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A h ~ e t .  A syst~.m of gen=~alized language equations over an alphabe~t A i:~ a set of n equatioas in 
n variables: ~ = Gi(Xl . . . . .  X,,), i = 1 . . . . .  n, where the Gi are functions from [P(A*)]" into 
P(A*), i = 1 . . . .  , n, P(A*) denoting the set of all languages over A. Furthermore the G~ are 
expressible ir~ terms of set-operations, concatenations, and stars which involve the variables X, as 
well as certain fixed languages° In this note we investigate existence and uniqiuenes~ of solutions of a 
certain subclass of generalized language equations. Furthermore we show that a soiution is regular 
if all fixed languages are regular. 

1. Notation 

If A is an alphabet, then A* denotes the set of words over A. The length [~,{ of a 
word w is the number of elements of A in w; note ~hat the length ot! the empty word A 
is 0. A language (over A) is any subset of A*.  i~f L~ and L2 are languages, so are 

L 1 u L 2 ,  L l n L 2 ,  L~L2, L1, L* ,  

denoting the union, intersection, concatenation of L1 and L2, the ::omplement of LI 
with respect to A*,  and the star of L~, respectively. 

A finite automaton A is a quintuple A = (A, O, M, qo, FI~, where A is the input 
alphabet, O the finite nonempty set of states, qo ~ O the initial state, F c_: O the set of 
final states, and M the trans~ition funct'on, M : O x A ~ P(Q), where P(Q) der~otes 
the powerset of O. If M(q, a) consists of one element for all q ~ Q, a ~ A  the 
automaton A is called deterministic. The transition function M is extended to 
P ( Q ) x A *  as usual. A word w~A*  is accepted by A iff M(qo, w ) n F ~ O .  :the 
language L(A) of words accepted l~y the automaton A is regular. A finilte automaton 
A :,s called nonreturnin~.: iff M(qo, x)n{qo}=f~ for all x ~ A A * .  Clearly, to each 
automaton A there exist,,; a nonreturning automaton A '  such tl~at L(A)= L(A'). 

* This research was clone while the author was at the University of Waterloo; k was supported b~ the 
National Research Council of Canada under grant No. A-1617. 
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A boolean automaton B is a generalization of a finite automaton which will be 
needed in the last section [2]: B = (A, Q, M, qo, F),  where A, Q, q~, and ~ have the 
same meaning as for finite automata, aE~d the transition function M ~s defined as 
follows: M "  Q x A --} ~o,  where ~3o (or ~ if Q is understood) is the set t.f all boolean 
functions in the variables {qo, • • • ,  qn} = O.  T h u s  Q is considered as the s¢t of states of 
.~ on the one hand and on the other hand as the set of variables of ~Q. We rssume 
that the variables take the values 0 and 1. Operations are denoted by the cor- 
responding set-operations, i.e. w for (beolear,.) union, c~ for intersection, etc. The 
transition function M is extended to ~ o  × A* as follows: M(f ,  A ) = f for all [ e ~ ;  if 

then M(f ,a )= . f (M(qo ,  a ) , . . . , M ( q , , a ) )  for all a e A ;  
M(f ,  wa) = M ( M ( f ,  w), a) for all .f ~ ~ ,  w e A*,  a ,= A. Furthermore we define a 
relation =F on ~o ,  called evaluation under F" If f = f ( F ;  Q - F ) ,  then f =Fa iff 
f (1 , . . . ,  1; 0, . . . ,0)=c~, a~{0, 1}. A word we:A* is accepted by B iff 
M(q0, vv) = F 1. The set of words accepted by B is denoted by L(B).  Given a boolean 
automaton B = (A, Q, M, qo, F) we construct the derived detel ~:inistic automaton 
An, A n = ( A , P , N ,  qo, G), where P = { f e ~ [ f = M l q o ,  X) for ~c, me x e A * } ,  G~- 
{ leP l f  =P 1}, and N(f ,  a)=M(L a) for all f e P ,  a eA. Since ~ o  is finite so is F, 
thus An is a finite automaton. Fur*hermore one sho,ss L(B)  = L(An) [2]. Interpret- 
ing set theoretical union as boolean addition we cant consider finite automata as a 
special case of boolean automata: a subset P of the set Q of states corresl: onds to the 
boolean union of all elements p ~ P and the empty state 0 corresponds to the constant 
function 0 s ~.  

