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Consider the lattice paths on �2 with steps �1� 1�, �1�−1�, and �1� 0�. For n ≥ 2,
let En denote the set of such paths running from �0� 0� to �n� 0� and remaining
strictly above the x-axis except initially and terminally. The cardinalities, fn = �En�
for n ≥ 2, are the Motzkin numbers, 1� 1� 2� 4� 9� 21� 51� 127� � � � . We define a bijec-
tion yielding the recurrence �n + 1�fn+1 = �2n − 1�fn + 3�n − 2�fn−1, for n ≥ 3. A
modification of the bijection proves that the sum of the areas under the paths of
En, denoted by An, satisfies An+1 = 2An + 3An−1� for n ≥ 3. A second modifica-
tion yields a recurrence for a second moment for the paths of En which agrees with
Euler’s recurrence for the central trinomial numbers.  2001 Elsevier Science
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1. THE PATHS AND THEIR MOMENTS

Consider the lattice paths on �2 whose permitted steps are the up diago-
nal step �1� 1� denoted by U , the down diagonal step �1�−1� denoted by D,
and the horizontal step �1� 0� denoted by H. Assign the weight of 1 to each
U step, the weight of 1 to each D step, and the weight of the indeterminate
t to each H step. The t-weight of a path P , denoted by �P�, is the product
of the weights of its steps; the t-weight of a set of paths S, denoted by �S�,
is the sum of the t-weights of the paths in S. Let U�x� y� denote the set of
all unrestricted paths running from �0� 0� to �x� y� and using the steps U ,
D, and H.
The set of Motzkin paths running from �0� 0� to �n� 0�, denoted by Mn,

consists of those paths in U�n� 0� that never run below the x-axis. Of partic-
ular interest is the set of elevated Motzkin paths, denoted by En and defined
to be the set of those paths inMn that never touch the x-axis except initially
and finally. Figure 1 illustrates the elevated paths in E5.
For n ≥ 2 let fn denote the t-weight of En; i.e., fn = �En�. Hence, �fn�≥2 =

�1� t� 1+ t2� 3t + t3� 2+ 6t2 + t4 � � �� (see Table I). When t = 1, the sequence
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FIG. 1. The four elevated Motzkin paths of E5 bound a total area of 20 units. Equivalently,
the sum of the ordinates of their lattice points is equal to 20.

�fn�n≥2 = �1� 1� 2� 4� 9� 21� 51� 127� � � �� is the well-known Motzkin numbers,
named for Theodor Motzkin [6], who introduced them while counting all
possible sets of nonintersecting chords joining some of n points on a circle.
(In our notation, there are fn+2 sets of nonintersecting chords for n points.)
Donaghey and Shapiro [2] made an early study of the Motzkin sequence
in which they showed the sequence counting 14 different combinatorial
objects, including Motzkin paths in Mn. Exercises 6.37, 6.38, and 6.46 of [8]
give further information regarding this sequence. Putting t = 0 effectively
disallows the horizontal steps and yields the Dyck (or Catalan) paths with
�fn�n≥2 becoming the aerated Catalan numbers.
Given any lattice path P running from �0� 0�, express the path as a

sequence of steps, P = p1p2 · · ·ph · · ·pn. Define the altitude, or the ordi-
nate, of the step ph, denoted by alt�ph�, to be the ordinate of the step’s
terminus. For n ≥ 2, we define the following sums of t-weighted moments
for En that correspond respectively to the cardinality, the sum of the mean
altitudes, and the sum of the mean altitudes squared:

fn =
∑

P∈En
�P� (1)

gn =
∑

P∈En

�P�
n− 1

n−1∑

h=1
alt�ph� (2)

hn =
∑

P∈En

�P�
n− 1

n−1∑

h=1
alt�ph�2� (3)

Some initial values for these sequences appear in Table II.

