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In this paper, we propose and study an algorithm for a new class of complemen- 
tarity problems of finding u E R” such that u > 0, Tu + A(u) > 0; (u, Tu + A(u)) = 0, 
where T is a continuous mapping and A is a nonlinear transformation from R” into 
itself. It is proved that the approximate solution obtained from the iterative scheme 
converges to the exact solution. Several special cases are also discussed. b 1988 

Academic Press. Inc. 

1. INTRODUCTION 

Variational inquality technique is being applied to study many unrelated 
free boundary value problems arising in various branches of mathematical 
and engineering sciences in a unified and general framework. The theory 
of variational inequalities has been developed not only to study the 
fundamental facts on the qualitative behaviour of solutions (regarding 
existence, uniqueness, and regularity) to important classes of nonlinear 
boundary value problems, but also to provide highly efficient new 
numerical methods for solving free boundary value problems. In a 
variational inequality formulation, the location of the free boundary (con- 
tact area) becomes an intrinsic part of the solution and no special devices 
are needed to locate it. Variational inequalities have been generalized and 
extended to study a wide class of linear and nonlinear problems arising 
in mathematical and engineering sciences. A useful and important 
generalization of the variational inequality problems is the mildly nonlinear 
variational inequality introduced and considered by Noor [ 1, 23 for study- 
ing mildly nonlinear partial differential equations, when solutions are 
required to satisfy some extra constraint conditions. 

Equally important is the concept of complementarity theory, a relatively 
new area of operations research, which has received much attention during 
the last twenty years. It is fairly well known that both the linear and non- 
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linear programs can be characterized by a class of complementarity 
problems. The linear complementarity problem was introduced and studied 
by Lemke [3] in 1964, but it was Cottle and Dantzig [4], who formally 
defined the linear complementarity problem and called it the fundamental 
problem. The complementarity problem has also been generalized and 
extended to the study of a large class of problems occurring in fluid flow 
through porous media, contact problems in elasticity, economics and trans- 
portation equilibrium, control optimization, and lubrication problems, see 
Baiocchi and Capelo [S], Oden and Kikuchi [6], Oden and Carey [7], 
Crank [8], and the references therein. 

The relationship between a variational inequality problem and a com- 
plementarity problem has been noted implicitly by Lions [9] and Mancino 
and Stampacchia [lo]. However, it was Karamardian [ll, 123, who 
showed that if the set involved in a variational inequality problem and 
complementarity problem is a convex cone, then both problems are 
equivalent. Such a relationship is preserved in both the quasi complemen- 
tarity problem and the quasi variational inequality problem as proved by 
Pang [ 131 and Noor [14]. This equivalence has been used by many 
authors including Ahn [ 151 and Noor [16, 143 in suggesting new and 
unified iterative algorithms for solving complementarity problems and the 
various generalizations. 

Motivated and inspired by the recent research work going on in these 
fields, relative to the mildly nonlinear variational inequalities, we consider 
and study a new class of complementarity problems, known as mildly 
(strongly) nonlinear complementarity problems. It is proved that, if the set 
involved in both problems, is a convex cone, then the mildly nonlinear 
variational inequality problem and the mildly nonlinear complementarity 
problem are equivalent. Using this equivalence, we suggest and analyze a 
new unified and general algorithm for computing the approximate solution 
of the mildly nonlinear complementarity problem. This algorithm may be 
viewed as an extension of the algorithm of Mangasarian [17]. It is shown 
that convergence properties of Mangasarian’s algorithm discussed in 
[ 13-15, IS] are carried over to this new proposed algorithm using the 
technique of variational inequalities. Our results are an extension and 
improvement of the results of Noor [ 163, Pang [19], Ahn [15, IS], and 
Mangasarian [ 171. For related work on mildly nonlinear variational 
inequalities, see Chan and Glowinski [20] and Noor [ 1, 2, 211. 

