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Abstract-It is shown that "stencils" exist for the sixth order solution of Poisson's equation by use of a
nine-point difference approximation.

1. INTRODUCTION

Suppose we wish to approximate the solution of

V2U(x, y) = [ (x, y) (1.1)

inside some region, given values around the boundary. A standard approach is to introduce a
"stencil", say

0 1 0
1 -4 1
0 1 0

U(x,y).

The significance of this is that if a coefficient in the stencil is m units above the horizontal center
line and n units to the right of the vertical center line (m and/or n may be negative), one forms
the product of the coefficient with u(x +nh, y +mk) ; the entire stencildenotes the sumof these
products. Thus the stencil shown above denotes

U(x +h,y) +U(x - h,y) +U(x, Y+k) +U(x, Y- k) - 4u(x, y).

To approximate the utx. y) which solves (1.1) it is traditional to choose k = h. Also, to save
space, we write

d sU (X, y) =
0 1 0
I -4 1
0 1 0

ui x, y) . (1.2)

This is called the five-point stencil.
If U(x, y) is reasonably smooth, we have

to order h". So. if h is reasonably small,

is a good approximation to (1.1). Let us choose a suitable (xo,Yo) and define

Um .n = u(x o+ mh, Yo+ nh).
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(1.3)

(1.4)

(1.5)
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Then to approximation h", we conclude

(1.6)

The equations (1.6) are a set of linear equations, which have a unique exact solution, Urn.n• If we
solve these linear equations, we willget quantities Urn.n such that Urn,n differs from Urn,n by order
h Z (assuming smooth boundary conditions).

This is the basis for several schemes for computing numerical approximations for U (x, y) at
the "grid points" (xo+ mh, Yo+ nh). However, since the accuracy is only to order h", it is not
possibleto get very high accuracy. Even moderateaccuracy requires solving a very large number
of simultaneous equations.

If !(x, y) = 0, one can get higher order approximations by use of a nine-point stencil, and so
improve the situation. The nine-point stencil is given by

I 4 I
4 -20 4
I 4 I

utx, y). (1.7)

In general, one has

only to order h4. So if one solves

t.9Urn ,n =6hZf(xo+mh, Yo +nh),

one will still usually only get an approximation to order h". However, if one solves

one will get an approximation to order h" for the solution of

(1.8)

(1.9)

(1.10)

(1.11)

provided one has smooth enough boundary conditions.
The object of the present paper is to present methodsfor solving (1.1) by a nine-point stencilto

order h" even when !(x, y) is not identically zero. We should warn that these methods will fail
unless the boundaryconditionsand f(x, y) are smooth. In particular,!(x, y) shouldhave bounded
derivatives up to order six for the methods of this paper to succeed.

For completeness, we repeat certain material from Rosser[I].

2. A FOURTH ORDER METHOD

In Section I, we contemplateddividing our region into squares. For some types of regions, it
would be convenient to divide the region into rectangles. It is widely believed that difference
methods cannot be constructed to give approximations of order greater than two unless the
region is divided into squares. This is not so. We will explaina method that givesapproximations
of order four if rectangles of sides hand k are used.

Let us temporarily set

Um .n = u(xo+mh,Yo+ nk).

That is, we use rectangles whose corners are the grid points (xo +mh, Yo +nk).
Define

(2.1)

(2.2)
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We have

b +c = 8.

Define a modified nine-point stencil
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(2.3)

(2.4)

(2.5)

(2.6)

Il~U(X, y) =

1 c 1
b -20 b
1 c 1

U(x,y); (2.7)

here motion of one unit in the y-direction in the stencil is supposed to induce a change of k in y,
as in our original definition.

If U(x, y) is smooth, we have to order h6 +e

ll~u(x, y) == AV2u(x, y) +h
1

2
: uxxxx(x, y) +h2euXXYY(x, y)

eA+12Uyyyy(x, y).

By (1.1) we have

Uxxxx(x, y) +UXXyy(x, y) = fxx (x, y)

UXXyy(x, y) +Uyyyy(x, y) = fyy (x, y).