E x a m p l e  1: An example of a boolean automaton is B =({a, b}, {qo, q~}, M, qoc~ 
~ ,  0), where 3 t  is given by the following table: 

a b 

qo 

q3 
41 ~0uq l  
q o u q l  qoc~tl 

The corresponding derived deterministic automaton An  is given in the following 
diagram with qont] l  being the initial state and {~o r ' ~ ,  ~towq~, 1} the set of final 
states of An" 

qo t"~ql 

qonq  
qouql 

0 

q o u q l  
1 

a b =• 

qo~q l  q o u q l  0 
0 0 1 

q o u q l  qon~ll 1 
0 0 0 
1 1 0 
! 1 1 

A system of generalized language equations is a set of n equations in n variables 

Xi = Gi(X1, . . , , X,)~ i = l , . . . , n  
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together with an initialization X0. The G~ are functions from n-tuples of languages to 
languages, i.e. G~:[F(A*)]"--> P(A*) ,  while Xo is a regular expression over t!he 
alphabet X ~ , . . . ,  Xn. Furthermore it is assumed that the G~ can be expressed in 
terms of set-operations, concatenations, and stars, involving as operands the X~ and 
certain fixed languages which can be considered as constants but may be quite 
arbitrary. For example consider the following system of generalized language 
equations over the alphabet A = {a, b}: 

X1 = ( U~X1 n V1X1)*X~ ~ Y~, 

X2 = U~X~ ~ V2X2" X ~ -  Y1, 

Xo = X I X 2  t'~ X2X1,  

where U~ ={a}, U 2 = b a  *, V~={a"b"ln>~ ~}, VE={b}, Y~ ={A}. 

2. Introduction 

Certain classes of equations have been studied quite extensively in the theory of 
formal languages. For instance it is known [1] that derivative equations uniquely 
determine a regular language; these are equations of the form Xi = UaEA aXi.a ~.,J ~i, 

i = 1 , . . . ,  n, to be solved fer X,,,, where Xm, X~.a ~ {X1, . . .  ,X,},  8 ~  {{,~ }, 0}. These 
equations ~mmediately yield a deterministic finite automaton A = (A, { X 1 , . . . ,  .~C, }, 

where M ( X i . a ) = X i ,  a for all i ~ { l ~ . . . , n } , a : e A o  Then 
L ( A )  = X,,,. If we consider these derivative equations as a special case of generalized 
language equations, we observe that the fixed languages are 0, {A }, and ~,a} for a e A. 
It is quite ~latural to allow more complicated fixed languages U~,i, Y~ thus arriving at 
equations of the form Xi = I,_J~= 1 U~..rXj w Y~. However, this is somewhat l;,roblematic 
since now a solution of such a system of equations need not be unique any longer. For 
instance consider the equation X = (a w A)X u A over the alphabet A = {a, b}. 
Clearly {a }* is a solution, but {a, b }* is also one. However, if we assume A Z U~.~ for all 
i, j we regain uniqueness of solutions; in the case of equations in one variable 
X = U X  u Y we have the unique solution X = U* Y. Similar resul[ts are known for 
systems of the form X~ = I,_Jj% ~ x/u~.i w ~J"i. These results can be found ir, [5]; [3] and 
[4] also deal with such equations but their approaches are slightly different. 

Recalling the definition of generalized language equations we so far dealt with 
functions G~ which could be expressed as unions of terms of the form U~fl~j (or 
XjU~.j) as 'variables' and the fixed languages Y~; furthermore the U~.i and Y/are  
assumed to be regular languages. For the following we will remove some of 
these restrictions, in particular we will allow arbitrary set-functions (intersections, 
complements, etc.) rather than only unions, and at least in the beginning the U~.i and 
Yj can be arbitrary languages. Furthermore we also allow terms ef the form Ui -,X:j as 
'variables'. For the greater part of this note we will consider systems of one equation 
in one variable only, however it is quite easy tc~ 9btain analogous results tot  aroitrary 
systems. This straightforward ge, ralization is usually left to the reader. 
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3. Uniqueness 

If we have equations of the form X~ = U~'= ~ U~.iXJ '~ Y,, we can ensul e uniqueness 

of a solution by assuming a g U~,j for all i, i. Such a condition will also ~urn out  to be 

sufficient for the uniqueness of a solution of the more general systems considered 

below. 
We will deal with one equation in one variable 

X = G ( X ) ,  (3.1) 

where G is a function from languages to languages expressible as follows: 