In Section 2, after reviewing some basic notations and results, we 
introduce the mildly nonlinear complementarity problem and discuss 
several special cases. Algorithms and convergence results are considered 
and discussed in Sections 3 and 4. In Section 5, we consider a simple 
example to illustrate the applications of the present results developed in 
Sections 3 and 4. 
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2. PRELIMINARIES AND FORMULATIONS 

We denote the inner product and norm on R” by ( .,.) and 11. /I, respec- 
tively. Let K be a closed convex set in R”. For a given continuous mapping 
T from R” into itself, we consider the problem of finding UE K" such that 

(Tu+A(u),u-u)>O, for all DE K, (2.1) 

where A is a nonlinear transformation from R” into itself. Inequalities of 
the type (2.1) are known as mildly (strongly) nonlinear variational 
inequalities, which were introduced and considered by Noor [ 1,2,21] in 
the theory of constrained mildly (strongly) nonlinear partial differential 
equations. 

If the nonlinear transformation A(u) = 0 (or A(u) is independent of the 
solution U; that is, A(u) -f(say)), then (2.1) is equivalent to finding u E K 
such that 

(Tu,o-u)>O, for all u E K. (2.2) 

Problems of type (2.2) are know as variational inequality problems, 
originally introduced and considered by Lions and Stampacchia [22], 
which have been studied extensively, see Lions [9], Glowinski, Lions, and 
Tremolieres [23], Oden and Kikuchi [6], Baiocchi and Capelo [S], 
Crank [S], and the references therein. Clearly inequalities of type (2.1) are 
more general and include inequalities (2.2) as a special case. 

If K=R”, then problem (2.1) is equivalent to finding UER” such that 

(Tu+A(u),o)=O, for all u E R”, (2.3) 

which are known as the weak formulations of mildly (strongly) nonlinear 
boundary value problems, see Noor [2, 241, Douglas [25], Ciarlet, 
Schultz, and Varga [26] and Noor and Whiteman [27]. 

We now consider the complementarity problem. For a given continuous 
mapping T from R” into itself, the complementarity problem is to find u 
such that 

u 2 0, Tu>O, (u, Tu)=O. (2.4) 

It is well known that if the mapping T is nonlinear, then (2.4) is called the 
nonlinear complementarity problems, which have been extensively studied 
by Cottle [28] and Karamardian [12]. 

If the mapping T is a linear afline transformation of the type 
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T:u-+Mu+q, MER”~“, q E R”, then (2.4) is equivalent to finding u such 
that 

u 2 0, Mu+q>O, (u,Mu+q)=O, (2.5) 

which is said to be the linear complementarity problem. 
The linear complementarity problem (2.5) was originally introduced by 

Lemke [3] and Cottle and Dantzig [4], and then studied by Mangasarian 
[17], Ahn [18, 151, Aganagic [29], and Pang [13,19,30] by using 
iterative methods. 

If K* = {U E R”, (u, u) 2 0, for all u E K), is the polar of the convex cone 
in R”, then we consider the generalized complementarity problem of finding 
u E K such that 

TuEK* and (u, Tu) = 0. (2.6) 

This natural generalization of the complementarity problem (2.4) is due to 
Karamardian [ 11, 121 and Habetler and Price [31]. We note that the 
complementarity problem (2.4) is a special case of the generalized com- 
plementarity problem (2.6), if K is equal to the non-negative orthant 
R”= {u~R”:u>0}, for all u. 

Related to the mildly (strongly) nonlinear variational inequality problem 
(2.1), we now consider and introduce a new class of complementarity 
problem as follows: 

For a given continuous mapping T from R” into itself, we consider the 
problem of finding u such that 

u 3 0, TM + A(u) 2 0, (u, Tu + A(u)) = 0, (2.7) 

where A is a nonlinear transformation from R” into itself. If T is a 
nonlinear mapping, then problem (2.7) is called the strongly nonlinear 
complementarity problem. If T is an affine transformation of the form 
T:u+Mu+q, MeRnX”, q E R”, then problem (2.7) is known as the mildly 
nonlinear complementarity problem; that is, of finding u such that 

u 2 0, Mu+q+A(u)>O, (u, Mu + q + A(u)) = 0. (2.8) 

For the applications and mathematical formulations of the problems (2.6) 
and (2.8), see Noor [32], where one can also find the basic and general 
theory of such complementarity problems. 

