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Abstract-In this paper we prove that direct linear multistep method9 for Volterra integral equations of the 
second kind with repetition factor equal to one are always stable. We show trivially that this result is not 
true for first kind equations. We also demonstrate constructively that direct linear multistep methods for 
both first and second kind Volterra integral equations can have repetition factors greater than one, and 
indeed of arbitrary high order. and be numerically stable. Finally we explain why the first form of 
Simpson’s rule for second kind equations is stable while the second form is unstable. 

1. INTRODUCTION 

Consider the Volterra integral equation 

YY(~)+ 
I 

‘k(t,s,y(s))ds=g(t), OlsctsT, (1.1) 
0 

with y E{O, 1); for y = 0, (1.1) is a Volterra integral equation of the first kind whereas for y = 1, 
(1.1) is a Volterra integral equation of the second kind. For the first kind equations we require 
g(0) = 0 while for the second kind equations we have y(O) = g(0). 

We shall assume that the kernel k(t, s, y(s)) and the forcing function g(t) have sufficient 
continuity at least to guarantee the existence of a unique continuous solution of the continuous 
problem and when necessary to permit consistency of the discrete problem of the required 
order through the usual Taylor series expansions. 

This paper has been largely motivated by a conjecture of Linz[l] (see also[2,3]). With 
reference to second kind Volterra integral equations he stated, “We may conjecture that 
methods with a repetition factor of one tend to be numerically stable, those with repetition 
factor greater than one numerically unstable”. In this paper we show that this conjecture is only 
partially correct by proving that all linear multistep methods with repetition factor equal to one are 
indeed stable while those with repetition factor greater than one can be stable. This done by 
constructing stable methods with arbitrary high repetition factors. Similarly we demonstrate that 
the repetition factor has nothing whatever to do with stability or otherwise of methods for first kind 
Volterra integral equations. (This result is not surprising in view of the methods of Gladwin[4]). We 
further explain why the first form of Simpson’s rule is stable while the second form is unstable for 
Volterra second kind equations. Some numerical results are presented as verification. 

2. PRELIMINARIES 

For h E (O,hr,], h,-, > 0 and A’ such that T = Nh define the discretisation algorithm for (1.1) 

with 
@N(Y) = 0 where QN: RN+‘+RN+‘, 

Yi - i, 
i”“(i)liz[yyi+h~ 

,i=O,l,..., r-l 

Wijk(ti,fj,yj)-gj ,i = r, r+ 1,. . . , N, 
i=o 

(2.1) 
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where ji, i=O,l,. . . , r- 1, are given starting values. For first kind equations we assume that 
Wii # 0. 

In matrix notation 

@‘N(Y) = T&Y + Hun = P (2.2) 

where 9, is a (nonlinear) lower triangular matrix, y = (yO,y,, . . . , y,+~)r, and g”‘= 

(hjob, * * * , &-l,& . . . , gN)T and g(i) = (Jo,. . . , jr-i,g, . . . , gN)T where gi = g(ti)* 
The total quadrature expression 

is the sum of a starting formula, an end formula, and a main repeated rule. For further details 
the reader is referred to Holyhead et al.[5]. 

We shall say that YIIN has a repetition factor I if 1 is the smallest positive integer such that 
there exists vl, v2 and ~3, independent of N, with 

Wij = Wi-l,j, i I VI, j 2 Yz, i - j 2 V3. 

Note that Holyhead and McKee [6] call this a rowwise repetition factor in order to distinguish it 
from the columnwise repetition factor which they also introduce. This however for our needs 
will not be necessary. 

We introduce the idea of a differentiation matrix. We define 

1 

\ 

1 
1 

Dj$= ; 

- LO,. . . , ) ‘01 
- LO,. . . ,O,l 

r rows 

1 rows 

- l,O,. . . ,O,l 
/ (N+l)x(N+l) 

consisting of l’s on the diagonal and -1’s on the Ith subdiagonal starting at the (r + I)st column. 
All other elements are zero. 