(2.8)

If we multiply the firstof these by h 2A /12 and the secondby k? A /12 andadd, wesee by (2.2) that
we can write (2.8) as

(2.9)

Observe that

h2fxx (x, y) == f(x + h, y) + f(x - h, y) - 2f(x, y)

efyy(x, y) == f(x, y +k) +f(x, y - k) - 2f(x, y).

Thus we conclude finally that to order h6 +e

0 1 0

1 8 1

0 1 0

f(x, Y)· (2.10)

So, if we solve

0 1 0

1 8 1

0 1 0

f(xo+ mh, Yo+ nk), (2.11)

we will get Urn .n that differ from Urn .• by the order h4 +k",
This gives a method of order four for rectangular grid elements.

CAMWA VDI. 1.No.3/4-G
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3. A SIXTH ORDER METHOD

If there is a sixthorder method that permits the use of rectangular gridelements, we have no
knowledge of it. Sowe return to squaregridelements, adopting again the notations of Section I.

If (1.1) holds and u(x, y) is smooth enough, then to order h 8

h4 h" h''
1:::.9u(r, y) == 6h2f(x, y) +"2V2f(x, y) +60V4f (x, y) +30In}" (r, y). (3.1)

This does not agree exactly with equation (20.57) on p. 194 of Forsythe and Wasow [2].
However,they claim that their (20.57) is copied from another reference,but they made a mistake
in copying. Our (3.1) agrees with the formula from which (20.57) was supposed to be copied.

We note that

1 1 I 1

1 - 8 i 1
I

1 11 1

(3.2)

to order h6, if !(x, y) is sufficiently smooth. So we may replace (3.1) by

I 1 1

1 82 1

i 1 1 1

3h4
2

[(x, y) +toV [(x, y). (3.3)

This formula appears in CoIlatz[3] as one of the stencils in Table VI on p. 543.
There are occasional circumstances in which this would be quite adequate; for instance if

[(x, y) is a harmonic function. However, in general we must do better.
For computational purposes, when we replace the Um .n by tim .n and attempt to solve, it does

not matterwhat is on the rightsideof our equations, as long as we maintain the sameform on the
left side.So there is no reasonwhywe mustrestrict the rightsideof (3.3) to a nine-point stencil.

As we will have a solution to order h", we need not take h particularly small. Useful results
havebeen obtainedwith h = L /6,whereL isa basicdimension of the entirefigure. Withh = L /10
accurate results should result, and with h = L /20 quite high accuracyshould result. For a square
region, this requires at most 441 grid points, including the boundary. It would not overload the
memory to compute[(x, y) inadvanceat everygridpoint,store these values, and callsuch as are
neededfor each application of (3.3) or its replacement. In fact, it would be an efficient scheme of
computation. So we use a larger stencil on the right of (3.3).

We note that

2 _1 4 5 4 1
h i; (x, y) = - 12 f(x +2h, y) +3f(x +h.y) - 2f(x, y) +3f(x - h,y) -12 f(x - 2h, y)

(3.4)

to order h 6. By using this and the corresponding relation for !yy(x, y) in (3.3), we obtain

0 0 -3 0 0
0 8 56 8 0

-3 56 476 56 -3

rl1-} 56 8 0
-=3 0 0

[(X, y). (3.5)

This will serve very satisfactorily except for points adjacent to the boundary. For these,
values of f(x, y) at pointsoutside the region would be required. If such are available, there would
be no difficulty. However, they might not be available.

There is of course the off-center difference approximation
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2 _5 5 1 7 1
h !xx(x, y) = 6!(x - h, y) - 4!(x, y) -3!(x +h,y) +6!(x +2h, y) -2!(x +3h, y)

1+12 !(x +4h, y), (3.6)

correct to order h". Using it, and the corresponding relation for y, we could derive

0 3 0 0 0 0
0 -18 0 0 0 0
0 42 0 0 0 0
8 -4 8 0 0 0

38 566 -4 42 -18 3
8 38 8 0 0 0

f(x, Y), (3.7)

which is valid to order h8
; on the right of (3.7) the "origin" of the stencil is the square which

contains 566.
This certainly brings a method of order h" within reach. One wonders if there could be a

better stencil than that on the right of (3.7). Perhaps there is not, but we will investigate what is
available.