In a similar way, we can introduce the generalized mildly (strongly) 
nonlinear complementarity problem of finding u E K such that 

(Tu + A(u)) E K* and (u, Tu+A(u))=O, (2.9) 

Obviously problems (2.8) and (2.7) are special cases of the problem (2.9). 
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Furthermore, if the nonlinear transformation A is identically zero or is 
independent of the solution u, that is A(u)=O, (A(u)=q(say)), then 
problems (2.7)-(2.9) reduce to the problems (2.4))(2.6), respectively, 
studied previously. Thus it is clear that problem (2.9) is the most general 
and unifying one, which is the main motivation of this paper. 

3. ITERATIVE METHODS 

It is fairly well known that numerical methods for solving complemen- 
tarity problems can be divided into two major categories namely direct and 
indirect (iterative) methods. Direct methods are those based on the process 
of pivoting, which are mainly due to Lemke [3] and Cottle and Dantzig 
[4]. The practicality of the direct methods is restricted mainly due to the 
problem size limitation in computer implementations. Also it has been 
shown by Mangasarian [33] that there are examples of linear complemen- 
tarity problems, which cannot be solved by Lemke’s method or the prin- 
cipal pivoting method of Cottle and Dantzig [4]. These facts and reasons 
have stimulated much investigation of alternative approaches for solving 
complementarity problems, see [ 15, 17, 34-361. 

In this paper, we are only concerned with the iterative methods. Iterative 
methods are those which produce a sequence of iteratives (trial solutions) 
and converge to the exact solution. Iterative methods have emerged in the 
last decade as a powerful technique for solving many large scale com- 
plementarity and variational inequalities problems arising from 
applications, see [S, 13,28, 35, 373. Most of these iterative methods are 
based on the extensions of their counterparts for solving square systems of 
linear equations. There have been several papers of Mangasarian [ 171, 
Ahn [15,18], Pang [13], and Noor [14], which provide unified 
frameworks for the study of the convergence of iterative methods for the 
complementarity problems. Cheng [38], Lin and Cryer [35], and 
Aganagic [29] have applied iterative methods of gradient-projection, alter- 
nating direction implicit, and Newton’s type for solving large structured 
linear complementarity problems arising in the study of free boundary 
value problems. The situation related to mildly nonlinear complementarity 
problems (2.7)-(2.9) is very different and much less developed, because the 
area of mildly nonlinear complementarity theory and its application is 
much more complex. In this paper, we use the variational inequality techni- 
que to propose and analyze general and unified algorithms for mildly 
(strongly) nonlinear complementarity problems. To do so, we need the 
following results, the first one is a generalization of Karamardian [ 111, 
Noor [14], and Cottle [28]. 
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LEMMA 3.1. Zf K is the positive cone in R”, then u E K is a solution of the 
mildly nonlinear variational inequality (2.1) if and only if u E K solve the 
complementarity problem (2.9). 

Proof Its proof is similar to that of Lemma 3.1 of Karamardian [ 111. 

LEMMA 3.2 [39]. Zf K is a convex set in R”, then ME K satisfies (2.1) if 
and only if u E K satisfies the relation 

u = AP,[u - p(Tu + A(u))] + (1 - 1) 2.4, (3.1) 

.for some constant p > 0 and 0 -C I < 1. Here P, is a projection of R” into K. 