3. NUMERICAL STABILITY 

Consider the trivial Volterra integral equation 

I 
f 

YY(t) + Ay(s)ds=y+(l-y)t, h>O. 
0 

(3.1) 

This is essentially the “test equation” used by Linz[ I], Noble[2], Mayers[7] and Baker and 
Keech[8]. We shall say that a numerical method is numerically stable if when applied to (3.1) 
the discretised solution tends to zero as N +oc for some fixed h. (Clearly this is really only a 
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necessary condition for stability (e.g. Van der Houwen and Wolkenfelt[9] and Williams et 
al. [ IO]). 

Assume that &+ (where U,(y) = I&Y when ~IIN is linear) has a recepition factor 1 and apply 
(2.2) to (3.1) to obtain 

@g(y) = (y&g + ilj&)y --g(y), /i= hh. (3.2) 

Note that I& will have the structure 

+N= . 

wherek+In=N+l,Eisakxkmatrix,and 

u,=p; ( B, / . . . 11 B,-, 1 B,\ ,q = 1,2,. . . , n, (3.4) 

Here the B;‘s are I x I matrices defined by starting from the right and adding zero columns on 
the left if necessary. Thus I?; is B0 with (possibly) some of its columns removed. Premul- 
tiplication by the appropriate differentation matrix results in 

D$‘@N(Y) = (yD’# -I- iD$!hj~,)y - Dslfg"" 
= (yD$$ + AAN)Y - DVg”’ 

where 

AN = 

\ 

0 

(3.5) 

with 
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where m can be greater or less than 1, gcr) = (lST$,, . . . , h ‘-7f,_1.g,, . . . , g,)‘, and C is a k x k 
matrix. 

The matrix h(yD$$ + AAN) = ($dI!$ + iAN) can now be characterised by the comparison 
matrices 

Gj = l 
I 0 1 

I (3.6) 

when k L 1 and 

/ kxk 
j = 1,2, . . . q, 

(3.7) 

1x1 

when k < 1. 
Now since 

j = 1,2,. . . ,m, 

y = (yhD$$ + liAN)-‘(hD~)g(“, 

YN +O as N +oTJ for a fixed 6 if 

I)(yhDjt) + hAN)-‘lj, I iU, independent of N. (3.8) 

The linear algebra results of McKee[lll (theorem 3.2) then say that (3.8) holds if and only if 
the eigenvalues of 

G = G,,,G,,,_, . . . G, (3.9) 

all lie strictly inside the unit circle. 

4. A REPETITION FACTOR OF ONE 

We shah first consider linear multistep methods for Volterra integral equations of the second 
kind with repetition factor equal to 1. Let such an algorithm be represented by 

@N(Y) = INY + h*N(Y) -&?“‘. (4.1) 

Apply (4.1) to (3.1) to obtain 

@N(y) = (IN + &J)y -g(l), k = hk 
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Premultiplying by frD&” results in 
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hD~%,(y) = (hDW + iiA~)y - hD$‘g”‘, (4.2) 

that is, (4.2) is a consistent approximation to 
y’ = - Ay. (4.3) 

Let us assume that (4.1) is a consistent method of order p. Then we see that (4.2) is a consistent 
method to (4.3) of order p (ig. see Andrade [ 121). We note further that (4.1) is a stable method if 

is uniformly bounded. But this is simply the condition that the cyclic linear multistep method 
(4.2) for solving (4.3) be (absolutely) stable. The cyclic linear multistep method takes the form 

k 

yn-I - yn = - Ah afliyn+ir j = 1,2,. . . , m. 

