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Non-structural (NS) proteins of dengue virus (DENV) are important for viral replication. There are four
membrane proteins that are coded by viral genome. NS2B was shown to be one of the membrane proteins and
its main function was confirmed to regulate viral protease activity. Its membrane topology is still not known
because only few studies have been conducted to understand its structure. Here we report the determination
of membrane topology of NS2B from DENV serotype 4 using NMR spectroscopy. NS2B of DENV4 was expressed
and purified in detergent micelles. The secondary structure of NS2B was first defined based on backbone
chemical resonance assignment. Four helices were identified in NS2B. The membrane topology of NS2B was
defined based on relaxation analysis and paramagnetic relaxation enhancement experiments. The last three
helices were shown to be more stable than the first helix. The NS3 protease cofactor region between α2 and
α3 is highly dynamic. Our results will be useful for further structural and functional analysis of NS2B.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Dengue virus (DENV) belongs to the Flaviviridae family and consists
of four serotypes (DENV1–4) [1]. DENV has become a public health
threat affecting people living in the tropical and sub-tropical regions
[2]. DENV infection can cause serious diseases such as dengue fever,
dengue hemorrhagic fever (DHF) or dengue shock fever (DSS). It is
estimated that approximately 100 million people are infected by
DENV annually and serious cases can cause death. Currently, there is
still no efficient chemotherapy or vaccine available to treat or prevent
DENV infection [3].

DENV RNA encodes a poly-protein that can be further processed into
three structural and several non-structural (NS) proteins including NS1,
NS2A, NS2B, NS3, NS4A, NS4B and NS5. Viral protease NS3 and host
proteases are responsible for the processing of the poly-peptide into
functional proteins [4]. Four non-structural proteins including NS2A,
NS2B, NS4A and NS4B are indentified to be membrane proteins [5–7].
Membrane topologies and functions of NS2A, NS4A and NS4B have
been studied and these proteins are shown to be important for viral
replication by forming complexes with other NS proteins [7–9]. For
the NS2B, it was a membrane protein localizing on the cell membrane.
It mainly functions as a co-factor of the NS3 protease activity [10,11].
Studies have been conducted on the cofactor region containing
approximately 40 residues that are indispensible for the NS3 protease
activity and folding [12–16]. Its membrane regions may be important
for its location on the membrane [17].

Although the membrane topology of NS2B has been proposed in
different studies based on amino acid sequence [17], the details of
NS2Bmembrane topology are still needed for structural studies. Dengue
NS3 is a validated drug target. NS2B plays import roles in NS3 protease
activity. Thus understanding NS2B membrane topology will be helpful
for drug discovery against DENV. Here we report the determination of
the NS2B membrane topology based on the secondary structural infor-
mation obtained from chemical shifts of backbone atoms, 15N relaxation
analysis, H–D exchange and paramagnetic relaxation enhancement
(PRE) experiments.