G ( X ) = g ( U ~ X , . . . ,  UtX; V~Y(, . . . ,  VjX; Y : , . . . ,  Yr) ,  (3.2) 

g being an (I + J + K ) - a r y  set-function, and U~, V/, Yk are arbltr~ry l~nguages such 

that Ag U,, Ag V/, i ~ { 1 , . . . , / } ,  j ~ { 1 , . . . , J } ,  k ~ { l , . . . , K } .  
For example, let U l = o a  *, UE={a2'[i.>.-O}, Vl:={a'b'-l[i>~ 1}, $ i = ~  and iet 

g ( z . , , . . . , z 4 ) = ( ~ n z 3 ) u ( z ~ c ~ g 2 ) w z 4 ,  then the corresponding generaqzed 

language equation over A = {a, b} is 

X = ( a a * X n  {a'b ~-~li >I 1},~') ~ (aa*X c~ {a 2'1i ~> 0}X). 

Since we are dealing with systems of one equation we will tacitly assume that it is to 

be solved for the only variable X. 

Theorem 1. Let t ri, Vi, Yk be arbitrary languages, A ~ U~, A ~ V,  ,~nd let g be an 
(! + J + K)-ary ~et-function. Then there exists at mosJ! one solution of the equation 

R m 

X = g ( U 1 X , . . . :  UtX; V 1 X , . . . ,  V~X" YI . . . .  , Yx). (3.3) 
m 

~,oo | .  Since g is a set-function in the I + J + K variables U~X, V.~Y, Yk, it can be 
represented as follows: 

g = gl w. • • ugL w g/.+l u .  • • ugM, 

where each gm for m = 1 , . . . ,  M is an intersection olF the variables or their comple- 

ments. Furthermore we assume that gt for 1 = 1 , . . . ,  L involves at least one of the 

variables U~X, v . ~  while gL+l, • . . ,  gM ~.re intersections of the Yk only, :M >~ L. Let 

G be g considered as a function of X only; G has a corresponding representation 

G = G~ J .  • • w GL w GL+1 w.  • • w GM 

and GL+~ w. • .w GM is a constant therefore contained in any possible solution of 
X = G(X).  

We will assume that there exist two different solutions, i.e. 

A = G ( A ) ,  B = G ( / / ) ,  and A # B .  

Let w be a shortest word in A ~ B ( = (A n B ) w ( B  c~ ,4)); without loss of generality 
w e A - B ( = A r~/~). Clearly ~ ~ A - B implies 

w~G~(A)~ . .  . .wGL(A) .  
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Observe that for all l = 1 , . . . ,  L, Gt is art intersection of terms of the following four 
forms (in addition to Yk 'S) :  

(a) UX, (b) VX, (c) 73"X, (d) V ~  

in all tour  cases we will show that w is in a term with B substi tuted for X if ff is in 
some term with A substi tuted fer  X, e.g. w ~ V ~  implies w ~ vi~. Clearly, this will 
yield a contradiction to the ~,ssumption A A B # 0 and theregore will prove unique- 
ness of a solution if one exists. 

(a) Let  w ~ U A ,  i.e. w = u w '  for u c U, w' ~ A,  and [w'l < Iw] since A ~' U. There-  
fore w' ~ B (recall that w is a shortest  word in A A B) and w = t :w '  ~ U B .  

(b) Let  w ~ VA, i.e. w = v w '  for v ~ V, w' e .,{, [w'l < Iwi. By the same argument  as 
in (a) w' ~_/~ (otherwise w' ~ A A B) therefore w = v w '  ~ V B .  

(c) Let: w ~ U--A. This is equivalent  to w # u w '  for all u ~ U, w' e. A, [w'l < [w[. Now 
by our assumption that w is a shortest  word in A A B this condition is equivalent to 
w # u w '  for all a ¢ U, w' ¢ B such that [w'[ < iwl, therefore w ~ UB. 

(d) Let  w ¢ V2{. This is equivallent to w # v w '  for all v ¢ V, w' e ,,{, Iw'l < Iwl, A,a  
this holds iff w # vw" for all v ~ V, w' ~/~ such that  lw~! < jwl and therefore  w ~_ V/~. 

Now we know ,hat w ~ G ~ ( A )  iff w ~ G t ( B )  since this holds for all the terms of the 
intersection hence we have 

w ¢ G ( A )  iff w ¢ G ( B )  

contradicting the assumption A # B. Thus A = B and any solution of X - -  G ( X )  is 
unique. 

