Vi={a'd""'|i=1}, Y, =0 and iet
g(71,...,2a)=(Z1nz3)u(z1nZ)uzs, then the corresponcing generalized
language equation over A ={a, b} is

X =(aa*Xn{a'b" iz 1}X)u (aa*X n{a*|i =0}X).

Since we are dealing with systems of one equation we will tacitly assume that it is to
be solved for the only variable X.

Theorem 1. Let U, V), Y, be arbitrary languages, A€ U, A€ V', cnd let g be an
(I +J +K)-ary set-function. Then there exists at most one solution of the equation

X=g{hX,.... UX; ViX,...,V,.X" Y1,..., Yx). {3.3)
Proof. Since g is a set-function in the I +J + K variables UX, V.X, Y, it cin be
represented as follows:

=81V UGB UGV U

where each g,, form =1, ..., M is an intersection of the variables or their comple-
ments. Furthermore we assume that g, for /=1, ..., L involves at least one of the
variables U.X, V.X while gr.1, . .., gm cre intersections of the Y, only, M =L. Let
G be g considered as a function of X only; G has a corresponding representation
G= Gl Je ‘UGLUGL+1U' . 'UGM
and Gr.1u- - - U Gy, is a constant therefore contained in any possible solution of
X =G(X).
We will assume that there exist two different solutions, i.e.
A=G(A), B=G(B), and A#B.

Letwbea shortest_ wordin A A B (=(A nB) U (B n A)); without loss of generality
we A -B(=A nB). Clearly w € A — B implies

weGi(A)L - uGL(A).
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Observe that forall /=1, ..., L, G, is an intersection of terms of the following four
forms (in addition to Y’s):

@ UX, () VX, (o UX, (d) VX

In all rour cases we will show that w is in a term with B substituted for X if it is in
some term with A substituted for X, e.g. w € VA implies w € VB. Clearly, this will
yield a contradiction to the assumption A A B # ) and therefore will prove unique-
ness of a solution if one exists.

(@) Let we UA, i.e. w=uw' for uc U, w' € A, and |w'| <|w/| since A € /. There-
fore w'e B (recall that w is a shortest word in A A B) and w =1'w'e UB.

(b) Letwe VA, ie.w=uovw'forve V, w' e A, lw'|<|w|. By the same argument as
in (@) w' € B (otherwise w'e A A B) therefore w = vw'e VB.

(c) Letwe UA. Thisisequivalentto w # uw' forallue U, w’ € A, |w'| <|w|. Now
by our assumption that w is a shortest word in A A B this condition is equivalent to
w # uw' for all 4 € U, w' € B such that |w’| <|w|, therefore w € UB.

(d) Letw € VA. Thisiscquivalentto w # vw'forallv € V, w' € A, |w'| <|w|. Again
this holds iff w # vw’ for all v € V, w' € B such that \w’! <|w| and therefcre w € VB.

Now we know hac w € Gi(A) iff w € G;(B) since this holds for all the terms of the
intersection hence we have

weG(A) if weG(B)

contradicting the assumption A # B. Thus A = B and any solution of X = G{X) is
unique.

The reader should note that no properties of the U, V;, ¥ were used in the proof
other than AZ U, and A€ V; for all i, j. That the condition A g U; is necessary is
obvious from the example in the introduction. That the condition A € V; cannot be
dropped follows from the following example. Consider X = VX, where A € V, say
V=V'u{r}, A€ V'. Then we have X = V'X UX=V'Xn X and clearly X = A*
and X =@ are two different solutions.

4. Existence and a test for membership

In the last section we considered the equation X = G(X) when the function (G was
expressible as g(U, X, ..., UX; Vi.X,..., V.X; Yy,..., Yk), the U, V,, Yy being
arbitrary languages subject to the assumptions A € U, A £ V. In this section we wiii
show that under the same assumptions there always exists a solution in X of the
equation X = G(X). Furthermore we will show that this solution is recursive if the
fixed languages U, V), Y, are recursive, i.e. we can test whether a given word w e A™
is in the solution or not if we have a test for membership for all fixed languages.