Lemma 3.1) implies the equivalence of variational inequality (2.1) and 
complementarity problem (2.9), whereas Lemma 3.2 together with 
Lemma 3.1 shows that the complementarity problem (2.9) can be transfor- 
med to a fixed point problem of solving 

u = F(u), 

where 

F(u)=(l-1)u+dP,[u-p(Tu+A(u))]. 

Based on these observations, we now propose the following general and 
unified algorithms for the complementarity problem (2.9). 

ALGORITHM 3.1. For any given u,, E K, compute 

U n+,=(l-~)u,+~PkCU,--(Tu,+A(u,))l, n =O, 1, 2, . . . . (3.2) 

where 0 < ;1< 1 and p > 0 is a constant. 

If T is an afline transformation of the type T: u + Mu + q, ME R”““, 
q E R”, then Algorithm 3.1 becomes: 

ALGORITHM 3.2. For given u0 E K, compute 

u,+,=(1-1)u,+~P,Cu,-pE,{Mu,+q+L,(u,+,-u,)+A(u,)}l, 
n=o, 1, (3.3) 

where 0 < 1< 1, p > 0 is a constant, {E,} and {L,} are bounded sequences 
of matrices in R” x “. This problem is compatible with the algorithm of 
Mangasarian [ 171. 

For the Algorithm 3.2 to be practical, L, may not be strictly lower or 
upper triangular matrix, because the iterate u,, I may be obtained by 
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solving a variational inequality subproblem, as pointed out in Pang [ 131. 
Here the original data M, remains intact throughout iteration, allowing an 
algorithm of type (3.2) to be efficient both for large scale and specially 
structured problems. 

For simplicity, we consider the case E, = E and L, = L. We here consider 
the following version of Algorithm 3.2. 

ALGORITHM 3.3. For given u0 E K, compute 

u n+ 1= (1 -A) u,+ AP,Cu, -@{Mu, + q + L(u,+, -u,)+ A(u,)}], 

n = 0, 1) 2, . ..) (3.4) 

where p > 0 is a constant, 0 < A < 1 is a relaxation parameter used after the 
projection, and L is either a strictly lower or upper triangular matrix. 

It is clear that each iteration of Algorithms 3.1, 3.2, and 3.3 is itself 
equivalent to mildly nonlinear variational inequality problem (2.1) as 
implied by Lemma 3.1 and Lemma 3.2. 

Special Cases. 1. If K= R”, then Algorithm 3.1 is equivalent to com- 
puting u0 E R” such that 

U,+I=U,--~{Tu,+A(u”)}, n = 0, 1) 2, . ..) (3.5) 

where 0 < 13 < 1 and p > 0 is a constant. This algorithm appears to be a new 
one for solving mildly nonlinear elliptic partial differential equations. 

2. If the nonlinear transformation A is identically equal to zero (or a 
constant); that is, A(u) ~0, then Algorithms 3.1, 3.2, and 3.3 reduce to the 
algorithms of Noor [16], Mangasarian [17], and Ahn [lS], respectively. 

ALCXIRITHM 3.4 [ 163. For given u0 E K, compute 

u,+1 =(I -A) %+~~,C~,-p~(%Jl, n = 0, 1, 2, . ..) 

where 0 < 2 6 1 and < p 0 is a constant. 

ALGORITHM 3.5 [ 171. For given u0 E K, compute 

u,+1=(1-~)u,+~P,Cu,-pE,{Mu,+q+L,(u,+,-u,)}l, 
n = 0, 1, 2, . ..) 

where 0 < 2 d 1 and p > 0 is a constant. 
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ALGORITHM 3.6 [ 151. For given u0 E K, compute 

u n+I=(l-~)u,+~PkC~,--PE(~~“+q+~(u,+,-u,)}l, 
24 = 0, 1, 2, . ..) 

where 0 < 1~ 1 and p > 0 is a constant. 