The reader  should note that  no propert ies of the U~, Vj, Yk  were used in the proof 
other than A d U~ and A jg Vj for all i, ]. That  the condition A ~'U~ is necessary is 
obvious from the example in the introduction. That  the condition A ~ V j  cannot be 
dropped follows from the following example. Consider  X = V.(, where  A ~ V, say 
V = V' u{A }, A d V'. Then we have X = V'X" u Y~'= V ' f f [ n X  and clearly X = A* 

and X = 0 are two different solutions. 

4. Existence and a test for membership 

In the last section we considered the equat ion X = G ( X )  wher~ the function G was 
n 

expressible as g ( U I X ,  . . . , U t X ;  V 1 X ;  . . . , V ~ X ;  Y1 ,  . . . , Y r ) ,  the U~, Vj, Yk being 
arbitrary languages subject to the assumptions A ~' Ui, A ~' Vj. in this section we wii~1 
show that under  the same assumptions there always exists a solution in X of the 
equation X = G ( X ) .  Fur thermore  we will show that  this salution is re.cursive if the 
fixed languages Ui~ V i, Y k  are recursive, i.e. we can test whether  a given word w ~: A* 
is in the solution or not if we have a test for membership  far all fixed languages. 

We already noted that in the case of equations of the type X = U X  w Y allowing 
A ¢ U does not affect the existence., e ~ y  the uniqueness of solutions. While this 
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statement holds true for our more general equations as far as ~miqueness is 
concerned for existence it changes quite unexpectedly in that there might not exist 
any solution if we allow A ~ Vj, as illustrated by the followiag example: Consider the 
equation X = U X  u VX, where a ,~' U, a e V. This implies X = U X  w ( V - A ).X u .~, 
o~ X _ X. This is possible only if ,~ = ~, i.e. X = A*. However A* ~ U / *  since A g U. 
Therefore there does not exist a language satisfying this equation. However if we 
assume A g L~, A g Vi for all i, ] there always exists a solution as the foUc wing theorem 
sho~:s. Clearly, this solution is unique by Theorem 1. 

Theorem 2. Let L~, Vi, Yk be arbitrary languages, A ~ U~, A ~ Vi, and let g be an 
(I + J + K)-t, ry set-function. Then there always exists a solution of  the equation in X 

X = g ( U l X , . . . ,  U t X ;  VjY;;  . . . .  , Y r ) .  (4.1) 

Proof. The function g(U~X; V.~; Yk) can be considered to be represented as a 
certai, n regular expression with boolean operators and concatenation operating on 
the U, V/, Yk, and X. Let 

y ( U 1 , . . . ,  Ux; V t , . . . ,  V•; Y 1 , . . . ,  YK;X) (4.2) 

(or ~/for short) be the regular expression in these I + 3 + K + ]L letters representing g. 
(If there are more such expressions fix one for the remainder of this paper.) Now 
define S, for all r I>0 as follows: 

S, = [y(U,; Vi; Yk ;X)]  r, (4.3) 

where [a ]r for any regular expression a of this kind r is determined as follows: 

(a) [,, u # ] '  = [ a ] '  u [# ]  

(b) [tf]r = A ' - [ a t ] ' ,  

(c) [a" # ] '  = U , + , : , [ a ] ' .  [B]', (4.4) 

(d) [ ~ ] r = a r ~ A '  for a e { U .  Vj, Yk{i,] ,k},  

(e) [X]'  = S,. 

Since b~,olean operations can always be expressed in terms of unions and comple- 
ments, rtt!es (a) and (b) cover all boolean operations. Rule (c) covers concatenation, 
and rules (d) and (e) describe what happens with the constants. This definition 
appears to be ch'cular since in the definiton of S, the ter~n Sr (by rule (e)) may be used. 
Note, however, that we assume A ~' U, A ~' V i thus wh,gnever the term S, occurs in the 
computation of $~, it is concatenated to the e~npty language f}. Alternatively, one 
could redefine rule (c) in (3.4) to read 

(c') ["" #] '  : U [#] ' .  
s+t----r  

s > 0  

1 In parti;u!ar the star operator is not permitted in these expressions. 
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The reader can verify that $, contains only words of length r. 
Now let 

s=Us , .  
r ~ O  

We claim that S is a solution of equation (4.1), i.e. 