Define, in the usual way, the auxiliary stability polymomials associated with each indicidual 
method: 

Now from Lambert (1973) p. 66 we have that the principal root of rj(r,$), say rY’, satisfies 

ry’ = exp( - A) + O(/?+r). (4.5) 

The characteristic equation associated with the m cyclic linear multistep method is 

det)G - rlJ = 0, (4.6) 

where G is defined by (3.6) and (3.9) with I= 1. Let rl be the principal root of (4.6). We now 
appeal to the lemma: 

LEMMA 1 (Andrade and McKee[l3]) 
Let the m-cyclic linear multistep method LY#& be composed of individual methods of 

order of consistency pv, v = 1,2,. . . ,m and set p = min py If the first characteristic polynomial, 

say p(r), of D%‘QN has a simple root at 1, then the irincipal root rl of the stability polynomial 
(4.6) satisfies 

rl = exp(-m&) + 0(&P+‘). 
cl 

We can now prove 

THEOREM 1 
All consistent linear multistep methods for second kind Volterra integral equations with 

repetition factor one are numerically stable. 

Proof 
All consistent linear multistep methods with repetition factor 1 can be expressed as 

@N(Y) = INY + hY,(y) - g”‘, (4.1) 
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and (4.1) will be numerically stable if 

Il(hDJf) + h;Gi)-‘ll,~ M, independent of N. (3.8) 

For i = 0, the characteristic equation associated with (3.8) is 

m 

det( I=0 

0 , . . , 0 1 

which has roots 1, 0 (k - 1 times). Thus for i small the characteristic equation given by (4.5) 
(4.5) will have, by continuity, roots 1+0(i), O(i) (k - 1 times). Thus we observe that all 
consistent linear multistep methods with repetition factor 1 will be numerically stable if the 
constant corresponding to the O(6) is negative. We now call upon Lemma 1 and note that h’> 0 
to complete the proof. cl 

To demonstrate that there exist unstable linear multistep methods with repetition factor 
equal to 1 for Volterra integral equations of the first kind we need only construct a trivial 
example (applied to (3.1)) 

1 
1 
a l-a 

hh a 1 1-a 
crl 1 

\: 

with&> 1. 

5. REPETITION FACTOR GREATER THAN ONE 

Using the forward rectangular rule 

I ‘i+. 
f(t)dt i vhf(tj+y), Y = 1,2,. . . ,1, ,, 

I 

we can write down the order 1 family of methods defined by (3.3) with 

B;= , B,= 

2 

j = 2.3, . . . . 1+1, E=I,. 
Thus for the two values of y we have two families of discretisation methods with repetition 

factor 1. Premultiplying by D!$ results in a matrix A N which is characterised by the single 
companion matrix 
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G, = 

\ 

-J--O 
r+G’ ’ * * . ’ 

0 

i 1X1 

with eigenvalues 0 (I times) for first kind Volterra integral equations and the I roots of 

*L.&z0 
1 - hl 

for second kind Volterra integral equations. 
Lest the reader might think that these (somewhat artificial) methods are in any way unique 

we give another simple example. 
Consider the order 2 method for second kind equations, 

UN + hN)Y = g”‘, 0.1) 

where 

+N= :: ‘z 

2 
? 
1 
z 

2 
5 

1 ; 

4 2 
? ? 

1 I 

\ 

2 
j 

1 1 
3. 

j 

(5.2) 

and g(‘) = (f~,g~,ts, . . . , gN)r. This method has repetion factor 2 and so (hDp+ iAN) can be 
characterized by 

0 1 
G, = l-2/3i -2l3i - - -- 

1 + 2136 1 -t 2/3i 1+ 1/2K 1+ l/26 

It is an easy matter to demonstrate that the eigenvalues of G = GzG1 are 

l-/$3, l-2K 

to within order h” and so there exists some nonempty stability region. 