Ahn [ 151 has established the convergence criteria of Algorithm 3.6 for 
both the symmetric and non-symmetric matrix M by using the variational 
inequality approach, where Noor [ 161 has studied the convergence proper- 
ties of Algorithm 3.4. For the case A= 1, the convergence criteria has been 
investigated and considered by Ahn [18] and Pang [13] for 
Algorithms 3.4 and 3.5, respectively. 

3. If the nonlinear transformation A is identically equal to zero, and 
K=R",, then Algorithms 3.2 and 3.3 are the same as considered and 
analyzed by Mangasarian [17] and Ahn [18], respectively. 

ALGORITHM 3.7. [ 171. For given u0 B 0, compute 

u n+l=(l-~)~“+~C~,-~~,{~~“+q+~“(u,+,-u,)}l+, 
n = 0, 1) 2, . ..) 

for 0 < 1~ 1 and p > 0 is a constant. 

ALGORITHM 3.8 [IS]. For given u0 > 0, compute 

24 n+l =~Cu,-PE{Mu,+q+L(u,+,-u,))l++(l-il)u,, 
n = 0, 1, 2, . ..) 

where p > 0 is a constant. 

Concerning the convergence of Algorithms 3.7 and 3.8, Mangasarian 
[ 171 established a general convergence result under the crucial assumption 
that M is a symmetric matrix. However, it was Ahn [ 15, 181, who proved 
that, if the matrix M is nonsymmetric, then the sequences generated 
by Algorithms 3.7 and 3.8 converges to the unique solution of the linear 
complementarity problem (2.5). 

4. Algorithm 3.3 reduces to the Jacobi method, if we take K = R”, 
A=l, L=O, p=l, E=D-' and A(u)=O, where D is the diagonal matrix 
of M. 

In brief, Algorithms 3.1, 3.2, and 3.3 proposed in this paper are more 
general and include several previously known algorithms as special cases, 
which are mainly due to Cryer [ 133, Aganagic [34], Ahn [15, 181, Noor 
[16], Cottle and Goheen [37], and Pang [13]. 
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4. CONVERGENCE ANALYSIS 

In this section, we consider the convergence properties of the suggested 
Algorithms 3.1 and 3.3. These properties are also compared with those of 
the related algorithms. We here only consider the special case, when 
K= [o, 61 is a closed convex set in R”. We rely on the projection operator 
P,, which is defined as 

Pk(t4) = arg mGi; 110 - 2411. 

If K = R”, , then (P,Ju))~ = max{ o, u,}, i = 1,2, . . . . n. In our case, we have 

(Pk(U))i = (Pc,,hj(U)), = min{max(o, ui), bi), i = 1, 2, . . . . n. 

For notational purpose, P,,, b, will be denoted as P,. The operator Pk 
has the following properties. 

LEMMA 4.1 [ 15 1. For any u and u in R”, 

(i) u Q 0 implies Pk(t4) d Pk(u) 

(ii) PA(u) - Pk(u) d P,(u - u) 

(iii) P,(u + u) < Pk(n) + Pk(u) 

(iv) P,(u)+P,(-u)d]u]; withequality, ifandonfy tf-bdu<b. 

In additiion, we also need the following concepts. A real matrix ME R” X n 
is said to be Z-matrix (a P-matrix), if it has non-positive off-diagonal entries 
(positive principal minors). A square matrix with non-positiue off-diagonal 
elements and with a non-negative inverse is called an M-matrix. It can be 
shown that a matrix which is both a Z-matrix and P-matrix is an M-matrix, 
see [13]. Given MER”~“, we define its comparison matrix 

M,. = (C,) by C, = 1 M,] and c,= - pfijl, i#j,i,j=l,2 ,..., n. 

We now state and prove the main results of this section by modifying the 
technique of Ahn [ 151 and Noor [32]. 