We already noted that in the case of equations of the type X = UX u Y allowing
A € U does not affect the existence, c»!v the uniqueness of solutions. 'While this
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statement holds true for our more general equations as far as nniqueness is
concerned for existesce it changes quite unexpectedly in that there might not exist
any solution if we allow A € V}, as illustrated by the following exampile: Consider the
equatlonX UX v VX, where A € U, A € V. This implies X = UX u(V -AX uZX,
or X = X Thisis possible onlyif X =8, i.e. X = A*. However A* # U/ *since A £ U.
Therefore there does not exist a language satisfying this equation. However if we
assume A £ U, A £ V; for all j, j there always exists a solution as the folic wing theorem
shows. Clearly, this solution is unique by Theorem 1.

Theorem 2. Let U, V;, Y. be arbitrary languages, A€ U, A£ 'V}, and let g be an
(I +J +K)-iry set-function. Then there always exists a solution of the equation in X

X=gUiX,...,UX; ViX,...,V;X; Yyi,..., Yg). 4.1
Proof. The funciion g(U.X; V,.X; Yi) can be considered to be represented as a

certain regular expression with boolean operators and concatenation operating on
the U, V}, Yy, and X. Let

Y(Ul,---,Ut;Vl,---,VJ;Yl,---,YK;X) 4.2)

(or y for short) be the regular expression in these I +.J + K + 1 letters representing g.
(If there are more such expressions fix one for the remainder of this paper.) Now
define S, for all r =0 as follows:

S =[y(Us; Vj; Yi; X)T, (4.3)
where [a] for any regular expression « of this kind' is determined as follows:
@ [aupl =[] uB],
() [a] =A"—[a],

(C) [a : B]’ =Us+t=r[a]s * [B]" (44)
@d [af=anA’ for ac{U,V, Ylij k}
) [XT=S

Since beolean operaticns can always be expressed in terms of unions and comple-
ments, rules (a) and (b) ccver all boolean operations. Rule (c) covers concatenation,
and rules (d) and (e) describe what happens with the constarts. This definition
appears to be circular since in the definiton of S, the term S, (by rule (e)) may be used.
Note, however, that we assume A € U;, A € V; thus whenever the term S, occurs in the
compusation of §, it is concatenated to the e.npty language 0. Alternatively, one
could redefine rule (c) in (3.4) to read

) [a-BT=U [a-[B]"

sit=p
s>0

In parti -:lar. the star operator is not permitted in these expressions.
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The reader can verify that S, contains only words of length r.
Now let

s=US.

r=0
We claim that 8 is a solution of equation (4.1), i.e.
S=G'S),
where G is g as function of X only. Let us assume the contrary, S # G(5), and let w
be a shortest word in § A G(8); |w| =1 Clearly, w € G(S) implies we G(S)n A" It

follows from (4.4) that steps (a) through (e) precisely reflect intersecting G(S) with
A'; for one easily verifies

(LicL)ynA'=(LinAYu(L,nAY,
LnA'=A'-(LnAY,

(Li-I)nA'= U (LinA%) - (LanAY.

s+t=1
Since |w| is minimal it follows that no such w can exist, S A G(S) is empty, and hence
S=G(S).

While for arbitrary lar:guages L it is not possitie to determine the intersections
L n A", for recursive languages this can be done as vhere are only finitely many words
of length r in A*. Therefore we can state

Theorem 3. Let U, V), Yi be recursive languages, A€ U, A€ V;, and let g be an
(I +J +K)-ary set-function. Then the unique solution in X of the equation

X=g(U1X,...,U;X; VIX,...,VJXm; Y],..., Yk)

is recursive.

As mentioned in the introduction all the results given for one equation in one
variable can easily be generalized to n equations in n variables.

Example 2. Consider the following equation over the alphabet A = {a, b}:

X=UXNVXNY, (4.5)

where U ={a®|p prime}, V={a"p"'|n =1}, and Y = (AA)*.
We first rewrite (4.5)

X=U5_(u—¥;§u Y
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and then compute S, for »=0:
So=A —([(UXPu[VXU ¥
=A—(A-[UX)uA - -[VX])uA -[YD)) =0
since [UX1’ =@ and [VX]"=[V]°- [X]° =4,
Si=A-(A-[UX]hU(A~(A-[VXTYu(A-[Y])) =0

since
[UX) =[UT- [XT'u[UY - [X]°=0-[X]'uf-So=0
while
[VRT'=[V] [XT'u[V] - [XT
=gua-A-[X])=a-A-So)=a - (A -0)=a.