S=6(S), 

where G is g as function of X only. Let us assume the contrary, S #  G($) ,  and let: w 
be a shortest word in S A G(S);  ]wl = I. Clearly, w e G($)  implies w ~ G ( S ) n A  t. It 
follows from (4.4) that steps (a) through (e) precisely reflect intersecting G(S) with 
A t', for one easily verifies 

(Lx ~'L2)nA t =(L1 nAt)u(LEnAt) ,  

E c ~ A t = A t - ( L n A t ) ,  

(LI"[,2)r~A t= U (LlnAS) "(LENA'). 
s + t = !  

Since Iwl is minimal it follows that no such w can exist, S A G(S) is empty, and hence 

S =  G(S). 

While for arbitrary lar.guages L it is not possil; le to determine the intersections 
L n A' ,  for recursive languages this can be done as there are only finitely many words 
of length r in A*. Therefore we can state 

Theorem 3. Let Ui, Vi, Yk be recursb~e languages, A jg &], a sd Vj, and let g be an 
(I + J + K)-ary set-function. Then the unique solution in X of the equation 

X = g ( U t X , . . . ,  UtX; V 1 X , . . . ,  VjX; Y 1 , . . . ,  Yk) 

is recursive. 

As mentionea in the introduction all the results given for one equation in one 
variable can easily be generalized to n equations in n variables. 

Example 2. Consider the following equation over the alphabet A -: {a, b}: 

X = UX c~ VX r~ Y, 

v~here U ={aPlp  prime}, V ={a"b"- l ln->-  1}, and Y = ( A A ) * .  
We tirst rewrite (4.5) 

X = U- u v-' u ? 

(4.5) 
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and then compute S, for e ~> O: 

So=, - ([~--x]° ~,,[ v x u  ?]o~ 

= a - ( ( a  - [ u x ]  ° ) u (a - ( ( , - [  v ~ ]  °) u (x - [  Y.i)))) = # 

since [ UX] ° = ~ and [ VX] ° = [ V] °" [ ~]o = t~, 

S~ = A - ((A - [  UX] ~) w (A - ( ( A  - [  VX]  ~ ) u (A - [ Y ]~)))):--I~ 

since 

while 

[ux]' = [ u ]  ° .  [ x ] '  u [ u ] ' .  IX] ° = O. I x ] '  u ~- So = 

[ vR]' = [ v ]  ° .  [ g ] '  u [ v ] '  • JR] ° 

= 0 w a "  ( A - I X ]  ° ) = a "  (A-So)  = a  • ( A - 0 ) = a .  

One can in fact show that S~ = 0 _for all i ~> 0, thus S = I~. That  the empty set is indeed a 
solution is easily verified by substitution, U .  f~c~'V'A* n Y=O. By Theorem 1, this 
solution is the only one. 

5, Construction of finite automata when the fixed languages are regular 

In the preceding two ~ections we showed existence and uniqueness of a solution of 
the equation 

X = g ( U , X ;  V.~; ~k) (5.1) 

under the assumption that A ~( U~, h ~' Vj for all i, ]. In this s,: ztion we will further 
assume that all the fixed languages U,  Vj, Yk are regular. Under  these assumptions 
we show that the unique solutien of (5.1) is regular by effectively constructing a 
deterministic finite automaton accepting it. 

We start with the construction. Let  

Au, = (A, Qu,, My,, qo, Fu,), Av~ = (A, Qvj, My,, qo, Fv~) and 

A Yk = (A, Ork, MYk, qo, FYk) 

be nonreturning deterministic finite al.tomata such that U~ = L(Av,) ,  Vj = L(Av,) ,  
Yk = L(Ayk) for all i = 1 , . . . ,  L ] = 1 , . . . ,  J, k = 1, . . . ,  K. Fur thermore  assume 
that Qu, -{qo}, • • . ,  QYK --{qo} are ali pairwise disjoint, i.e. only ~:.~ e initial s 'a te  qo is 
shared. Then we define a boolean automaton B = (A, Q, M, qo, F) as follows: 