4. A GENERAL APPROACH

In order to take care of grid points that are one unit away from each of two edges, it follows
by (3.1) that we require constants am." such that

to within termsof order h". It follows by (3.7) that suchconstantsexist for S = 4. Weshall show
that they do not exist for S < 4. For S = 4, there are many sets of a;». and we shall derive the
general form.

Because the right side of (4.1) is invariant under interchange of x and y, if am." satisfy (4.1),
then so would a ~I,", where we take

Then so would

** -!( * )am,n - 2 am,,, +am,,, .

So we lose no generality in assuming

(4.2)

If f(x, y) is smooth enough to have a double Taylor series out to order hI" then

to within terms of order hI" where D, and D, are partial derivatives with respect to x and y
respectively, and

Because of (4.2), we have

s s
K" = L L mr--"n"am ,,, .

III ·""-111-= 1
(4.4)

(4.5)
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Define

By (4.4)
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s

Am = L: am.lI •

II ='--1

8

tc.; = L: m rA",.
III --1

(4.6)

(4.7)

By (4.3), if we are to satisfy (4.1), we must have

Koo =6

Kw=O

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

By (4.7), this is a set of six simultaneous linear equations for the A",. If S < 4, they have no
solution. So we take S = 4, for which we observed earlier that there is a solution, and proceed.
The equations (4.8) through (4.13) have the unique solution

Analogously, if we write

s

s; = L: nam ""
/I '~-I

then to satisfy (4.1) we must have

s
L: m,-·IB", =Kr 1=O

It! I

(I ::s r ::s 5).

(4.14)

(4.15)

This set of 5 equations has the one fold multiplicity of solutions

1
B 1 = -SBo,

We write also

s
em = L: n:'.am .Il •

II --1

To satisfy (4.1) we must have

s
L: c, = «; = 1

m=-}

s

2: mCm = K32 = 0
m=-I

(4.16)

(4.17)

(4.18)
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S 7 4
L «c: =K42 =15

'" .",-- I

s

L m"C,.. =K~2 =O.
/II 0:-.- )

This set of 4 equations has the two fold multiplicity of solutions
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(4.19)

(4.20)

19 1 1 37 3 5 11 11 1 15
C ' = 60- 4 Co+ 4 C , C= 30- ZC'-ZC4' C2 =-15 +C,, +5C4' CJ=60-4Co-"4C4'

To satisfy (4.1) it is sufficient as well as necessary to satisfy equations(4.8}-(4.13), (4.15), and
(4.17)-(4.20). This we have accomplished, and with three parameters, Bo, Co, and C, at our
disposal.

Given values of the An" B"" and C"" we have yet to determine the am,n' By (4.2) and (4.6), we
have

4

am,O = Am - am,-I - Lam... .
n = 1

(4.21)

Except for m = 0, this expresses am.o(and hence ao.m) in terms of a" , with both r f:. 0 and sf:. O.
Using (4.2) with (4.21) gives

ao,o= Ao- {A-I- a_I ,_1 - ~I a_I .,} - ~I {An- an.-I-~I a.. ,} (4.22)

So also ao,O is expressed in terms of a", with both r f:. 0 and sf:. O.
If we add and subtract (4.14) and (4.16) we will get

a- I. ", = ~ { C'" - e: - '~2 n(n - 1)am,n}

al,m=HCmv B; - ~2 n(n + l)am,n}.

(4.23)

(4.24)

Exceptfor m = -1,0, and 1, (4.23) expresses a-I,m (andhence am ,-I) in termsof a", with r 2=2
and s 2=2. If we take m = -1 in (4.23), and make another use of (4.23), we get

a_I,_1 =HC 1- B_1-~ '*2n(n -1) [ c, - s, - t 2r(r -nan,,]}. (4.25)

If we take m = 1 in (4.23), and make a use of (4.24), we get

So, except for m = 0, we have a-I,m(andhence a,n.-I) in terms of a", with r 2: 2 and s 2: 2. Using
these in (4.21) gives also a - I.O in terms of a", with r 2: 2 and s 2=2.