One can in fact show that S; =@ for all i =0, thus § =@. That the empty setis indeed a
sclution is easily verified by substitution, U - @ VA¥ A Y=0. By Theorem 1, this
solution is the only one.

5. Construction of finite automata when the fixed languages are regulsr

In the preceding two sections we showed existence and uniqueness of a solution of
the equation

X =g(UX; ViX; Yy) (5.1)

under the assumption that A€ U, A€ V; for all i, j. In this s ction we will further
assume that all the fixed languages U,, V}, Y, are regular. Under these assumptions

we show that the unique solution of (5.1) is regular by effectively constructing a
deterministic finite automaton accepting it.
We start with the construction. Let

Ay, =(A, Qu, My, qo, Fu,), Ay, =(A, Qv,, My, qo, Fv,) and
AYk = (Ay QYka MYk’ 4o, FYk)

be nonreturning deterministic finite ai.iomata such that U; = L(Ay,), V;=L(A, ),
Ye=L(Ay,) foralli=1,...,I,j=1,...,J, k=1, ..., K. Furthermore assume
that Qu, —{qo}, . . . , Qv —{qo} are ali pairwise disjoint, i.e. only <* = initial s*ate q, is
shared. Then we define a boolean automaton B = (A, Q, M, q¢, F) as follows:

I J ¥
Q= LJl Qui v LJI Qv, UkLJ1 QY;‘:
i= ji= =

F_{Ufsl Fv.—{q0}, if A€ G(X),
\Uk=1 Fy, uig), if A e GiX),
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where G(X)is g(U.X; V:X; Y) as a function of X only. As already indicated we can

always test whether G(X) contains A or not without knowing the solution as
A € G(X) iff [y1°={A}. Finally

g(N(My,(qo, a)); N'(My,(qo, a)); My, (qo, ), if q = qo,

Mg, a)= N(My,(q, g)), if g € Qu, —{qo} for some i,
’ N'(Mvy,(g, a)), if g € Qv, —{qo} for scnme
My, (g, a), if ¢ € Qv, —{qo} for some k

and N, N' are as follows:

qu qo, if g€ Fy, for some i,

N(q)={

q otherwise,
¢uUqo if q€Fy, for some j,

N'@q)=
P {q otherwise.

Then L(B) is the unique solution of (5.1). Since the language accepted by a boolean
automaton is always regular, this solution is regular, too. Furthermore Apg, the
derived deterministic automaton to B, is effectively constructible and also accepts the
solution.

Before we prove that L(B) actually is a solution for X of (4.1) we give two
examples.

Example 3. Consider the equation X =UX u VX, where U =a*b((a wb)a*b'*,
V=(aub) (b*a(a ub))*b*. The automata Ay and Ay are given below.

AU = ({a: b}s {X, B’ C}’ MU: Xw {C})
AV = ({a’ b}v {X’ D’ E}’ MV& Xv {D})

My: My:

a b a b
X B C X D D
B B C D E D
C B E D D

Thus B is as follows:

B=({a,b},{X,B,C D E}, M, X, 0,
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M given by
a b
X BuDuX CuXuDuX
B B CuX
C B B
D E DuX
E DuX DuX

Therefore tlie derived deterministic automaton A g is constructed as follows:

a b =0
X Bu_DuX’ CuDuXuxX=1 0
BuDuX BUEUBuUDUX 1 1
1 1 i 1
BUEUBuUDuUX BuDuX 1 0

Therefore X =(aa)*(a u(a UA)bA™) is a solution. This can also be verified by
substituting this language into the given equation. By Theorem 1 this solution is the

only one.
Example 4. Consider the equation
X =[(VX- V) TX]U Ya,
where
U=bb*,V=a, Yi=bb* Y,=A\.
The corresponding boolean automaton is as follow

B = ({av b}, {X’ Bs C’ D}9 ﬁ/[, {X’ D})’

M being given by
a b
X 0 BADANX
B 0 BuX
C 0 0
D 0 D
Hence Ap is as follows:
a b =F
b'¢ 0 BADANX 1
0 0 0 0
BADNAX| 0 BuX)nDn(BuX)=0 0
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Thus L(B) ={A}. One can directly verify that this is indeed a solution:

[(@A—BFF) ABEF]UA = ak N bb* ABBFUA = A,

We now come to the proof that L(B), or L for short, as given in the general
consiructions i¢ 2 solution of (5.1). As in the proof of Theorem 1 we represent G as
union of intersections of terms of the four types, U.X, U.X, VX and V,X, ie.