TABLE I
Contributions to f5 = 3t + t3� g5 = 4t + t3� h5 = 6t + t3 and the Total Area from the Four

Paths of E5

Contribution Contribution Contribution Contribution
Path to f5 to g5 to total area to h5

UHUDD t 5t/4 5 7t/4
UUHDD t 6t/4 6 10t/4
UUDHD t 5t/4 5 7t/4
UHHHD t3 4t3/4 4 4t3/4
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TABLE II
Some Initial Values for the Sequences (Recall That gn = An/�n− 1�)

t n 2 3 4 5 6 7

0 fn 1 0 1 0 2 0 · · · Aerated Catalan nos.
1 fn 1 1 2 4 9 21 · · · Motzkin nos.
2 fn 1 2 5 14 42 132 · · · Catalan nos.
0 An 1 0 4 0 16 0 · · · Aerated powers of 4
1 An 1 2 7 20 61 182 · · ·
2 An 1 4 16 64 128 256 · · · Powers of 4
0 hn 1 0 2 0 6 0 · · · Central binom. coefs.
1 hn 1 1 3 7 19 51 · · · Central trinom. coefs.
2 hn 1 2 6 20 70 252 · · · Central binom. coefs.

Our main purpose is to give bijective proofs of the recurrences for these
moments as recorded in Proposition 1.1. As noted in Section 4, our proof
of the third recurrences is not completely bijective.

Proposition 1.1. The sequences �fn�n≥2, �gn�n≥2, and �hn�n≥2 satisfy

�n+ 1�fn+1 = �2n− 1�tfn + �n− 2��4− t2�fn−1� (4)

ngn+1 = �2n− 2�tgn + �n− 2��4− t2�gn−1� (5)

�n− 1�hn+1 = �2n− 3�thn + �n− 2��4− t2�hn−1� (6)

for n ≥ 3, subject to f2 = g2 = h2 = 1 and f3 = g3 = h3 = t.
By the elementary formula for the area of a trapezoid, the area under any

path P of En and above the x-axis, denoted A�P�, is equal to the sum of the
ordinates of P . Thus, ifAn denotes

∑
P∈En �P�A�P�, i.e., the total t-weighted

area under the paths of En, we have that An = ∑
P∈En �P�

∑n
i=1 alt�pi�.

Hence, the recurrence in (5) is equivalent to that in (7) below. Formula (8)
follows by induction.

Proposition 1.2. The sequence �An�n≥2 for the sum of the t-weighted
areas under the paths of �En�n≥2 satisfies

An+1 = 2tAn + �4− t2�An−1� (7)

for n ≥ 3, subject to A2 = 1 and A3 = 2t. Moreover, for n ≥ 2,

An =
�2 + t�n−1 + �2 − t�n−1

4
� (8)

In Table II, when t = 0, we are surprised by the apparent equality of
the sequence �hn�n≥2 with the familiar sequence of the central binomial
coefficients. Likewise, when t = 1, we find that �hn�n≥2 appears to be the
central trinomial coefficients, which clearly count the unrestricted paths
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terminating on the x-axis. Indeed, when t = 1, recurrence (6) has the same
form as

�n+ 1��U�n+ 1� 0�� = �2n+ 1��U�n� 0�� + 3n�U�n− 1� 0���
This recurrence for the trinomial coefficients dates from 1764 when it was
found by Euler [4]. In Section 4 we will show that hn satisfies another
recurrence that is also satisfied by �U�n− 2� 0��. Hence it follows that:

Proposition 1.3. For any integer n ≥ 2, the sum of the t-weighted means
of the squared altitudes of the elevated Motzkin paths relates to the t-weighted
cardinality of unrestricted paths by

hn = �U�n− 2� 0��� (9)

Foata and Zeilberger’s [5] combinatorial proof of a recurrence for the
Schröder numbers sparked this work. Our paper furthers the studies made
in [7, 9, 10, 12] for other recurrences for the cardinality and for the total
area of structures associated with the Catalan and Schröder numbers.
Barcucci, Pinzani, and Sprugnoli [1] used generating functions to derive
various recurrences related to Motzkin paths. The author [11] used gen-
erating functions to obtain a generalization of Proposition 1.1 by allowing
the horizontal steps to have any fixed integer length. The resulting recur-
rences of [11] unify the recurrences for the moments associated with Dyck,
Motzkin, and Schröder paths.