2. Materials and methods

2.1. Sample preparation

The cDNA for coding the full-length NS2B of Dengue 4 was synthe-
sized (Genscript) and cloned into NdeI and XhoI sites of pET29b. The
plasmid encodes NS2B with a 6 × histidine tag at the C-terminus.
Plasmid was transformed into Escherichia coli (BL21DE3) competent
cells and grown on LB plates containing kanamycin. Several colonies
were picked up and incubated in 50 ml of M9 medium or 10 ml of LB
medium with antibiotics. The overnight culture was transferred into
1 l of LB medium or M9 medium supplied with antibiotics. When
OD600 of the culture reached 0.8, NS2B protein was induced by adding
β-D-1-thiogalactopyranoside (IPTG) to a 1 mM final concentration for
18 h at 18 °C. The E. coli cells were harvested by centrifugation at
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Fig. 1. Membrane topology prediction of NS2B of DENV4 using different web-based servers. The information of the web servers used in this study is listed in the Materials and
methods section. Box indicates the predicted transmembrane region and line indicates a non-transmembrane region. The NS3 cofactor region is underlined. The four residues (SMPL)
at NS2B N-terminus was replace with a Met.
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10,000 ×g for 10 min at 4 °C. Cell pellets were re-suspended into a
lysis buffer containing 20 mM sodium phosphate, pH 7.8, 300 mM
NaCl, 1% Lyso-myristoyl phosphatidylglycerol (LMPG) and 2 mM
β-mercaptoethanol. Cells were broken up by sonication on ice.
The cell lysate was first cleared by centrifugation at 20,000 ×g for
20 min at 4 °C. Supernatant was mixed with Ni2+-NTA and NS2B
was eluted using an elution buffer containing 500 mM imidazole,
0.1% Lyso-myristoyl phosphatidylglycerol (LMPG) and 2 mM
β-mercaptoethanol. Purified sample was further purified using gel fil-
tration chromatography and concentrated for NMR studies. Selectively
15N-Met labeled proteinwas prepared by growing E. coli cells inM9me-
dium containing 0.5 g/l NH4Cl. During protein induction, 15N-Met
(0.1 g) and 19 unlabeled amino acids (0.2 g each) were added before
the addition of IPTG. Protein was purified as described above.
2.2. Membrane topology analysis of NS2B using different servers

The following server-based bioinformatics tools were used to ana-
lyze NS2B sequence [7]. These servers include HMMTOP (http://www.
enzim.hu/hmmtop/index.php), TMHMM2 (http://www.cbs.dtu.dk/
Fig. 2. Purification and structural analysis of NS2B. A. Purification of NS2B. Protein was purified
NS2B in LMPG micelles.
services/TMHMM/), DAS (http://www.sbc.su.se/_miklos/DAS/maindas.
html), TOPCONS (http://topcons.cbr.su.se/), Split (http://split.pmfst.
hr/split/4), PRED-TMR (http://athina.biol.uoa.gr/PRED-TMR/) and
TMpred (http://www.ch.embnet.org/software/TMPRED_form.html).
2.3. Backbone resonance assignment

Uniformly 13C, 15N- or 13C, 15N and 2H-labeled NS2B proteins
were concentrated to 0.8–1.0 mM in a buffer containing 20 mM
sodium phosphate, 1 mM DTT and 1–2% LMPG. Backbone resonance
assignment was obtained based on two- (2D) and conventional three-
dimensional (3D) experiments and transverse relaxation-optimized
spectroscopy (TROSY) [18,19] -based experiments including 2D-HSQC,
3D-HNCACB, 3D-HNCOCACB, 3D-HNCOCA, 3D-HNCA, 3D-HNCACO,
3D-HNCO and NOESY–TROSY (100 ms mixing time) experiments.
All the spectra were collected on a Bruker Avance II 700 MHz or
600 MHz spectrometer. All the pulse sequences were from a standard
Bruker pulse program library (Topspin 2.1). Spectra were processed
with NMRPipe [20] or Topspin and analyzed using NMRView
[21] and CARA (http://www.mol.biol.ethz.ch/groups/wuthrich_group).
in LMPG micelles. SDS-PAGE analysis of the purified protein is shown. B. CD spectrum of
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Fig. 3. 1H–15N-HSQC spectrum of [U-15N, 13C]-labeled NS2B at 40 °C in LMPG micelles. Peaks are labeled with residue name and sequence number.
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Secondary structure was analyzed using TALOS+ [22] and Cα chemical
shifts [23]. For the T1, T2 and 15N steady-state heteronuclear NOE
(hetNOE) experiments [24], a 15N-labeled NS2B and a 15N-Met labeled
NS2Bwere used. All the experimentsweremeasured at 40 °C on a Bruker
Avance 600MHz spectrometer. For the T1measurement of NS2B, the data
with relaxation delays of 10, 50, 100, 200, 400, 800, 1200, 1400, 1600 and
1800mswere recorded and processed. For the T2 measurement, the data
were acquired with delays of 16.9, 34, 51, 68, 85, 102, 119, 136 and
153ms. The spectrawere processed and analyzed. The hetNOEswere ob-
tained using two datasets that were collected with and without initial
proton saturation for a period of 3 s [25].
2.4. H–D exchange experiment