THEOREM 4.1. Suppose that there exists a non-negative matrix NE R” x n 
such that 

IA(u)-A(u)1 QNlu-ul, for all u, u. (4.1) 

?f i%+1 } and {u,} are the sequences generated by Algorithm 3.3, then 

lu n+l-~nld(Z-~pEILI)l-~ C;lpEN+I~-IlpE(M-L)llIlu,-u,-,I 
(4.2) 
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and 

Iu “+,-UI <(I-IZpEILI)-’ [npEN+ IZ-lpE(M-L)(] Iu,-241 (4.3) 

for each n and u is the solution of mildly nonlinear complementarity problem 
(2.8). Here L is either a strictly upper or lower triangular matrix. 

Proof: From Algorithm 3.3, we have 

u”+*-u”=(1--)(u,--u,-1) 

+~P,[u,-pE{Mu,+q+L(u,+,-u,)+A(u,)}l 
-~P,Cu,-pE{Mu,~,+q+L(u,-u,~,)+A(u,~,)}l, 

=(l-n)(u,-u,-,)+nP,[(u,-u,-1)-pE(M-L)(u”-u”~,) 

- PWU, + 1 - u,) - PEM~,) - Afun- ,))I, 

Again applying Lemma 4.1 and the fact Pt = P,, we obtain by Lemma 4.1, 

P/rC(un+ 1 -&A-(1 -~)(%I-%,)1 
~~PkC(u,-u,-,)-pE(M-L) 

x(u,--u,+,)-PWU,+I -uJ - @V(urJ - 4~ ,111. (4.4) 

In a similar way, we have 

PkC-{(Un+l- &J-(1 -4~~n-LJ~l 
~IPkC-(u,-u,~,)+pE(M-L)(u,-u,-,) 

+pEL(u,+,-u,)+pE(A(u,)-A(u,-,))l. (4.5) 

Adding the inequalities (4.4) and (4.5) and using Lemma 4.1, we have 

lu “+1-U,-(l--)(U,--U,~1)1 

<lZ-PEW-L)I Iu,--n-,1 

+ WILI Iu,+, -% +hW(u,)-A(u,-,)I 

from which we obtain 

<II-IpE(M-L)I lu,-u,-,l+~pEIA(u,)-A(u,_,)l 

= [ApEN+ IZ-ApE(M- L)l] (u~-u~-~I, by (4.1). 

Since L is either a strictly upper or lower triangular matrix, so the matrix 

409/133/2-7 
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(I- IpE(Lj ) is invertible for 0 < ,X < 1 and its inverse is non-negative, which 
implies that (I-LpEILJ) is an M-matrix. Thus, we have 

which is the required result (4.2). In a similar way, we can obtain (4.3). 

Theorem 4.1 enables us to establish a sufficient condition for the con- 
vergence of the sequence {u, + , } generated by Algorithm 3.3 to be bounded 
and hence have an accumulation point, which is the solution of the mildly 
nonlinear complementarity problem (2.8), and this is the main motivation 
of our next result. 

THEOREM 4.2 Assume that 

where 

G= (I-ApEILl)-’ [&!3’+ IZ-ApE(M-L)I], (4.6) 

with IS denoting the spectral radius. Then for any initial vector u, the sequence 
{u,+ , } generated by Algorithm 3.3 converges to a solution of (2.8). 

The proof is not given, because its derivation from Theorem 4.1 is 
identical to the proof of Theorem 4.1 of Ahn [ 181. 

Remark 4.1. The results obtained in this paper are more general than 
the ones given in Ahn [lS] and Pang [13]. In fact, for A(u)rO, the non- 
negative matrix N becomes the zero matrix and consequently our results 
are exactly the same as proved by Ahn [ 151 and Mangasarian [ 171 for the 
nonsymmetric and symmetric matrix M, respectively. For 1= 1, and 
A(u)-0, our results reduce to the result of Ahn [18] and Pang [13] for 
the nonsymmetric linear complementarity problem (2.5). Thus we conclude 
that the algorithms of Mangasarian type can be extended to study the 
mildly nonlinear complementarity problem (2.8). Furthermore, it is clear 
from Theorem 4.2, that condition a(G) < 1 provides the existence and 
uniqueness result for the complementarity problem (2.8). Note that our 
results hold for both the symmetric and nonsymmetric matrix M. 