2. A BIJECTIVE RECURRENCE FOR THE CARDINALITY

The key to our combinatorial proof of the recurrence in (4) for the car-
dinality of elevated paths, namely,

�n+ 1�fn+1 = �2n− 1�tfn + �n− 2��4− t2�fn−1�
for n ≥ 3, is to reformulate this recurrence as

ntfn + �n− 1�tfn + 4�n− 2�fn−1 = �n+ 1�fn+1 + �n− 2�t2fn−1� (10)

Correspondingly, we will define a map, and its domain and codomain,
denoted as

µ
 �n� × En × �H� ∪ �n− 1� × En × �H� ∪ �4�n− 2�� × En−1
→ �n+ 1� × En+1 ∪ �n− 2� × En−1 × �HH� (11)

that is bijective and reduces to Eq. (10) when we account for weights of the
sets of paths.
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We begin by defining the set products appearing in the domain and
codomain of (11). Define �n� × En × �H� to be the set of the distinguish-
able copies of the paths in En where each copy has one step marked by the
superscript a and has an appended t-weighted H step.
For example, since E5 = �UHHHD�UHUDD�UUHDD�UUDHD�,

�5� × E5 × �H�
= �UaHHHDH� UaHUDDH� UaUHDDH� UaUDHDH�

UHaHHDH� UHaUDDH� UUaHDDH� UUaDHDH�

UHHaHDH� UHUaDDH� UUHaDDH� UUDaHDH�

UHHHaDH� UHUDaDH� UUHDaDH� UUDHaDH�

UHHHDaH� UHUDDaH� UUHDDaH� UUDHDaH��
Define �n − 1� × En × �H� to be the set of the distinguishable copies

of the paths in En where each copy has one nonfinal step marked with
superscript c and has an appended t-weighted H step.
Define �4�n − 2�� × En−1 to be the set of the distinguishable copies of

the paths in En−1 where each copy has one nonfinal step marked by the
superscript a, b, c, or d.
Define �n+ 1� ×En+1 to be the set of distinguishable copies of the paths

in En+1 where each copy has one U step marked by a, one D step marked
by b, or one H step marked by c.
Define �n − 2� × En−1 × �HH� to be the set of distinguishable copies

of the paths in En−1 where each copy has one nonfinal step marked by
superscript d and has an appended pair of H steps.
Next we define the map µ of (11) in three cases, each of which corre-

sponds to one of the sets in the domain. In Case 1 and Case 2, a horizontal
step is deleted and then reinserted.

Case 1. Suppose P = p1p2 · · ·paj · · ·pk · · ·pnH ∈ �n� × En × �H�.
There are three subcases:

Case 1�1. If paj = Ua and pk is the first D step following pj for which
alt�pk� = alt�pj� − 1, define

µ�P� = p1p2 · · ·paj · · ·Hpk · · ·pn ∈ �n+ 1� × En+1�
Here the appended H step on P is moved so that it immediately
precedes the step pk. The top pair of Fig. 2 illustrates this case:
there µ�UUaHUDDDH� = UUaHUDHDD, with paj = pa2 = Ua and
pk = p6 = D. In the figure, ignore the vertical segments until Section 3.
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FIG. 2. This illustrates the map µ under Cases 1.1, 1.2, 1.3, and 2. The vertical segments
are used in Section 3 where they show how area is transferred.

Case 1�2. If pj = Da, define
µ�P� = p1p2 · · ·pj−1Hpbj · · ·pn ∈ �n+ 1� × En+1�

Case 1�3. If pj = Ha, define

µ�P� = p1p2 · · ·pdj−1pj+1 · · ·pnHH ∈ �n− 2� × En−1 × �HH��
Here the labeled H step moves to the end of the path and the labeling
moves to the previous step.
Figure 2 show examples for Cases 1.2 and 1.3: For examples of Cases 1.2

and 1.3, µ�UUHUDDaDH� = UUHUDHDbD and µ�UUHaUDDDH� =
UUdUDDDHH.

Case 2. Suppose that P = p1p2 · · ·pcj · · ·pk · · ·pnH ∈ �n − 1� × En ×
�H�. Define

µ�P� = p1p2 · · ·pjHcpj+1 · · ·pn ∈ �n+ 1� × En+1�
Here the appending H step on P is moved to the (j + 1)th position of µ�P�
and receives a label, as shown in the bottom correspondence of paths of
Fig. 2.