The H–D exchange experiment was performed at 40 °C using the
aforementioned sample. 200 μl of the sample was first frozen in liquid
nitrogen and lyophilized under low pressure and temperatures. 200 μl
of pure D2O was then added into the sample and 2D 1H–15N-HSQC
spectrum with 2048 × 128 complex points was collected after the
powder was completely dissolved (~20 min). Cross-peaks appeared in
the spectrum suggest that these residues are protected from exchanges
and might be protected by micelles. Another method for the H–D
exchange experiment was also conducted and compared [26].
2.5. Circular Dichroism (CD) analysis

The CD spectrum of NS2B was collected using a Chirascan™ Circular
Dichroism Spectrometer at 25 °C. Protein at a concentration of 50 μg/ml
was prepared in a buffer that contained 20 mM sodium phosphate at a
pH of 6.5, 0.1% LMPG, and 2 mM β-mercaptoethanol. The CD data was
acquired in the continuous mode with a 1-nm data pitch and a 1-nm
bandwidth [27].

2.5.1. PRE experiment
To probe residues that are exposed to the solvent, the PRE experi-

ment was conducted using the similar method described previously
except gadolinium was used [28]. One 15N-labeled NS2B was prepared
in LMPG micelles. Freshly prepared gadolinium solution containing
50 mM GdCl3 and 150 mM ethylenediaminetetraacetic acid (EDTA)
was added into the protein sample. The 1H–15N-HSQC spectra of NS2B
in the absence and presence of gadoliniumwere obtained and analyzed.

3. Results

3.1. Membrane topology analysis of NS2B based on sequence

Sequence analysis of NS2B revealed that there are three hydrophobic
regions in NS2B that are possible transmembrane segments [17]. To



Fig. 4. Secondary structural analysis of NS2B. A. TALOS+ prediction as a function of residue number is plotted. TALOS+ prediction indicates the possibility of a residue to be helical. B. The
Cα chemical shifts observed for NS2B subtracted from the Cα random-coil values (ΔCα) were plotted as a function of residue number. A residuewith a positive value indicates that itmay
adopt a helical structure and with a negative value indicates that it may adopt a β-strand structure. The secondary structure prediction basedΔCα also suggested that the region between
α2 and α3 also has a tendency to from β-strands. This region was shown to form strands in the presence of NS3 protein.

2247Y. Li et al. / Biochimica et Biophysica Acta 1848 (2015) 2244–2252
explore NS2Bmembrane topology, several membrane topology predic-
tion severs were used to analyze NS2B sequence. Interestingly, several
membrane topology prediction algorithms gave different topologies
(Fig. 1). The number and length of transmembrane regions were differ-
ent (Fig. 1). The only consistent result was that the cofactor region of
NS3 protease was not a transmembrane region (Fig. 1). The differences
observed from several servers might arise from their algorithms in
transmembrane domain prediction and NS2B sequence. For example,
TMHMM prediction showed that NS2B contained one transmembrane
domain (Fig. 1). The N-terminal region of NS2B was also predicted by
TMHMM to have two hydrophobic regions (data not shown). To further
understand NS2Bmembrane topology, we expressed and purified NS2B
and conducted membrane topology analysis using NMR spectroscopy.

