MATHEMATICS

ON THE DIAGONAL FORM OF REAL SYMMETRIC MATRICES

BY

F. D. VELDKAMP

(Communicated by Prof. T. A. Springer at the meeting of January 27, 1973)

Introduction

In numerical mathematics one would like to have some kind of algorithm which brings a real or complex matrix in diagonal or triangular form by means of rational operations and taking arbitrary n-th roots. For arbitrary matrices such an algorithm cannot exist, since it would imply the characteristic polynomial always to be solvable by radicals, which is not the case in general by the Abel-Ruffini theorem. One might ask the same question for the diagonal form of real symmetric matrices. In this note we show the answer in this case to be negative either, by producing real symmetric matrices whose characteristic polynomials are not solvable.

The problem has been suggested by A. van der Sluis in a discussion with the author.

1. Lemma. Let $l_{0} \supset k_{0}$ be a Galois extension of commutative fields whose Galois group G_{0} is isomorphic to either S_{n} or A_{n} with $n>4, k \supset k_{0}$ an extension made by successive adjunction of square roots, $l=l_{0} k$ a common extension of l_{0} and k generated by these two fields. Then $l \supset k$ is a Galois extension with Galois group isomorphic to either S_{n} or A_{n}.

Proof. l_{0} is the splitting field over k_{0} of a separable polynomial, hence so is l over k, i.e., l is Galois over k. Clearly $l \neq k$, for otherwise $l_{0} \subseteq k$, which is impossible since $\left[l_{0}: k_{0}\right]=n!$ or $\frac{1}{2} n!$, and [$\left.k: k_{0}\right]$ is a power of 2 . Let G denote the Galois group of l over k. Any $\sigma \in G$ leaves l_{0} invariant as a whole, since l_{0} is normal over k_{0}; the restriction of σ to l_{0} will be called σ_{0}. Obviously $\sigma \mapsto \sigma_{0}$ is an injective homomorphism of G into G_{0}; let H denote the image of G under this homomorphism, so $G \cong H$. If we can show H to be normal in G, it follows that $H=S_{n}$ or A_{n} by the simplicity of A_{n}.

We have a tower of extensions

$$
k_{0} \subset k_{1} \subset k_{2} \subset \ldots \subset k_{t}=k
$$

with $k_{i}=k_{i-1}\left(\alpha_{i}\right), \alpha_{i}{ }^{2} \in k_{i-1}$. So we also have

$$
l_{0} \subseteq l_{0} k_{1} \subseteq l_{0} k_{2} \subseteq \ldots \subseteq l_{0} k_{t}=l
$$

with $l_{0} k_{i}=l_{0} k_{i-1}\left(\alpha_{i}\right)$. Any $\tau_{0} \in G$ can be extended step by step to an automorphism of $l_{0} k_{1}, l_{0} k_{2}, \ldots, l$ over k_{0} which leaves each of the fields k_{1}, k_{2}, \ldots, $k_{t}=k$ invariant as a whole. That is, we can find an automorphism τ of l over k_{0} which leaves both k and l_{0} invariant as a whole, and such that the restriction of τ to l_{0} is τ_{0}. For $\sigma \in G$, the k_{0}-automorphism $\tau \sigma \tau^{-1}$ of l induces the identity on k, hence belongs to G. Therefore $\tau_{0} \sigma_{0} \tau_{0}{ }^{-1} \in H$, which shows that $H \triangleleft G_{0}$.

Remark. The above argument, of course, works under much weaker assumptions. If G_{0} has a simple normal subgroup $G_{0}{ }^{\prime}$, and k is obtained from k_{0} by a series of successive normal extensions, then either $G=1$ or G is isomorphic to a subgroup H of G_{0} with $G_{0}^{\prime} \subseteq H \subseteq G_{0}$.
2. Consider the following situation. Let k_{0} be a subfield of the reals, $f \in k_{0}[X]$ a polynomial of degree $n>4$ whose splitting field l_{0} over k_{0} is also contained in the reals and such that the Galois group G_{0} of l_{0} over k_{0} is isomorphic to either S_{n} or A_{n}.

Let $A: k_{0}{ }^{n} \rightarrow k_{0}{ }^{n}$ be any linear transformation having f as its characteristic polynomial, e.g.,

$$
A=\left(\begin{array}{ccccc}
0 & 0 & & 0 & -u_{n} \\
1 & 0 & \cdots \cdots & & \vdots \\
0 & 1 & & & \\
\vdots & 0 & & & \\
& \vdots & & 0 & -u_{2} \\
\vdots & \vdots & & 1 & -u_{1}
\end{array}\right)
$$

if $f=X^{n}+u_{1} X^{n-1}+\ldots+u_{n-1} X+u_{n}$. There are n distinct roots of f in l, say $\lambda_{1}, \ldots, \lambda_{n}$.