I J F 

O= U O_u, u U  Ov, u LJ Qy~, 
i=1  /=1  k:~-I 

F=J'UL~ ~ - {qo } ,  if,~¢ a(x), 
l K r 

[._Jl,=l Fyj, w~qo}, if A e G tX) ,  
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where G(X) is g(U~X; V.~; Yk) as a function of X only. As already indicated we can 
always test whether G(X) contains A or not without knowing the solution as 
A ~ G(X) iff [y]o= {A }. Finally 

i g(N(Mv,(qo, a)); N'(Mv,(qo, a)); M y  k (qo, a)), 
N(Mu,(q, a)), 

M(q, a) = N'(Mv,(q, a)), 

Mvk (q, a ), 

if q = qo, 

if q ~ Qu, -{qo} for so~ae i, 

if q ~ Ov~ -{q0} for sonde L 

if q ~ QYk --{qo} for some k 

and N, N '  are as follows: 

N(q)={~,  Uq°' 

N'(q)  = { q  UtT° 

if q ~ Fu, for some i, 

otherwise~ 

if q ~ Fv, for some j, 

otherwise. 

Then L(B) is the unique solution of (5.1). Since the language accepted by a boolean 
automaton is always regular, this solution is regular, too. Furthermore An, the 
derived deterministic automaton to B, is effectively constructible and also accepts the 
solution. 

Before we prove that L(B) actually is a solution for X of (4.1) we give two 
examples. 

Example 3. Consider the equation X = U X u  VX, where U =a*b((a ~b)a*b)*, 
V =(a ub) (b*a(a ub))*b*. The automata Av  and Av are given below. 

Au = ({e, b}, {X, B, C}, Mu, X, {C}) 

Av = ({a, b}, {X, D, E}, My, X, {D}) 

M u  : M v  : 

X 

B 

C 

a b a b 

B C X 

B C D 

B B E 

D D 

E D 

D D 

Thus B is as follows: 

B = ({a, b}, {3L B, C, D, E}, M, X, 0), 
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M given by 

X 

B 
C 
.O 

E 

a b 

B w D u . . Y  C u X u D u X  

B C w X  

B B 

E D u X  

D u 2 D w.P, 

Therefore the derived deterministic automaton A n  is constructed as ~ollows: 

X 

B u D u .~  ~ 
1 
1 

B u E u B u D u X  

a b =~ 

B u D u . ~  C u D u X L J , ~ - I  0 

B w E u B w D u , , Y  1 1 

1 ! 1 

B u D u X  1 0 

Therefore X =(aa)*(a u ( a  u A)bA*) is a solution. This can also be verified by 
substituting this language into the given equation. B3 Theorem i this solution is the 
only one. 

Example 4. Consider the equation 

X = [(VX- ~'l) c~OX]',j Y2, 

where 

U = bb *, V = a, Y, = bb *, Y2=A. 

The corresponding boolean automaton is as folio,,,': 

B = ({a, b}, {X, B, C, D}, ?d, {X, D}), 

M being given by 

a b 

X 

B 
C 
D 

0 /~ n D  n,,~ 

0 B u X  

0 0 

0 D 

Hence An is as follows: 

X 

0 

a b =F 

0 B n D c ~ . ~  1 

0 0 0 

0 ( B u X ) c ~ D n ~ B u X ) - - O  0 
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Thus L ( B ) =  {A }. One can directly verify that this is indeed a solution: 

b- ],oX = a £  bb * w = 

We now come to the proof that L(B), or L for short, as given in the general 
constructions is a solution of (5.1). As in the proof of Theorem 1 we rep~_y_,sent G as 
union of intersections of terms of the four types, U~X, U~X, V .~  and V-~, i.e. 

G ( L ) - = G I ( L ) u  . . .  w G , ~ ( L ) u . . . w G n ( L ) ,  

where G m + I ( X ) w ' " w  G , ( X )  does not depend on X. We claim 

G ( L ) = L .  (5.2) 

(a) We first prove L ~ G(L).  It is not difficult to see that by construction ol ~, 
L contains G r , + ~ ( L ) u " "  u G h ( L ) .  Hence let us assume w ~ GI(L~,, i.e. there ex:ist 
sets I~, I2___ {1 , . . .  ,I}, J1, J2 c _ {1 , . . .  ,J}, and K1, K 2 ~  {1 , . . .  ,K}  such that 

w ~ U/X for all ; e 11 and w e U~X for all i ~ I2 

and 

and 

w e V . ~  for all/ '~J1 and, w ~ V . ~  for a l l / e  J2 

w e Yk for all k e K1 and w ¢ IT"k for all k ~ K2. 