3.2. Expression and purification of NS2B of DENV4

The procedure of expression and purification of NS2B of DENV2 was
set up in our previous study [27]. We then expressed and purified NS2B
of DENV4 using the same protocol as that of DENV2 (Fig. 2A). NS2B of
DENV4 was expressed in E. coli and purified into in Lyso-myristoyl
phosphatidylglycerol (LMPG) micelles. The folding of NS2B was first
confirmed using CD spectroscopy, which showed that purified protein
contained mainly helical structures (Fig. 2B). Our previous study
showed that it is feasible to conduct structural study on NS2B using
NMR spectroscopy [27]. A 1H–15N-heteronuclear single-quantumcorre-
lation (HSQC) spectrum of NS2B of DENV4 was collected and the
dispersed peaks in the spectrum suggested that it is feasible to conduct
further NMR experiments to understand its structure (Fig. 3).

3.3. Secondary structure analysis of NS2B

The backbone assignment of the NS2B of DENV4 in LMPG micelles
was achieved using conventional 3D experiments and TROSY [18,19] -
based experiments. Cross peaks were overlapped in the central part of
the HSQC spectrum (Fig. 3), which is not surprising for such a helical
membrane protein. With backbone assignment of NS2B (Table S1),
the secondary structure for NS2B in LMPG micelles was obtained. The
secondary structure of NS2B was determined using TALOS+ based on
the backbone resonance chemical shifts [22] and Cα chemical shift
compared with random coil values [23]. Both methods gave similar



Fig. 5. Relaxation analysis of a uniformly 15N-labeled NS2B. T1, T2 and hetNOE valueswere
plotted as a function of residue number. Residues including prolines, unassigned and over-
lapped ones are not shown. RCS-S2 values were obtained using TALSON server (http://
spin.niddk.nih.gov/bax/software/TALOS-N/) and were plotted against residue number.
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results (Fig. 4). The secondary structural analysis showed that there are
four helical segments in NS2B, namelyα1 formed by residues G4 to L19,
α2 formed by residues L25 to M41,α3 formed by residues N90 to G105
and α4 formed by residues P112 to T125 (Fig. 4). There is a break ob-
served betweenα3 andα4,whichmight be the reason that the residues
from Y107 to L109 could not been assigned because of conformational
exchanges. The prolines residues, P108 and P112 might be responsible
for the break and conformation exchanges. Functional and structural
studies have shown that NS3 follows the C-terminus ofα4 and interacts
with the region betweenα2 and α3, which suggests that there must be
a break present between α3 and α4 so that the C-terminus of α4 can
point to the same direction as the cofactor region. Secondary structure
analysis also showed that the NS3 protease cofactor region between
α2 and α3 was not helical and had a tendency to form β-strands
(Fig. 4B). In theNS2B–NS3 complex structure solved in previous studies,
this region can form β-strand structureswhen it formed a complexwith
NS3 [11,29–31]. This regionmight not form a stable structure in the ab-
sence of NS3 protein.

3.4. Dynamic analysis of NS2B in LMPG micelles

With the secondary structural information obtained based on the
backbone resonance assignment, relaxation experiments including T1,
T2 and 15N steady-state heteronuclear NOE (hetNOE) experiments
were performed to understand protein dynamics in solution. It is
challenging to analyze the relaxation data using a uniformly-15N-
labeled sample due to the signal overlap (Fig. 3). We analyzed 66 of
the 127 residues and the unanalyzed residues included prolines, and
overlapped and unassigned residues. The cofactor region is highly
dynamic characterized by low and negative hetNOEs, and high T2 and
low T1 values (Fig. 5). The α1 is more dynamic than other helices due
to its slightly lower T1 and hetNOE and higher T2 values. Overall, the
relaxation data is consistent with the RCI-S2 values obtained using a
TALOSN package [32,33] except that the α1 was shown to be more
flexible than other residues. Due to the signal overlap, we then tested
whether we could use a sample that is selectively labeled with a 15N-
labeled amino acid for relaxation analysis because such sample will
have few peaks present in the HSQC spectrum. Although several types
of residues can be selectively labeled for NMR studies, a 15N-methionine
(Met)-labeled samplewas used for relaxation analysis because the eight
Met residues present in NS2B sequence are localized in all the helices
and the loop region of NS2B (Fig. 6A). This sample produced dispersed
cross-peaks in the 1H–15N-HSQC spectrum (Fig. S1). Multiple cross
peaks were observed for M6 and M61, which might arise from
exchanges (Fig. S1). The 15N T1, T2, T1/T2 and hetNOE for the eight Met
residues were obtained (Fig. 6B). The result is consent with the one
obtained from the uniformly 15N-labeled sample (Fig. 5).