G(L)=Gi(L)y + - UGL(L)U - - UG,(L),
where G,,.1(X) U -+ - U G,(X) does not depend on X. We claim
G(L)=1I. (5.2)

(a) We first prove L 2 G(L). It is not difficult to see that by construction ¢! #,
L contains G,,1(L)uU- - - UG,L(L). Hence let us assume w € G,(L), i.e. there ex:st
sets Iy, I<{1,...,I}, J1,J.c{l1,...,J},and K}, K, <{1, ..., K} such that

wcUX forali;el, and weUX foralliel,
and

we VX foralljeJ, and we VX foralljel,
and

weY, forallkeK, and weY, forallkeK,.

Without loss of generality we may assume tnat g in the definition of the transition
function M of B is represented such that it exactly mirrors the representation of G.
By the defirition of M it is easy to see that whenever u € U; a transition to X is
provided and whenever v € V; a transition to X is provided. Consequently if w s as
described above then due to the conditions A € U, A € V}, the proble: .whether w is in
L can be reduced to the same problem for a shorter word. Hence, by induction (the
basis being L contains G,,+1(L) v+ - U Gr(L)), the claim follows.

(b) We now prove G(L)=2L. Suppose we L. If w=A, then by definitica of B,
A €Gpme1(L)U- -+ UG,(L). Therefore assume |w|>0, i.e. w =aw’ with a€ A and
consider M(qo, w). M(qo, a) can &: ain be represented as a union of intersections
such that the representation of M (o, a) and G are identical except that G has U.X,
V,—}f, or Y, whenever M(qc, a) has N(My,(qo, a)), N'(Mv,(qo, a)), or My, (qo, a).
Now the argument is analogous to that in (a). Thus w € G(L).

This concludes the proof of the claim (5.2). Therefore we can surnmarize.

Theorem 4. Let U, V, Y, be regular languages, A€ U;, A€ V}, anc let g be an
(I+J+K)-ary set-function. There is an effective construction of a deterministic
automaton A accepting precisely the unique solution of the equation in X

X=g(U1X,...,U,X; Vl)?,...,VJ)?; Y),...YK).

The construction gives rise to a corollary.
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Corollary. If V is prefix free, i.e. x @ V and xy € V imply y = A, then the solution of
X=VX
is given by X = (VV)*V(PPF(V) UPD(V)), where

PPF(V)={xec A*|xye V for some yc A* and x& "/}
and

eD(V)={x e A*|xy& Vjorally e A* and for all x' e PPF(x), x' £ V}.

FPFE(V) i< the set of all nrefixes of some v € V which are not in V, and PD(V) can
be visualized as follows: Let A = (A, Q, M, qo, F) be the reduced automaton such
that L(A) = V; PD(V) s the set of all words x which lead tc the ‘dead’ state of A (the
state g€ F with M (q, a) = q for all a € A) such that no prefix of x is in V. Note that V
prefix free implies that there is always a dead state in A and furthe-more there is
precisely one final state from which all transitions lead into the dead state. Therefcre
i the correspcnding boolean automaton for the solution of the equation, N'(q) can
be written either as g or as qo depending on whether g is a rejecting or the unique
firal state of A. This yields a special form for Ay which gives rise to the above
representation.

Similar but increasingly more complex expressions can be obtain.d for more
complicated equations.

We conclude with some renaarks on generalizations. While it was not :mentioned in
the construction one can casily modify it in order to obtain solu:ioas for equations
involving concatenation from the left such as X = V;V.X. An example is given
below (Example 5). Note that within the framework of the construction concatena-
tion from the right is out of the question since the result need not be regular any
more. Consider for instance X =0X1uUA. It is well known that {0"1"|n =0} is a
solution, and it is not difficult to see that it is the only one. Thus .his equation has no
regular so'ution.