Case 3. Suppose that R = r1r2 · · · r�j · · · rk · · · rn−1 ∈ �4�n− 2�� × En−1.
Case 3�1. If � = a, define

µ�R� = r1r2 · · · rjUaDrj+1 · · · rn−1 ∈ �n+ 1� × En+1�
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Case 3�2. If � = b, define
µ�R� = r1r2 · · · rjUDbrj+1 · · · rn−1 ∈ �n+ 1� × En+1�

Case 3�3. If � = c, let rk be the first D step following rcj for which
alt�rk� = alt�rj� − 1, and let ri be the last U step preceding rj+1 for which
alt�ri� = alt�rj�. (When rj = U , i = j.) Define

µ�R� = r1r2 · · · rai · · · rjUR′Drk · · · rn−1 ∈ �n+ 1� × En+1�
where R′ = rj+1 · · · rk−1 if j + 1 < k and R′ is empty if j + 1 = k.

Case 3�4. If � = d, let rk be the first D step following rdj for which
alt�rk� = alt�rj� − 1. Define

µ�R� = r1r2 · · · rjUR′Drbk · · · rn−1 ∈ �n+ 1� × En+1�
where R′ = rj+1 · · · rk−1 if j + 1 < k and R′ is empty if j + 1 = k.
For examples of Case 3 see Fig. 3, which illustrates the following four

mappings:

µ�UUUDaHDD� = UUUDUaDHDD�
µ�UUUDbHDD� = UUUDUDbHDD�
µ�UUUDcHDD� = UUUaDUHDDD�
µ�UUUDdHDD� = UUUDUHDDbD�

FIG. 3. This illustrates Case 3. The vertical segments are used in Section 3 to show how
total area is transferred.



634 robert a. sulanke

To see that µ is indeed bijective we note that both the domain and the
codomain of (11) can be partitioned into collections of eight subsets as fol-
lows. The eight subsets of the domain correspond to Cases 1.1 through 3.4.
The eight subsets of the codomain correspond Cases (i) to (viii) consid-
ered below. We then check that each of the subsets of the codomain can
be bijectively matched to a unique subset from the partition of the domain.
First suppose that Q = q1q2 · · · qn+1 ∈ �n+ 1� × En+1. If the labeled step

is a U step, let qm be the first D step following the labeled step qai for
which alt�qm� = alt�qi� − 1.

(i) If qm−1 = H, then Q = µ�P� under Case 1.1.
(ii) If qm−1 = U , then m− 1 = i and Q = µ�R� under Case 3.1.
(ii) If qm−1 = D, let qj be the last step preceding qm−1 such that

alt�qj� = alt�qm−1�. Then, under Case 3.3, we have µ�R� = Q where R
satisfies r1 · · · rj = q1 · · · qj with rj being the labeled step of R.

If the labeled step of Q is a D step qm, we observe that

(iv) If qm−1 = H, then Q = µ�P� under Case 1.2.
(v) If qm−1 = U , then Q = µ�R� under Case 3.2.
(vi) If qm−1 = D, let qj be the last step preceding qm−1 such that

alt�qj� = alt�qm−1�. Then, under Case 3.4, we have µ�R� = Q where P
satisfies r1 · · · rj = q1 · · · qj with rj being the labeled step of R.

If the labeled step of Q is an H step,

(vii) then Q = µ�P� under Case 2.

For the remaining case:

(viii) if R ∈ �n− 2� × En−1 × �HH�, then R = µ�P� under Case 1.3.

3. THE RECURRENCE FOR THE AREA

We will use the map of the previous section to construct a bijective recur-
rence related to the total weighted area An =

∑
P∈En �P�

∑n
i=1 alt�pi�. Our

t-weight preserving bijection is based on the observation that, in most cases,
the altitude of the labeled step on a path P is equal to the altitude of the
labeled step on µ�P�. The exceptions are the labeled steps ra and rd under
Cases 3.1 and 3.4.
For each step pj of each path P , let �pj� denote the line segment from

�j� 0� to �j�alt�pi��. The vertical segments in Figs. 2 and 3 represent such
segments. For any segment �pj�, define the t-weight of a segment to be
�P�alt�pj�. The t-weight of a set of segments will be the sum of the t-weights
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of its members. The distributive law ensures that this definition agrees with
the definition of the weighted area An. We define the following collections
of segments:

V� = ��p�j �
 1 ≤ j ≤ n− 1� P ∈ En × �H�� for � ∈ �a� c��
W� = ��r�j �
 1 ≤ j ≤ n− 2� R ∈ En−1� for � ∈ �a� b� c� d��
X = ��qj�
 1 ≤ j ≤ n�Q ∈ En+1��
Y = ��rj�
 1 ≤ j ≤ n− 2� R ∈ En−1 × �HH���

For example, referring to Figs. 2 and 3 we find 16 vertical segments
which can be represented sequentially as they appear by �pa2� ∈ Va� �q2� ∈
X� �pa6� ∈ Va� �q7� ∈ X� �pa3� ∈ Va� �r2� ∈ Y� �pc3� ∈ Vc� �q4� ∈ X� �ra4 � ∈
Wa� �q5� ∈ X� �rb4 � ∈ Wb� �q6� ∈ X� �rc4� ∈ Wc� �q2� ∈ X� �rd4 � ∈ Wd� �q8� ∈ X.
We will usually omit the exponent labeling in our segment notation as

the context will indicate when �pj� connotes �paj � or �pcj �, etc. For n ≥ 3,
the recurrences in (5) and (7) are equivalent to

2tAn + 4An−1 = An+1 + t2An−1� (12)

Using the notation for the map µ, we define a map

φ
 Va ∪ Vc ∪Wa ∪Wb ∪Wc ∪Wd → X ∪ Y (13)

that is bijective, t-weight transferring, and hence establishes (12).

Case 1. For �pj� = �paj � ∈ Va,
φ��pj�� = �qj� if pj = U�
φ��pj�� = �qj+1� if pj = D�
φ��pj�� = �qj−1� if pj = H�

where Q = µ�p1 · · ·paj · · ·pnH�. Here φ preserves the t-weight since

alt�qj� = alt�pj� if pj = U�
alt�qj+1� = alt�pj� if pj = D�
alt�qj−1� = alt�pj−1� = alt�pj� if pj = H�

(The vertical segments of Fig. 2 shows how area is preserved.)

Case 2. For �pj� = �pcj � ∈ Vc ,
φ��pj�� = �q′j+1��

where Q′ = µ�p1 · · ·pcj · · ·pnH�. For this case it is easily checked that φ
preserves the t-weight.
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Case 3. For segments in Wa ∪Wb ∪Wc ∪Wd, in order to prove that φ
preserves the total t-weight, it is convenient to map segments as quadruples.
For the quadruple

��rj�� �rj�� �rj�� �rj�� = ��raj �� �rbj �� �rcj �� �rdj �� ∈ Wa ×Wb ×Wc ×Wd�
define

�φ��rj��� φ��rj��� φ��rj��� φ��rj��� = ��qj+1�� �q′j+2�� �q′′i �� �q′′′k+2��� (14)

where

Q = µ�r1 · · · raj · · · rn−1�� Q′ = µ�r1 · · · rbj · · · rn−1��
Q′′ = µ�r1 · · · rcj · · · rn−1�� Q′′′ = µ�r1 · · · rdj · · · rn−1��

Here the map φ preserves the total t-weight since alt�qj+1� = alt�rj� + 1,
alt�q′j+2� = alt�rj�, alt�q′′i � = alt�rj�, and alt�q′′′k+2� = alt�rj� − 1, and
thus the deficit of alt�q′′′k+2� cancels the surplus of alt�qj+1�. (See Fig. 3.)

4. THE RECURRENCE FOR THE SECOND MOMENT

To obtain recurrence (6) for the second moment we will first establish
the mixed recurrence

nhn+1 = 2�n− 1�thn + �n− 2��4− t2�hn−1 + 2�n− 2�fn−1� (15)

for n ≥ 3, subject to the aforementioned initial conditions, by considering
the rearranged form:

2�n− 1�thn + 4�n− 2�hn−1 + 2�n− 2�fn−1 = nhn+1 + �n− 2�t2hn−1� (16)

The t-altitude squared of a segment �pj� will be defined as �P�alt�pj�2.
Observe that �n− 1�hn =