Without loss of generality we may assume timt g in the definition of the transition 

function M of B is represented such that it exactly mirrors the representation of G. 
By the defirition of M it is easy to see that whenever u ~ U~ a transition to X is 
provided and whenever v ~ V/a transition to 3~" is provided. Consequently if w is as 
described above then due to the conditions A ~' U,  A ~' V/, the proble whether w is in 
L can be reduced to the same problem for a shorter word. Hence, by induction (the 
basis being L contains Gm+x(L) w. • • tJ G,(L)) ,  the claim follows. 

(b) We now prove G ( L ) D  L. Suppose w e L. If w = A, then by definitioa of B, 
A ~ G , , + I ( L ) u . . . w G n ( L ) .  Therefore assume [w[>0, i.e. w =aw '  with a ~ A and 
consider M(qo, w'). M(qo, a) can e:~ain be represented as a union of intersections 
such that the representation of M(qo, a) and G are identical except that G has Ujg, 
V~,  or Yk whenever M(qt~, a) has N(Mtj,(qo, a))~ N'(Mv~(qo, a)), or .My~(qo, a). 
Now the argur~lent is analogous to that in (a). Thus w ~ G(L).  

This concludes the proof of the claim (5.2). Therefore we can summarize. 

Theorem 4. Let U,  Vi, Yk be regular languages, A ~g Uj, A ~g V i, and let g be an 
(I +J  +K)-ary  set-function. There is an effective construction of a deterministic 
automaton A accepting precisely the unique solution of the equation in X 

X = U t X ;  VjY¢;  . . . .  Y K ) .  

The construction gives rise to a corollary. 
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Corollary. I f  V is prefix free, i.e. x a V and xy e V imply y = A, then t~he solution of 

x =  v2 

is given by X --- (VV)* V(PPF(V) u PD(V)), where 

PPF(V) = {x e A* [xy e V ]:or some y e A*  and x ~g :r} 

and 

?D(V)  = {x e A*lxy ~ V for all y e A*  and for all x' e PPF(x), x' g V}. 

I~PF(V) is the set of all .~refixes of some v e V which are not in V, ~nd PD(V) can 
be visualized as follows: Let ,4 = (A, Q, M, qo, F)  be the reduced automaton such 
that L(A)  = V; PD(V) is the set of all words x which lead t,~ the 'dead' state of ,4 (the 
state qjg F with M(q, a) = q for all a e A) such that no prefix of x is in V. Note that V 
prefix free implies that there is always a dead state in `4 and furthe.rmore there is 
precisely one final state from which all transitions lead into the dead state. Therefe re 
i.,., the correspending boolean automaton for the solution of the equation, N'(q)  can 
be written either as q or as qo depending on whether q is a rejecting or the unique 
firm state of `4. This yields a special form for AB which gives rise to the above 
representation. 

Similar but increasingly more complex expressions can be obtained for more 
complicated equations. 

We conclude with some remarks on generalizations. While it was not raentioned in 
the construction one can ~asily modify it in order to obtain solu:ioas for equations 
involving concatenation from the left such as X == V t VzX. An example is given 
below (Example 5). Note that within the framework: of the construction concatena- 
tion from the right is out of the question since the result need not be regular any 
more. Consider for instance X = 0X 1 u A. It is well known that {0" 1" In ~ 0} is a 
solution, and it is not difficult to see that it is the only one. Thus &is equation has no 
regular so'ution. 

In the preceding sections we only dealt with concatenation from t~ e left, e.g. UX, 
V,~, generalizing derivative equations. We can, howe, ver, handle concatenation from 
the right, too, provided no terms involving concatenation from the left appear in the 
equation. This is done by first reversing the equations, thus obtaining equations 
as considered he~e, determining their solution, and reversing this solution te 
obtain a solution of the original equations (see Example 6). Theorems 1 and 2 
aiso hold ff,r this modification (in the proofs we have to replace UX, V,~ 

~ b  ~! .¢' ~. I..,~ ,~ . *.~:" R V ) .  

Example 5. We determine the solution of the equation X - V, V2,~', where V, = 
(a w b*)a, V2 = an*. First we determine the nonreturning automata A,  and A2 such 
that L(Ai )=  V~, i = 1, 2. 