It is evident that the convergence analysis of Algorithm 3.3 holds only for 
K= [o, b]. The question arises can this restriction be relaxed. The answer 
to this is partly true. Indeed, this is true for the strongly nonlinear 
complementarity problem (2.6) as shown below. For the mildly nonlinear 
complementarity problem (2.8), the question still remains open. 

It can be shown using the technique of Pang [13] that condition (4.1) 
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for the nonlinear transformation A is equivalent to the fact that transfor- 
mation A is Lipshitz continuous; that is, there exists a constant y > 0 such 
that 

for all u, 0. (4.7) 

We also need the following concepts. 

DEFINITION 4.1. A mapping T: R” + R” is said to be 

(i) strongly monotone. If there exists a constant CI > 0 such that 

(Tu- TV, u-o)>allu-ul12, for all U, u E R”. 

(ii) Lipschitz continuous. If there exists a constant /? > 0 such that 

IITu- WI GPllu-4, for all U, u E R”. 

In particular, it follows that M Q /?. 

In the next theorem, we study the conditions under which the 
approximate solution obtained from Algorithm 3.1 converges to the exact 
solution u of the strongly nonlinear complementarity problem (2.7). This 
result also shows that the convergence of the approximate solution to the 
exact solution depends upon the relaxation parameter A used after projec- 
tion, like the mildly nonlinear complementarity problem (2.8). At the same 
time, we prove that the convergence analysis for the strongly nonlinear 
complementarity problem (2.7) holds for any general closed convex set K 
in R”. 

THEOREM 4.3. Let the continuous mapping T from R” into itself he 
strongly monotone and Lipschitz continuous. If the nonlinear transformation 
A is Lipschitz continuous with Lipschitz constant y such that y < tl, where u is 
the strongly monotonic constant, then 

%I+1 +u strongly in R”, 

f or O<p<2(~--yMP*-y*), YP< 1, and 1<1/(1-yp+(2crp- 
/12p2 - l)“‘), where fi is the Lipschitz constant of T, u and u,, 1 are the 
solutions of (2.7) and (3.2), respectively. 

Proof: By Lemmas 3.1 and 3.2, we know that the solution u satisfying 
(2.7) is also a solution of (3.1) and conversely. Thus from (3.1) and (3.2), 
we obtain 
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IIU n+1--uII= ll(l -n)u,+np,Cu,-P(Tu,+A(u,))l 

-(l -A)u-AP,[u-p(Tu+A(u))]II 

d lI(l -~I(&--u)II +4l(u,-u) 

- P(T%l- Tu) -P(4%) - A(u))ll 

by the nonexpansiveness of the operator Pk, see [ 5, 303: 

IIU .+,-~lld~~-~~ll~,-~ll+~II~~~-~)-P(TUn-TU)Il 

+ 4Jll44J - 4u)ll 

d ((1 - 1) + hvm, - #II 

+~ll(u,-u)-p(Tu,-T,)ll, by (4.7) 

Now by the strongly monotonic and Lipschitz continuity of T, we have 

Thus using the above inequality, we obtain 

IIU n+1-4 =w”-~II, 

where 0 = (( 1 - I) + lyp + 1 ,/l - 2ap + /I*p*) < 1 for 0 < p < 2(a - y)/ 
(j?* - r*), py < 1, and 2 < l/( 1 - py - (1 - 2clp + p2p2)‘/2). 

Since 0 < 1, so the fixed point problem (3.1) has a unique solution u and 
consequently the Picard iterates u, + r converge to the solution u of (2.7) by 
the Banach-Picard theorem [38], which is the required result. 