∑
P∈En

∑
1≤h≤n−1 �P�alt�pj�2 and hence is a sum

of t-altitudes squared. In order to engage the term 2�n − 2�fn−1 into the
argument, we will introduce a collection of pairs consisting of a segment
and a step: let

T = ���rj�� rj�
 1 ≤ j ≤ n− 2� R ∈ En−1��
The t-altitude squared of any step (as opposed to a segment) of the path R
will be defined to be the constant 2�R�.
Keeping the notions of the previous sections, we now define a map

ψ
 Va ∪ Vc ∪Wa ∪Wb ∪Wc ∪ T → X ∪ Y (17)

that is bijective and transfers the sum of the t-altitudes squared.
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On Va ∪ Vc define the map ψ as the map φ in Cases 1 and 2 of Section 3
with alt�·�2 replacing alt�·�. Since there is no change in the altitudes under
φ on Va ∪ Vc , the map ψ preserves the sum of the t-altitudes squared on
Va ∪ Vc .
On Wa ∪Wb ∪Wc ∪ T , define
�ψ��rj��� ψ��rj��� ψ��rj��� ψ���rj�� rj��� = ��qj+1�� �q′′j+2�� �q′′j �� �q′′′k+2���

where the right side is defined in (14). Here the map ψ preserves the sum
of the t-altitudes squared for each quintuple, ��rj�� �rj�� �rj�� �rj�� rj�, since

4 · alt�rj�2 + 2

= �alt�rj� + 1�2 + �alt�rj��2 + �alt�rj��2 + �alt�rj� − 1�2 + 2

= alt�qj+1�2 + alt�q′j+2�2 + alt�q′′j �2 + alt�q′′′k+2�2�
The bijection of line (17) reduces to

2
∑

P∈En

n−1∑

j=1
�P�t�alt�pj��2 + 4

∑

R∈En−1

n−2∑

j=1
�R��alt�rj��2 +

∑

R∈En−1

n−2∑

j=1
2�R�

= ∑

Q∈En+1

n∑

j=1
�Q��alt�qj��2 +

∑

R∈En−1

n−2∑

j=1
�R�t2�alt�rj��2

which in turn reduces to (16) and hence (15).
We consider the proof of the recurrence for �hn�n≥2 in (6), which we

restate for convenience by

�n− 1�hn+1 = �2n− 3�thn + �n− 2��4− t2�hn−1� (18)

Lacking a purely bijective proof of this recurrence, we use the mixed recur-
rence of (15) with the recurrence for �fn�n≤2 in (4) to obtain (18) by induc-
tion. Recurrence (18) and its initial conditions are easily checked for n,
2 ≤ n ≤ 3. Assume, as the induction hypothesis, that (18) holds for all n
where 4 ≤ n < m for some m > 4. We verify the case for n = m, i.e., pre-
cisely the formula stated in (18), by a sequence of substitutions that use the
recurrences (4), (15), and (18), where the last holds for n < m. We use a
computer algebra program to manipulate our substitutions. Below we list
the sequence of input statements for the substitution steps in Maple, with
“h(n)” representing “hn,” etc. Notice that the first two lines correspond to
the induction hypothesis. The sequence of statements for Mathematica is
essentially the same.

h(n-3) := ((n-3)*h(n-1) - (2*n-7)*t*h(n-2))/(n-4)
/(4-t*t):
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h(n-2) := ((n-2)*h(n) - (2*n-5)*t*h(n-1))/(n-3)
/(4-t*t):

f(n-3) := ((n-2)*h(n-1) - 2*(n-3)*t*h(n-2)
- (n-4)*(4-t*t)*h(n-3))/(n-4)/2:

f(n-2) := ((n-1)*h(n) - 2*(n-2)*t*h(n-1)
- (n-3)*(4-t*t)*h(n-2))/(n-3)/2:

f(n-1) := ((2*n-5)*t*f(n-2) + (n-4)*(4-t*t)
*f(n-3))/(n-1):

print(simplify(f(n-1))):
h(n+1) := (2*(n-1)*t*h(n) + (n-2)*(4-t*t)*h(n-1)

+ 2*(n-2)*f(n-1))/n:
print(simplify(h(n+1))):