6. THE TWO FORMS OF SIMPSON’S RULE FOR SECOND KIND EQUATIONS 

The first form of Simpson’s rule uses the 3/&h rule alternately on the upper end [ti-j, ti] 
while the second form uses the 3/&h rule alternately at the lower end [to, t3] (for fuller details 
see Linz [ 11 or Noble [2]). 
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We observe that the first form has repetition factor 1. Thus premultiplying by 0%’ results in 
a matrix 

which can be characterized by the two companion matrices 

c, = 

l 0 0 0 1 0 1 0 0 

-(1,3!3,8)h -(4,3!&)2 - (2,3 -Os:aE 1 - (43 ! 3,8)& 

(1+1/3@ ’ (1+1/3/Y) ’ (1+1/3@ ’ (1+1/36) i 

and 

-(3/S! l/3$ - (9,8 f 4/3)i 1 - (9,8l- 4,3)K 

(1+3/8@ (1 + 3/8@ (1 + 3/8& 

A tedious calculation yields of G = G2GI to be 

0,O + O(P) (twice), 1 - 3/Y+ O(R). 

Thus this method is reminiscent of the Adams-Moulton methods for ordinary differential 
equations in having all the roots of its first characteristic polynomial at the origin except for one 
at +I. It is therefore optimally stable (with respect to the test equation (3.1)), a fact that was 
reflected in Linz’s numerical results. 

Although the second form of Simpson’s rule has repetition factor 2 it is essentially simpler 
to analyse. Permultiplying by Dw results in a matrix (hD$$ + iAN) characterized by the single 
companion matrix 

1 
- 4/3i - - 

1 + 1/3z 

whose characteristic equation is easily recognised as that of Simpson’s method for ordinary 
differential equations. It therefore has a root outside the unit circle, independent of the sign of 
6 indicating unconditional instability. 

7. NUMERICAL VERIFICATION 

The linear multistep method (5.1) with repetition factor 2 for second kind Volterra integral 
equations was used to solve the test equation (3.1) with A equal to 1 and 5. The errors for 
different values of N for h = 0.1 and 0.01 are presented in Table 1. It is clear that the method 
is numerically stable. 

8. CONCLUSIONS 
In this paper we have proved that Linz’s conjecture[ll is in part correct, that is, that all 

linear multistep methods for Volterra second kind integral equations with repetition factor 1 are 
numerically stable while those with repetition factor greater than 1 can be either stable or 
unstable. We showed that for first kind equations stability or instability is independent of the 
repetition factor. We also explained why Simpson’s rule in the first form is stable while in the 
second form is unstable. Finally numerical results were presented to verify our conclusions. 
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Table I. 
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- 

N 
- 

10 

20 

25 

100 

200 

210 

220 

230 

240 

250 

- 
h = 0.1 

h =l A=5 

6.8 * 10 -4 5.4 x 10 -3 

5.9 x 10 -4 1.9 x 10 -3 

7.3 x 10 -5 1.9 x 10 -3 

7.6 x 10 -5 2.2 x 10 -6 

1.4 x 10 -5 5.0 x 10 -10 

1.2 x 10 -5 2.0 x lo-lo 

1.0 x 10 -5 1.0 x lo-lo 

8.6 x 10 -6 1.0 x lo-lo 

7.3 x 10 -6 0.0 x lo-lo 

6.1 x 10 -6 0.0 x lo-lo 

h = 0.01 
h =l x=5 

1.5 x 10 -6 1.3 x 10 -4 

2.7 x 10 -6 1.7 x 10 -4 

1.5 x 10 -6 4.1 x 10 -5 

6.8 x 10 -6 5.4 x 10 -5 

5.9 x 10 -6 1.9 x 10 -5 

5.7 x 1 

5.5 x 

5.4 x 

5.2 x 

5.0 x 

O-6 1.7 x 10 -5 

O-6 1.6 x 10 -5 

O-6 1.5 x 10 -5 

O-6 1.3 x 10 -5 

O-6 1.2 x 1o'5 

The reader perhaps should be reminded that, whereas the repetition factor has no bearing on 
numerical stability for first kind equations, its existence is crucial for the different and in some 
ways more important question of convergence of the multistep methods to the continuous 
problem. The reader is also referred to Holyhead and McKee[6] and for a generalised concept 
of repetition factor to McKee and Holyhead[l4]. 
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