A~ = ({a, b}, {X, B, C; D}, M,, X, {B~ D}), Az  = ({a, b}, {E, G}, M2, E, {G}) where 
M, and M2 are as follows' 
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MI" 

X 
B 

C 
D 

a b 

B C 

D 

D C 

M2" a b 

E 

G 
G 
G 

Therefore B = qa, b}, {X, B, C, D, E, G}, M, X, {B, D}), M being given by 

a b 

X 

B 

C 

D 

G 

B C 
D u G u X  Ou() 

D C 
0 u  G u,g" 

G u , ~  0 

Note that B and D remain accepting since A e aa'~X while G becomes rejecting 
according to the general construction. Furthermore E can be dropped since it is not 
used in the final result. Thus the derived deterministic automaton An is as follows: 

X 
B 

C 

D o G u , ~  
1 

D 

G u R  
Gu, u  

a b =:F 

B C 0 

D u G u X  1 1 
D C 0 

Gu, ,~  1 1 
1 1 1 

G u,,~ 1 1 
Gu., uB C 0 
Gu. u  C 0 

By substitution one can also directly verify that L(AB) is, in fact, a solution of the 
given equation. 

Example 6. Consider the equation X = Xbb over A = {a, b}. In order to determi:ae 
its solution in X we reverse it, obtaining Y = bb ~', and solve it in the usual way. We 
find as solution Y =(bb)*b(A w aA*)o Now we reverse this solution, which yields 
(A*a u A )b(bb)*, and one easily verifies that this is a solution for the giwm equatian. 

Example 7. We determine the ~_olution in X for the following set of equations: 

X = ( a a * X u a b * J ( ) n b Y ,  Y = b b ~ Y n ( a L ,  b)2, Z = ~ 7 * Z u / ~ X  

Clearly A ~ X, A ~ Y, A ~ Z by inspection. For simplicity we use a graphical represen- 

tation; empty states are not shown. 
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X. a 

X 
b 

k.) 

\ 

j) 
o 

X 

('3 

% 

Y 

Y: 

® 

b 

Y 

¢'h 

® 
,b 

Z 

Z: b 

a 

2 

U ,b 

\ 

g 

Combining all these transitions yields the following boolea:~ automaton B' = ({a, b}, 
{X, B, C, D, Y, E, G, Z, H, J}, M', X, {X, Z}), M' given by 

X 
B 

C 
D 
Y 
E 
G 
Z 
H 
J 

a b 

( B u X ~ . J C ~ f O n 8  (OuS)c~D u Y 
B u X  0 

0 C u X  

0 0 

8r~(Gu2) (Eu Y)r~(Gu2) 
0 E u Y  

0 0 

Oub H u 2 u J u ~  
H u Z  0 

0 0 
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which can be simplified to B = 

X 

B 

Y 

E 

Z 

H 

a 

B u X  

B w X  

2 E u  

0 E 

1 H u  

H u Z  

({a, b}, {X, B, Y, E, Z, H}, M, X, {X, Z}k M being 

b 

Y 

0 

Y c ~ Z  

u Y  

X u Z  

0 

Therefore A n  is ;as follows" 

X 

B u X  
? 

Z 

E u  Y~.JZ 

1 

H u X u Z  

E u H w X u Y u Z  

B w H u X w Z  

f ' u H , . ) X , ~  

a b =F 

B u X  f" 1 

B w X  f" 1 

Z E u Y u Z  1 

1 H u X '~ ~.; 1 

1 E u H u X u Y u Z  1 

1 1 1 

B u H u . ¥ u 2  ~ ' u H u X u 2  1 

B u H ~ X u 2  1 1 

B w i-l u X u 7~ '~" u H u X L) 7~ 1 

Z E w Y u Z  1 

Thus X = A*, furthermore Z = A* since it occurs as state in AB, and finally Y = 0 
since I7" occurs as state in An. Since the solution is very simple one cart easily verify 
the result by substitution: 

X" (aa*A*wab*A'~r)n- f fO=A *, 

Z :  ba*Oub,4* = A * .  

Y: bb~On(a ub)A-~=O,  

References 

[1] J.A. Brzozowski, Derivations of regular expressions, JACM 11 (it964) 481-,194. 
[2] J.A. Brzozowski and E. Leiss, On equations for regular langhagq~s, finite automata, and seque~atial 

networks, Theoret. Comput. Sci. 10 (1980) 19-35. 
[3] J.H. Conway, Regula'Algebra and Finite Machines (Chapman & Hall, London, 1971). 
[4] S. Eilenberg, Automata, Languages, 2nd Machines, Vol. A (Academic Press, New York, 19741. 
[5] A. Salomaa, Theory of Automata (Pergam,gn, Oxford, 1969). 