The statement print(simplify(h(n+1))) yields recurrence (18) for n =
m, completing its proof. Parenthetically, as an unexpected by-product, the
intermediate step corresponding to print(simplify(f(n-1))) yielded a
recurrence found in [1], namely:

fn−1 =
thn + �4− t2�hn−1

2�n− 1� �

Now with recurrence in (18) established, we can use the following sub-
stitutions:

h(n-3) := ((n-3)*h(n-1) - (2*n-7)*t*h(n-2))
/(n-4)/(4-t*t):

h(n-2) := ((n-2)*h(n) - (2*n-5)*t*h(n-1))
/(n-3)/(4-t*t):

h(n-1) := ((n-1)*h(n+1) - (2*n-3)*t*h(n))
/(n-2)/(4-t*t):

f(n-3) := ((n-2)*h(n-1) - 2*(n-3)*t*h(n-2)
- (n-4)*(4-t*t)*h(n-3))/(n-4)/2:

f(n-2) := ((n-1)*h(n) - 2*(n-2)*t*h(n-1)
- (n-3)*(4-t*t)*h(n-2))/(n-3)/2:

f(n-1) := ((2*n-5)*t*f(n-2) + (n-4)*(4-t*t)
*f(n-3))/(n-1):

print(simplify(f(n-1))):

The statement print(simplify(f(n-1))) supplies the recurrence

fn−1 =
hn+1 − thn
2�n− 2� (19)

which suffices for Proposition 1.3, as we will see in the next section.
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5. RELATING ALTITUDE SQUARED TO CENTRAL
TRINOMIAL NUMBERS

In this section we complete the proof of Proposition 1.3. Our main com-
binatorial tool is the cycle lemma, introduced by Dvoretzky and Motzkin
[3]. (Alternatively, one can use the André reflection principle as was done
in [11]. However, it is appropriate that the counting of Motzkin paths use a
result bearing Motzkin’s name.) For completeness we establish a version of
this lemma for cyclic permutation classes of unrestricted paths in U�n� 1�.
For any path P = p1p2 · · ·pn ∈ U�n� 1�, let �P� denote the equivalence
class of cyclic permutations of P .

Lemma 5.1. For any path P in U�n� 1� there is a unique Q in �P� such
that the concatenation QD is an elevated path in En+1. Furthermore, the cyclic
permutations of �P� are distinct, and hence �P� has n paths, each having the
same t-weight.

Proof. Let P be any path in U�n� 1�. Since the ordinate of the terminal
point of P is one greater than its starting point, the rightmost lowest point
of the concatenation PP must occur at the initial point of a step, say pi,
in the first factor of the concatenation. Thus the path Q = pipi+1 · · ·pi−1,
which is a cyclic permutation of P and which we initiate at �0� 0�, satisfies
QD ∈ En+1.
Next we observe that, for this Q, there cannot be another path Q′ in

�P� = �Q� such that Q′D belongs to En+1. Let Q = q1 · · · qn and Q′ =
qj · · · qn · · · qj−1 for 1 < j < n. (Here j �= n, since it must be that qj = U ,
and qn �= U .) When Q′ is superimposed on the concatenation QQ running
from �0� 0�, its initial ordinate must exceed 0, while the ordinate of qn is 1.
If we translate Q′ to start at �0� 0�, we see that Q′ is not above the x-axis
at qn and hence Q′D /∈ En+1�
Finally we show that the permutations in �P� = �Q� are distinct. Suppose

to the contrary, that P = qi � � � qi−1 and P ′ = qj � � � qj−1 belong to �Q�, for
1 ≤ i < j ≤ n and that they are equal as paths when we initiate each at
�0� 0�. Then Q = q1 � � � qi−1qi � � � qn and qj−i+1 � � � qj−1qj � � � qj−i are equal
and belong to �Q�, contradicting the uniqueness of Q.

The lemma implies �n− 2��En−1� = �U�n− 2� 1��, and hence

fn−1 =
�U�n− 2� 1��

n− 2
= �U�n− 1� 0�� − t�U�n− 2� 0��

2�n− 2� � (20)

where the second equality follows from the elementary recurrence,
�U�x� y�� = �U�x − 1� y − 1�� + t�U�x − 1� y�� + �U�x − 1� y + 1��. The
equality of the left and the right ends of (20) matches the recurrence in
(19). Hence Proposition 1.3 follows.
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