Except for m = 0 and 1, (4.24) or (4.26) expresses al,m in terms of ar " with r 2: 2, and s 2: 2. If
we take m = 1 in (4.24), and make another use of (4.24), we get

(4.27)

If we use this, (4.26) , and (4.24) in (4.21) weget also a 1,0 in terms of ar" with r 2: 2and s 2= 2.
In viewof (4.2), there are only six distinct parameters ar" with r 2: 2 and s 2=2. There remain

yet unused three of the eighteen original equations. It would be expected that they would give
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three more conditions among the a,.." but surprisingly they turn out to be dependent on the other
fifteen. This is due to the particular relations that subsist among the Am' Bi; and Cs, and would
not be the case with general Am' Bm, and Cn,.

Thusconsider(4.23)for m = 0, of which we have not yet made any use. If wesubstitute from
(4.23) into (4.21), we will get

(4.28)

Making use of Gn,r =Gr.n lets us write the final term as

4 4

L n(n - I) L a n,r.
tI = 2 r '" I

By (4.15) and (4.17), we have

4

C- , - B,+ L (Cn - Bn ) = I - (CII - Bo).
n = 1

Also, from the given values of the Am' we have

Putting these into (4.28) gives

Use of (4.21) converts this into (4.23) with m = 0.
Consider next (4.24)for m = 0, of which we have not yet made any use. If wesubstitute from

(4.24) into (4.21), we will get

As before, we write the last term as

4 4

Ln (n +l )L an ,n
n = 2 r » I

and we have

4

C-,+ B- 1+ L «; + Bn ) = 1- (CII +Bo),
n = 1

and

Substituting these into (4.29), and using (4.21), gives (4.24) with m = O.
Consider finally (4.24) with m = -1. Refer back to (4.26). We have

1 4 4 1 4 4

4,(;2n(n -1)~ r(r + l)an •r = 4,(;2n(n +1)~2 r(r -1)an ,ro
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Also, use of (4.15) and (4.18) gives
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Substituting these into (4.26) and using (4.23) gives (4.24) with m = -1.
Thus we can choose Gr., with r e 2 and s ;:::: 2 at will, subject to a., = as. r- Then we can

substitute gradually back, and recover all the Gr.,' Recallingthat we have also the free parameters
Bo, Coand C , we see that there is a nine-foldmultiplicity of solutions. Onewould have thoughtit
possible to choose a4.• = 0 for all n, thus reducing to the case S = 3. However,as A4= 1/40, this
is precluded by (4.6).

We observe that if the principal grid point is at a distance It from the left edge, but further
than that from the top or bottom. then one can use the off center difference approximation in the
x-direction only. We use the methods given above to see if one can get a stencil which does not
extendas far as sixgridpoints in the x -direction. It turns out that one cannot, but we will present
the analysis anyhow. since it shows how to generate all possible stencils.

Without causing confusion. we can use the same letters as before, but with slightly altered
denotations.

So for our am.• we will now have -2:s n :S 2, -1:s m :S S, In place of (4.2), we will have

(4.30)

All summations on " should be from -2 to +2. Specifically, this change should be made in (4.3),
(4.4). (4.6). (4.14), and (4.16). Delete (4.5).

As before, we see that we must have S ;:::: 4. Taking S = 4, we get the same values of Am as
before.

By (4.30) and (4.14), we have B; = 0 for all m. Thus (4.15) is trivially satisfied.
We get the same determination as before for the Cm •

Finally. we write

We must have

2

Dm = L ,,4am.•,
n=-2

2
D_1 +Do+D1 +D2 +D3 + D4=S

- D_1 +D1 +2D2 +3D, +4D4 =O.

(4.31)

(4.32)

(4.33)

24

Given the Am. B"" C, . and D"" there is no question how to determine the am.n - We have
immediately

Dm- Cm
1l", .- 2 = am .2 ==

4Cm -D",
Q ", .-I == am . 1 == 6 '

Thus we can easily determine sets of am.,,' There are 18 distinct am.n ' As they do notdependon
the B"" it appears that we have a six fold multiplicity of solutions. It is surprising that this does
not permit the choice a 4.0 = a 4.1 = G4.2, which would let us reduce S to 3.

5. REGIONS OF UNU SUAL SHAPE

We have been usingsquares for our grid. There are cases wherethis is really impractical. For
example. suppose our region is a rectangle of sides I and YZ. For rectangles of intractable
proportions. a way of handling the matter easily is provided in Rosser[1]. Beyond that, we have
not pushed our investigations.
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