3.4.1. Membrane topology of NS2B
The N- and C-termini of NS2B are pointing to the cytoplasm direc-

tion.With the confirmed secondary structure based on backbone chem-
ical shifts, the four helices are possible transmembrane helices (Fig. 6A).
To further investigate itsmembrane topology,wefirst conducted theH–
D exchange experiment (Fig. 6A, Fig. S2). The result showed that resi-
dues from these four heliceswere protected fromexchanges, suggesting
that these helices were forming stable structures in micelles. A few res-
idues in the α1 were not protected from exchanges, suggesting that it
might be flexible or behave like an amphiphilic helix. We then conduct-
ed helix wheel analysis for these four helices (Fig. 7A). Interestingly, all
these helices contain small-XXX-smallmotifs [34] that are important for
TM–TM interactions (Fig. 7A). Although the α1 was shown to be more
dynamic than other helices, helix wheel presentation showed that it is
not an amphiphilic helix (Fig. 7A). We also submitted the chemical
shifts to the CS-ROSETTA server (https://csrosetta.bmrb.wisc.edu/
csrosetta) and the result suggested that these four helices could form
a helix bundle (Fig. 7B).

To confirm the membrane topology of NS2B, the PRE experiment
was conducted (Fig. 8). The residues that are buried in the micelles
will not be affected by the addition of gadolinium. The intensities of
the cofactor region are significantly reduced in the presence of gadolin-
ium (Fig. 8), suggesting that these residues are exposed to the solution
(Fig. 8B). The intensities of most residues from the four helices were not
strongly affected, suggesting that these helices are buried in the
micelles. Based on all the results, the membrane topology of NS2B was
proposed (Fig. 6A).

4. Discussion

Membrane proteins are predicted to constitute approximately one
third of the genome and many of them are important drug targets [35,
36]. Structural studies onmembrane proteinswill not only provide use-
ful information to understand their functions, but also facilitate
structure-based drug design [37]. Although X-ray crystallography is a
powerful tool to determine structures of many membrane proteins
such as G-protein coupled receptors, ion channels and transporters
[38–41], NMR spectroscopy will also play an important role in deter-
miningmembrane protein structure and understanding their dynamics
under different conditions [42–45]. We carried out structural studies of
NS2B of DENV4 to understand its membrane topology. We focused on
NS2B of DENV4 instead of DENV2 because the assignment of NS2B of
DENV2 was challenging due to signals from the affinity tag [27]. NS2B
was shown to be a regulator of NS3 protease that was confirmed to be
a validated drug target. Extensive studies have been carried out to
develop potent inhibitors that are active against DENV protease, but
there is still no potent dengue protease inhibitor available [46–49].
Most of the structural and functional studies of NS2B are using a NS2B
construct without the hydrophobic regions [11,13,15,16]. The failure
in developing DENV protease inhibitors might arise from the fact that
little is known about the molecular interaction between full length
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Fig. 6. Relaxation analysis of 15N-Met-labeled NS2B. A. Predicted membrane topology of NS2B. Methionine residues having different relaxation parameters are classified into four groups
shown in red, green, blue and pink, respectively. The first Met residue arisen frommolecular cloning to replace the four residues (SMPL) at NS2B N-terminus is shown in orange. Relaxation
rates T1, T2, T1/T2 and HetNOE are plotted as a function of residue number and shown in B. The color scheme is the same as A.