5. APPLICATIONS 

A large number of moving and free boundary problems can be 
formulated as (MNCP) mildly nonlinear complementarity problem (2.8). 
For simplicity, we consider the MNCP of finding u such that 

-Au(x)+f(x, u(x))+h(x)>O in D 

u(x) 2 0, in D (5.1) 

u(x)C-Au(x) +f(x, u(x))) + h(x)1 = 0, in D 

u(x)= g(x) on S, 

where D is a domain in R* with boundary S, A is the Laplacian operator,f 
is a given nonlinear function of x and u(x), h and g are also given 
functions. 
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The problem (5.1) is a generalization of the linear complementarity 
problem (LCP) of type 

-Au(x)+f(x)>O in D 

u(x)>,0 in D 

u(x)[-Au(x) +f(x)] =o in D 

u(x)= g(x) on S, 

(5.2) 

for which f is a given function only of space variables, have been studied 
extensively by many authors including Lin and Cryer [35], Crank [S], 
Baiocchi and Capelo [S], Cottle [28], and Noor [16], using the 
variational inequality and complementarity techniques. Well-known exam- 
ples of free boundary problems, which may be written in the form (5.1) and 
(5.2) include fluid flow through porous media, journal bearing lubrication 
problems, contact problems in elasticity. 

Problems of the type (5.1) arise in gas dynamics, solid state physics, 
chemical diffusion, etc., where f(u) - f(x, u(x)) is of the form e-U, e” - 1, 
u”, n >, 2, see Noor [32] for further details. 

When problem (5.1) is approximated using finite differences (finite 
element), one obtains finite-dimensional MNCP, which may be written in 
the matrix form 

Mu+q+A(u)>O 

U>O 

(u,Mu+q+A(u))=O, 

(5.3) 

where M is an n x n matrix, u is the n-vector, and A(u) + q is obtained from 
f(x, u(x)) + h(x) by evaluating it at the grid points, see [42]. 

In a similar way, one obtains the finite-dimensional LCP, which can be 
written in the matrix form as 

Mu+q>O 

2420 

(u, Mu + q) = 0. 

(5.4) 

There is an extensive literature on the finite-dimensional LCP. In 
particular, if the matrix A4 is symmetric and positive definite, as in the case 
of the Laplacian operator A, then the problem (5.3) are equivalent to: 

(i) Find a column n-vector u which minimizes 

Z[u] = $(Mu, u) + (b, u) + F(u) (5.5) 
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subject to the constraints u 3 0 and (A(u), u) = (F’(u), u), where F’(u) is the 
Frtchet differential of F(U) = ID it;f(q) dq dD, see Noor and Whiteman 
[27] and Noor [ 11. 

(ii) There exists a unique solution to the nonlinear programming 
problem 1[u], defined by (5.5) and hence to the MNLC (5.3). 

In order to apply the results of Sections 3 and 4, it is sufficient to verify 
the assumptions of Theorems 4.1 and 4.2. In fact, A(u) is a diagonal non- 
linearity and satisfies condition (4.1), see Kannan and Ray [43]. Further 
the matrix M is symmetric and positive definite, so Algorithm 3.3 can be 
used to compute the approximate solution of MNCP (5.3). In brief, all the 
results above can be applied to our model problem (5.1). For the 
applications of LCP (5.4), see Cottle [28], Lin and Cryer [35], and the 
references therein. 

6. CONCLUSION 

In this paper, we have considered and studied a new class of complemen- 
tarity problems, which includes the previously known ones as special cases. 
It is shown that the iterative algorithms of Mangasarian type for solving 
linear complementarity problem can be extended to process the mildly 
nonlinear complementarity problems. Algorithm 3.3 introduced and 
analyzed in this paper may be viewed as an extension of the algorithm of 
Mangasarian. Most of the convergence properties of Mangasarian’s 
algorithm studied earlier are carried over to this new algorithm. Develop- 
ment and improvement of an implementable algorithm of this class of 
complementarity problem deserve further research efforts. 
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