In the preceding sections we only dealt with concatenation from tte left, e.g. UX,
VX, generalizing derivative equations. We can, however, handle concatenation from
the right, too, provided no terms involving concatenation from the left appear in the
equation. This is Aone by first reversing the equations, thus obtaining equations
as considered he.c¢, determining their solution, and reversing this solution tc
obtain a solution of the original equations (see Example 6). Theorems 1 and 2

Kaiso hold fcr this modification (in the proofs we have to replace UX, VX
b XU, XV).

Example 5. We determine the soiution of the equation X = V, V,X, where V, =
{a Ub*)u, V2= aa*. First we determine the nonreturning automata 4, and A, such
that L(A;)= V, i=1,2, '"

A, =(a, b}, {X, B, C, D}, My, X, {B, D}), A»=({q, b}, {E, G}, M,, E, {G}) where
M, and M, are as follows:
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M. a b M,: a b
X B C E G 0
B D 9 G G 0
C D C i
D o 0

Therefore B = ({a, b}, {X, B, C, D, E, G}, M, X, {B, D}), M being given by

a b
X B C
B | DuGuX 000
C D C
D OuGuX 000
G GuX 0

Note that B and D remain accepting since A € aa*X while G becomes rejecting
according to the general construction. Furthermore E can be dropped since it is not
used in the final result. Thus the derived deterministic automaton Ap is as follows:

a b =F
X B C 0
B DuGuUX 1 1
C b c 0
DuGuUX GuX 1 1
1 1 1 1
D GuX 1 1
Gug GuXuB C 0
GuXuB GuXuB C 0

By substitution one can also directly verify that L(Apg) is, in fact, a solution of the
given equation.

Examiple 6. Consider the equation X = Xbb over A ={a, b}. In order to determine
its solution in X we reverse it, obtaining Y = bb Y, and solve it in the usual way. We
find as solution Y = (bb)*b(A UaA*). Now we reverse this solution, which yields
(A*a U A)b(bb)*, and one easily verifies that this is a solution for the given equation.

Example 7. We determine the solution in X for the following set of equations:

X =(aa*X uab"J)ABY, Y=b"Yn(aub)Z, Z=.7*ZuUbX

Clearly A € X, A£ Y, A € Z by inspection. For simplicity we use a graphical represen-
tation; empty states are not shown.
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X

Combining all these transitions yields the following boolea.n automaton B' = ({a, b},
{X9 B, C, D, Ya E, Gs Zs H’ J}: M" X, {Xa Z}), M’ given by

ST NQh~<DO WX

d b
BuXuCuX)n®d (OuUO)AnDUY
BuX 0
0 cuX
0 0
0n(GuZ) (EoY)Nn(GuZ)
0 LY
0 o
0uG HuZuluX
HuZ 0

0 0
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which can be simplified to B = ({q, v}, {X, B, Y, E, Z, H}, M, X, {X, Z}), M being

a b
X BuX Y
B BuX 0
Y Z EuYnZ
E 0 EuvY
z 1 HuXuZ
H HuZ 0

Therefore Ap is as follows:

Q
o

|
m

X BuX Y 1

BuX BuX Y 1

Y Z EuYuZ 1

Z 1 HuXuZ 1

EuYuZ 1 EuHuXuYuZ 1

1 1 1 1

HuXuZ | BUHUXUZ YUHUX UZ 1
EuHuXuYuZ | BUHUXUZ 1 1
BuI_-I__gXuZ" BuHuXuZ YuHuUXuZ 1
YCHUXUZ 4 EuYuZ 1

Thus X = A*, furthermore Z = A* since it occurs as state in Ag, and finally Y =0
since Y occurs as state in Ag. Since the solution is very simple one can easily verify
the result by substitution:

X: (aa*A*Uab*A*)bP= A%, Y: bb¥n{awub)A¥=0,
Z: ha*PuUbA*=A*

References

[1] J.A. Brzozowski, Derivations of regular expressions, JACM 11 (1964) 481-194.

[2] 1. A. Brzozowski and E. Leiss, On equations for regular languages, finite automata, and sequential
networks, Theoret. Comput. Sci. 10 (1980) 19-35.

[3] J.H. Conway, Regular Algebra and Finite Machines (Chapman & Hall, London, 1971).

[4] S. Eilenberg, Automata, Languages, and Machines, Vol. A (Academic Press, New York, 1974,

[5] A. Salomaa, Theory of Automata (Pergamon, Oxford, 1969).