We embed $k_{0}{ }^{n}$ in $l_{0}{ }^{n}$, and extend A linearly to $l_{0}{ }^{n}$. The Galois group G_{0} operates coordinatewise on $l_{0}{ }^{n}$:

$$
\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\sigma \xi_{1}, \ldots, \sigma \xi_{n}\right) \text { for } \sigma \in G_{0}, \xi_{i} \in l_{0}
$$

Corresponding to the eigenvalue λ_{1} we choose an eigenvector e_{1} of A in $l_{0}{ }^{n}$ whose coordinates are rational functions of λ_{1}. If $\sigma \lambda_{1}=\lambda_{i}$ for $\sigma \in G_{0}$, then clearly $e_{i}=\sigma e_{1}$ is an eigenvector with eigenvalue λ_{i}, and e_{i} does not depend on σ such that $\sigma \lambda_{1}=\lambda_{i}$. The vectors e_{1}, \ldots, e_{n} form a basis of $l_{0}{ }^{n}$. We choose a positive definite inner product (,) in $l_{0}{ }^{n}$ for which e_{1}, \ldots, e_{n} form an orthonormal basis. Clearly, A is symmetric with respect to (,). Since every $\sigma \in G_{0}$ permutes e_{1}, \ldots, e_{n}, we have

$$
(\sigma x, \sigma y)=\sigma(x, y) \text { for } x, y \in l_{0}^{n}
$$

so, in particular,

$$
\sigma(x, y)=(x, y) \text { for } x, y \in k_{0}{ }^{n}
$$

i.e., $(x, y) \in k_{0}$ for x and $y \in k_{0}{ }^{n}$. Take an orthogonal basis $a_{1}, \ldots, a_{n} \in k_{0}{ }^{n}$. Choose $\alpha_{i} \in \mathbf{R}$ with $\alpha_{i}{ }^{2}=\left(a_{i}, a_{i}\right)$ and take $k=k_{0}\left(\alpha_{1}, \ldots, \alpha_{n}\right), l=l_{0} k$. Then l is the splitting field of f over k, with Galois group $G \cong S_{n}$ or A_{n} by the lemma. In k^{n} we can find an orthonormal basis, viz., $\alpha_{1}^{-1} a_{1}, \ldots, \alpha_{n}^{-1} a_{n}$. With respect to this basis the extension of A to k^{n} is represented by a symmetric matrix.
3. A polynomial f as in the previous section can easily be found. Choose, for instance, real numbers t_{1}, \ldots, t_{n} which are algebraically independent over the rationals, and take

$$
f=\left(X-t_{1}\right) \ldots\left(X-t_{n}\right)=X^{n}+u_{1} X^{n-1}+\ldots+u_{n-1} X+u_{n}
$$

For the ground field we must take $k_{0}=\mathbf{Q}\left(u_{1}, \ldots, u_{n}\right)$, whereas $l_{0}=\mathbf{Q}\left(t_{1}, \ldots, t_{n}\right)$ is a splitting field of f. As is well known, the Galois group of l_{0} over k_{0} is S_{n} in this case.

One can even find polynomials

$$
f=X^{n}+a_{1} X^{n-1}+\ldots+a_{n-1} X+a_{n}
$$

with rational coefficients a_{1}, \ldots, a_{n}, hence $k_{0}=\mathbf{Q}$, splitting field $l_{0} \subseteq \mathbf{R}$ and Galois group S_{n}. This was shown in [1]. The argument is as follows. Take any polynomial g with rational coefficients which has n distinct real roots, say

$$
g=X^{n}+b_{1} X^{n-1}+\ldots+b_{n-1} X+b_{n}
$$

From Sturm's theorem (cf. [2], p. 280, or [4], p. 304) it follows that any polynomial

$$
f=X^{n}+a_{1} X^{n-1}+\ldots+a_{n-1} X+a_{n}
$$

with real a_{1}, \ldots, a_{n} such that all $\left|b_{i}-a_{i}\right|$ are sufficiently small has n distinct real roots. Let $c_{0}, c_{1}, \ldots, c_{n}$ be certain integers, $c_{0} \neq 0$, and take $a_{i}=c_{0}{ }^{-1} c_{i}$ for $i=1, \ldots, n$. If c_{0}, \ldots, c_{n} satisfy certain congruences, the Galois group of the splitting field of f over \mathbf{Q} is S_{n} (cf. [3], §61). Moreover, c_{0}, \ldots, c_{n} can be chosen so that a_{1}, \ldots, a_{n} are near enough to b_{1}, \ldots, b_{n}, hence f has n distinct real roots.

The result of sections 2 and 3 are summarized in the following

Proposition. For $n>4$ there exist symmetric matrices with entries in a subfield k of the reals such that the splitting field lover k of the characteristic polynomial f of such a matrix has Galois group either S_{n} or A_{n}. One can even find such a matrix with $k=\mathbf{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where $\alpha_{i}{ }^{2} \in \mathbf{Q}$ for $i=1, \ldots, n$, and such that f has coefficients in \mathbf{Q}.

BIBLIOGRAPHY

1. Baver, M., Ganzzahlige Gleichungen ohne Affekt. Math. Ann. 64, 325-327 (1907).
2. Jacobson, N., Lectures in abstract algebra III. Van Nostrand, Princeton (1964).
3. Warirdin, B. L. van der, Algebra I, 6e Aufl. Springer Verlag, Berlin etc. (1964).
4. Weber, H., Lehrbuch der Algebra I, $2 e$ Auf. Vieweg und Sohn, Braunschweig (1912).