Fig. 7.Helixwheel representation of NS2B. A. Helixwheel analysis of the four helices in NS2B. B. One of themodels of NS2B obtained from the CS-ROSETTA server. The four helices and the
cofactor region are shown in different colors.
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Fig. 8. PRE analysis of NS2B. A. 1H–15N-HSQC spectra of NS2B in the absence (black) and presence of 5mMgadolinium (red). The assignment for some residues inα1 is shown. B. Changes
of peak intensities in the absence of gadolinium. The relative ratio of intensities in the absence (I0) and presence (Ip) of gadolinium was plotted. A value of 1 was given to some residues
such as G105 whose intensity was increased after addition of gadolinium. The signals with reduced intensities suggest that the residue is exposed to the solvent.
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NS2B and NS3 [50]. In this study, we have obtained NS2B of DENV4 in a
large quantity for structural studies in LMPG micelles, which will make
it possible to explore molecular interaction between full length NS2B
and NS3 or other dengue membrane proteins. Although we were able
to assign backbone resonances of NS2B in LMPG micelles (Fig. 3), line
broadening of cross peaks and existence ofmultiple peaks for single res-
idue were observed in the spectra (Fig. 3, Fig. S1). This might arise from
the fact that NS2B contains regions with different dynamic natures and
conformational exchanges (Fig. 5). Residueswhich exhibited broadened
peaks might also arise from protein oligomerization. A previous study
showed that NS2B could form oligomers [51].

NS2B can form a complex with NS3 that also interacts with other
dengue membrane proteins such as NS4A and NS4B [5,6]. It is still
unknown whether NS2B interacts directly with NS4A or NS4B. The
only known function of the transmembrane segments of NS2B is that
these regions might be important for membrane localization [17].
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Using NMR spectroscopy, we analyzed the secondary structures and
defined the membrane topology of NS2B (Fig. 6). There are four trans-
membrane helices present in NS2B (Fig. 6). The structural information
of NS2B was obtained in LMPG micelles. It still debated whether mi-
celles might or might not mimic the native membrane environment.
We showed that detergent such as Lyso-myristoyl phosphatidylcholine
(LMPC) can sustain the dengue protease activity [50]. Due to the similar
structure between LMPG and LMPC, this secondary structural informa-
tion obtained in this study is similar to its structure under physiological
conditions. Both 15N- and 15N-Met-labeled NS2B showed the similar
result that the α1 is more dynamic than other helices and the cofactor
region is flexible in the absence of NS3 (Fig. 5). Signal overlap is always
observed in the 1H–15N-HSQC spectrum for α-helical membrane pro-
teins [52]. Residue-specific 15N-labeling of a protein has been proven
to be useful in structural and dynamic analysis of proteins [53]. Our
result also showed that dynamic analysis of a 15N-amino acid-specific
labeled sample will provide useful information to understand protein
dynamics. Further sequence analysis showed that all these four helices
contain several hydrophilic residues and residues with short side chains
such as Gly and Ser, whichmight explain the reason that several servers
produced different membrane topologies (Figs. 1, 6). These hydrophilic
residues in the helices might be important for helix–helix packing. We
also submit the chemical shift values to CS-ROSETTA sever [54] and
the result suggested that NS2B could form a helix bundle. These results
will be useful for further functional analysis of NS2B, whichwill provide
novel insight into drug discovery targeting DENV. It has been noted that
the length of these four helices is shorter than a transmembrane domain
(~21 amino acids) of other membrane proteins such as cytokine
receptors [55]. A transmembrane domain with such length might have
freedom to induce conformational changes in the cell membrane
under different conditions. It is possible that NS2B can interact with
other dengue membrane proteins through its transmembrane regions.
Further functional studies will provide more information of NS2B in
viral replication.

In summary, we have presented secondary structural analysis of
NS2B of DENV4 base on backbone assignment. Themembrane topology
of NS2B was defined based on secondary structure determination,
relaxation and PRE experiments. The results obtained in this study will
facilitate structural study on NS2B, which will be useful to understand
its role in NS3 protease activity and viral replication.
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